

Public report – No access limitations.

EMPHYSIS – D7.9 eFMI for physics-

based ECU controllers

Public report
ITEA 3

Version 1, September 2021

Contributors (in alphabetical order):

AbsInt Angewandte Informatik GmbH

Dassault Systèmes AB

Dassault Systèmes SE

DLR Institute of System Dynamics and Control (task leader)

dSPACE GmbH

EFS GmbH

ESI ITI GmbH

ETAS GmbH

GIPSA-lab/Grenoble INP

Maplesoft

Mercedes-Benz AG

Renault SAS

PikeTec GmbH

Robert Bosch GmbH

Siemens Digital Industries Software

Siemens NV

Volvo Car Corporation

2

EMPHYSIS

D7.9 eFMI for physics-based ECU controllers

Public report – No access limitations.

Project Acronyms

eFMI Open Source Software (BSD 3-clause)

github.com/modelica/efmi-testcases Modelica package with eFMI test cases for

demonstrating and evaluating eFMI tooling

(developed by Dassault Systèmes AB, DLR-

SR, Robert Bosch GmbH)

github.com/modelica/efmi-containermanager C# tool for creating, checking, reading and

modifying eFMUs and their individual

containers (developed by dSPACE GmbH)

github.com/modelica/efmi-compliancechecker Python tool for checking eFMUs for

conformance with the eFMI Standard

(developed by ESI ITI GmbH)

AlgCL Algorithm Code Language GALEC

AlgCode Algorithm Code

ARXML Classic AUTOSAR interface description file

BinCode Binary Code

BMI Bosch Maintainability Index

eFMI FMI for embedded systems

eFMU Embedded Functional Mock-Up unit

EqCL Equation Code Language

EqCode Equation Code

FMI Functional Mock-Up interface

FMU Functional Mock-Up unit

GALEC Guarded Algorithmic Language for Embedded Control

KPI Key Performance Indicator

ProdCode Production Code

https://github.com/modelica/efmi-testcases
https://github.com/modelica/efmi-containermanager
https://github.com/modelica/efmi-compliancechecker

3

EMPHYSIS

D7.9 eFMI for physics-based ECU controllers

Public report – No access limitations.

Table of contents

Project Acronyms .. 2

eFMI Open Source Software (BSD 3-clause) ... 2

Table of contents ... 3

1. Overview .. 4

2. Demonstrators ... 6

2.1. D7.1 Demonstrator for test cases .. 6

2.2. D7.2 Demonstrator for eFMI performance assessment .. 8

2.3. D7.3 Demonstrator for power train vibration reduction ... 13

2.4. D7.4 Demonstrator for Bosch engine control function .. 17

2.5. D7.5 Demonstrator for gasoline engine TDC air filling estimation 22

2.6. D7.6 Demonstrator for high frequency throttle position estimation 24

2.7. D7.7 Demonstrator for vehicle dynamics control... 26

2.8. D7.8 Demonstrator for dual clutch transmission ... 27

2.9. D7.10 Demonstrator for Hybrid Air Virtual Sensor .. 28

2.10. D7.12 Demonstrator for semi-active damping controller with hardware tests 29

2.11. D7.13 Demonstrator for virtual sensor for electric machine control 31

2.12. D7.14 Demonstrator for Advanced Emergency Braking Systems 32

3. Summary .. 36

4. References ... 36

4

EMPHYSIS

D7.9 eFMI for physics-based ECU controllers

Public report – No access limitations.

1. Overview

The eFMI (FMI for embedded systems) standard has been developed in the ITEA3 project

EMPHYSIS (2017 – 2021) [2]. It shall enable automated workflows from high-level mathematical

models of physical systems (referred to as physical models) to embedded implementations on

dedicated target environments, such as automotive electronic control units. As the key project

result the eFMI specification has been published as eFMI 1.0.0-alpha.4 on

https://emphysis.github.io/ [3]. A summary of the most important features and the relationship to

FMI (Functional Mock-up Interface) is given in [1]. Core partners of the EMPHYSIS project have

founded the Modelica Association Project eFMI (MAP eFMI - https://efmi-standard.org/) that is

working on the first official release - version 1.0.0.1

Embedded software is commonly used on an embedded device to control or monitor a real -world

system. The goal of eFMI is to support automated tool chains to utilize physical models in the

software, in order to achieve a significantly better performance of the real-world system by using

for example:

 observers/virtual sensors (for example extended and unscented Kalman filters, moving

horizon estimation),

 model-based diagnosis (for example signal based fault detectors, linear/nonlinear residual

generators),

 feedback and feedforward controllers (for example linear controllers with gain scheduling,

nonlinear inverse models, nonlinear dynamic inversion, feedback linearization,

linear/nonlinear model-predictive control),

 neural networks to approximate physical models and/or the above applications.

These types of functions are typically hand-coded software implemented and tested in an

elaborate and time-consuming fashion. The eFMI standard aims to provide model exchange

capabilities that allow to transfer physical models created in dedicated modeling and simulation

tools to embedded code generating tools. This enables an end to end workflow from physical

modeling to the deployment of the software function on an embedded device.

The eFMI workflow is illustrated in Figure 2. Starting point is

an acausal or causal Model (for example a Modelica or

AMESim model) that is transformed to a sampled

input/output block with one (potentially varying) sample

period for the whole block, see Figure 1. Such a block is

defined as an eFMI Algorithm Code described by the

Guarded Algorithmic Language for Embedded Control

(GALEC), a target independent model representation with

guarantees in terms of execution time, boundaries and

exception free execution [1]. This representation is stored in the eFMI container architecture and

can be further processed to Production Code for use on embedded targets.

The Production Code representation defines one or more mappings of an Algorithm Code

representation to C or C++ Code (for example 32-bit and/or 64-bit representation of floating-point

1 In this section, some text is used from eFMI 1.0.0-alpha.4 in a slightly modified form.

Figure 1: Mathematical
description of eFMI component.

https://emphysis.github.io/
https://efmi-standard.org/

5

EMPHYSIS

D7.9 eFMI for physics-based ECU controllers

Public report – No access limitations.

numbers, generic ANSI C-Code and/or code specialized to a particular target environment like

AUTOSAR and/or specific target processors). The Binary Code representation provides one or

more target specific executable codes for one Production Code representation. The Behavioral

Model representation provides reference results to allow automatic verification of the Production

and Binary Code representations.

Figure 2: eFMI workflow showing the different types of eFMI Model Representations (red boxes) stored in
the eFMI Container Architecture.

A Functional Mock-up Unit for embedded systems (eFMU) can be packed in different formats. In

particular, it can be packed as FMU and can then be simulated with any FMI-for-Co-Simulation

compliant tool (see https://fmi-standard.org/tools) to perform Software-in-the-loop (SiL) testing.

Code generation for an embedded device requires however dedicated tool support for eFMI. For

more details, see eFMI 1.0.0-alpha.4.

The remaining part of this report summarizes the demonstrators that have been implemented

during the EMPHYSIS project to develop the eFMI tools, proving the viability of the eFMI workflow

and quantifying its benefits.

Sections 2.1 and 2.2 summarize the comprehensive tests, code quality assessments and runtime

measurements on an ECU target to evaluate the technology readiness of the tool chain as well as

the benefits in comparison with state-of-the-art development processes.

The demonstrators in sections 2.3 and 2.4 use the not-yet fully defined Equation Code model

representation (not included in eFMI 1.0.0) which is in development for a future eFMI release. The

Equation Code model is based on the not-yet fully defined Flat Modelica Language as an

intermediate step from an acausal model to a causal GALEC model.

The demonstrators in sections 2.5, 2.6, 2.7 and 2.9 utilize the generation of neural networks to

transform sophisticated non-real-time capable physical AMESim models into eFMI real-time

models integrated with embedded software. The remaining demonstrators rely on a model

transformation from acausal Modelica models to GALEC code and illustrate the usage of the

technology in different controller and observer applications.

Verification of
eFMI C-Code

Testing of
eFMI C-Code

Software-in-the-Loop
Simulation (SiL)

Causal and acausal modeling tools

Model
(AMEsim, Modelica, syq, ...)

Algorithm Code
eFMU

(

TransformTransform

Execution in
Target Env.

(compiled prod. C-Code)

Binary Code
eFMU

PC binary + SOA app +
target specific binary

Transform

• inputs + outputs
• integrator
• interfaces of services functions

• generic or specific target configuration
(access of variables, services functions, ...)

• extract prod. C-code
• link service functions
• compile + integrate

ECU, Realtime-PC,
AUTOSAR (Adaptive), ...

Simulations of
Model

Production Code
eFMU

production C/C++ Code +
FMI for Co-Sim. C-wrapper

Behavioral Model
eFMU

Reference results: (

csv-files + XML manifest

GALEC-code + XML manifest C/C++ code + XML manifest object-code +
XML manifest

https://fmi-standard.org/tools

6

EMPHYSIS

D7.9 eFMI for physics-based ECU controllers

Public report – No access limitations.

2. Demonstrators

2.1. D7.1 Demonstrator for test cases

In the development of the eFMI specification during the EMPHYSIS project an essential part was

the continuous, parallel implementation of features and techniques in prototype tools. This

approach showed issues in the design of eFMI in an early phase that could be discussed and

fixed in several iterations of the specification process by inclusion of the important players (t ool

vendors and application specialists).

Both simple and more complicated benchmark examples have been utilized for testing. In total 48

test cases (including variants) have been implemented to be processed by the different eFMI tools

involved. Most of the test cases are provided in the open source Modelica library

eFMI_TestCases (https://github.com/modelica/efmi-testcases), some of the test cases are

AMEsim models and some of them are manually implemented eFMUs. For each of the test cases

reference results are provided in an eFMI Behavioral Model representation, that is automatically

generated by scripts in Dymola using the eFMI Container Manager. The AMEsim models are

exported by Simcenter Amesim and the Modelica models are exported by the Modelica tools

Dymola and SimulationX to eFMI Algorithm Code representations. The tools support most of the

partially very ambitious features requested by the test cases:

 Nonlinear inverse models

 Feedback-linearization based controllers

 Explicit and implicit integration schemes

 Event-based re-initialization of continuous states

 Neural networks

 Important built-in functions:

o Solving linear equation systems

o 1-D and 2-D interpolation of tables

 Error handling

 Implicit saturation

The initialization of Modelica models and their mapping to eFMI GALEC code turned out to be

challenging, therefore this topic has to be investigated in more detail in future work. All 67

generated eFMI Algorithm code representations of the test cases are successfully imported by the

Production code tools TargetLink, SCODE-CONGRA and ESP. The tools generate eFMI

Production Code representations that contain a double precision floating-point (64 Bit) and a

single precision floating-point (32 Bit) version of the C code. These representations also include

self-containing implementations of all used built-in functions in the two architecture variants. With

ESP there is also a first prototype that generates eFMI Binary Code by importing all the

Production Code eFMUs of the test cases. By AUTOSAR Builder a few Binary Code eFMUs are

generated dedicated for AUTOSAR Adaptive targets.

https://github.com/modelica/efmi-testcases

7

EMPHYSIS

D7.9 eFMI for physics-based ECU controllers

Public report – No access limitations.

Figure 3: Variety of eFMI tool chain paths by the test case demonstrator tools; one possible path is
highlighted.

All of the 201 Production code eFMUs (generated in 30 different tool chain paths, when

considering 32 Bit and 64 Bit C code as separate paths) are successfully and automatically

imported, analyzed and tested by the tools Astrée for static code analysis of 402 C code projects

and TPT for 538 test run executions. In Figure 3 the variety of the tested tool chain paths for the

test cases is illustrated.

The static code analysis of Astrée reports no or acceptable warnings for 90% of the tests, MISRA

rule violations for 9% of the tests and definite errors for 1% of the tests. Most of the rule violations

are detected in the implementation of complex built-in functions that were not in the focus of the

project. The execution tests with TPT where simulation results are compared with the provided

reference results are successfully passed by more than 96% of the runs. A wrong initialization of a

variable in one test case is the single cause of all detected errors (by Astrée and TPT). It is

planned to fix this issue and to further improve the compliance with MISRA rules after the

EMPHYSIS project. Nevertheless, the very positive test rate impressively shows the maturity of

the tool prototypes and their compatibility based on the alpha version of the eFMI standard.

8

EMPHYSIS

D7.9 eFMI for physics-based ECU controllers

Public report – No access limitations.

2.2. D7.2 Demonstrator for eFMI performance assessment

2.2.1. Objective

The goal of the performance assessment is to benchmark code generated by the most common

eFMI workflow against hand coded implementations according to state-of-the-art software

development.

The evaluation criteria of this assessment are:

 Runtime performance on an Electronic Control Unit (ECU).

 Resource demand (code memory and data memory).

 Development effort.

 Code quality.

2.2.2. Procedure

The considered test cases of this performance benchmark [4] have been selected based on the

input from experienced automotive software developers aiming to cover key challenges such as

non-linearities, stiff dynamics, large number of states, large maps and advanced symbolic

transformation from DAE to a suitable compact state space formulation.

The test cases and the corresponding major challenges are documented in Table 1. This set of

performance benchmark test cases can be considered to represent a wide range of automotive

applications.

The IDs refer to the test case number of the EMPHYSIS Test Cases Modelica library (D7.1)

developed in the EMPHYSIS project and published together with the eFMI standard.

ID Name Difficulty Major Challenge

M03 PID Low Minimal footprint incl. saturated IOs

M04 Drivetrain Medium Inverse linear physical model

M15 Air System Medium Stiff ODE with delay operator

M10 Inverse Slider

Crank

High Inverse non-linear physical model (DAE-Index 1)

M14 Rectifier High Advanced symbolic transformation to compact ODE

form

M16 ROM High High dimensional maps, solve a large linear equation

system

Table 1. All test cases (ordered by difficulty of the models) for an automated procedure to achieve the same
quality as a manual implementation, and the represented major challenges.

The performance benchmark test cases have been implemented as Modelica models as starting

point of the eFMI tool chain. All available Algorithm Code generating tools (SimulationX, Dymola)

9

EMPHYSIS

D7.9 eFMI for physics-based ECU controllers

Public report – No access limitations.

have been used to generate eFMUs considering all parameters as constant to achieve best

computational performance. These eFMUs have then been extended with Production Code model

representations using a compiler configuration for optimized computational performance.

The hand coded implementations have been derived from the literature of the defined

mathematical problem or the equations of the Modelica model (they have not been derived from

the generated Algorithm Codes).

The C code from the manual implementation respectively the code extracted from the eFMI

Production Code model representation have been integrated with a test harness into a standard

ECU software build. The compiled binaries have been executed on a Bosch Multicore ECU

(MDG1).

The code is executed in an open loop fashion using the recorded stimulus signals as inputs

retrieved from local memory. The run time (execution time) is captured based on the CPU ticks

elapsed, right from the start of calling the model interface function (DoStep) until the function

execution is completed. Hence, the overhead of the test harness has no impact on the measured

runtime.

The results computed on the ECU have been verified against the simulated reference solutions

considering the defined absolute and relative tolerances.

Furthermore, the development effort has been estimated for both eFMI and manual workflow. The

relative gain of productivity ∆𝑃 has been determined by putting the total development efforts of the

eFMI workflow 𝑑𝑒𝑣 𝑒𝑓𝑚 in relation to the state-of-the-art hand coded implementation 𝑑𝑒𝑣 𝑠𝑜𝑡𝑎.

𝑡𝑑𝑒𝑣 𝑠𝑜𝑡𝑎−𝑡𝑑𝑒𝑣 𝑒𝑓𝑚𝑖

𝑡𝑑𝑒𝑣 𝑠𝑜𝑡𝑎
 (1)

The total development efforts are counted in working hours including the efforts for modeling,

implementation and validation.

The code quality assessment for the performance benchmark test cases has been performed

according to the Bosch regulations for hand coded production software. For some kinds of auto -

generated code special rules have been defined but are not yet available for eFMI production

code. Therefore, also the eFMI production code is assessed by the stricter rules for hand code.

2.2.3. Results Summary

The code for all test cases has passed validation and verification, except of the code for M10_A,

where the tolerances have been exceeded. Nevertheless, did the code have a stable behavior.

From the hand coded solution, it was known that a stable behavior was possible only by using a

higher resolution for some of the state variables.

With respect to runtime performance (see Figure 4) all examples reached the target KPI (Key

Performance Indicator) of less than 125%. In fact, in all test cases except of M16_A (considering

the error handling overhead for M14_A), the auto-generated solution is even faster. The big

deviation of M10_B is explained by the fact that the manual implementation required some double

precision operation in order to achieve a stable result, which are very expensive on the ECU and

lead to a more than two times longer execution time than the single precision variant.

10

EMPHYSIS

D7.9 eFMI for physics-based ECU controllers

Public report – No access limitations.

Figure 4. Results of the runtime measurements of all applications

The memory consumption summarizes the total code and data bytes that each model’s source

code consumes on the ECU. The code and data memory consumptions relative to the hand coded

solution are shown in Figure 5 and Figure 6 respectively.

Figure 5. Results of the code memory in bytes for all applications

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

M03_B M04_A M10_B M14_A M14_B M15_A M16_A

ECU Runtime Performance

manual

eFMI

0.00%

50.00%

100.00%

150.00%

200.00%

250.00%

300.00%

350.00%

400.00%

M03_B M04_A M10_B M14_A M14_B M15_A M16_A

M
em

o
ry

 in
 B

yt
es

Code Memory by Workflow

manual

eFMI

11

EMPHYSIS

D7.9 eFMI for physics-based ECU controllers

Public report – No access limitations.

Figure 6. Results of the data memory in bytes of all applications

With respect to the memory demand a similar conclusion as for the runtime performance can be

drawn for M03, M04 and M15 reaching the target KPI or outperforming the hand coded solution.

A deviation can be observed for M10. In this case both the code memory (+230%) and data

memory (+170%) of the auto-generated code are significantly larger. This can be explained by the

slider crank mechanism being described in spatial coordinates based on the

Modelica.Mechanics.Multibody library. More suitable for planar mechanisms is the

PlanarMechanics library (https:/github.com/dzimmer/PlanarMechanics). This will most likely lead

to a more compact formulation which should result in less code and less data memory.

A similar remark relates to the rectifier test case M14. The auto-generated code of M14_A

requires significantly more code memory (+350%) and more data memory (+135%) than the hand

coded solution. This can be explained by the chosen hard problem where i t was known that a very

compact solution exists that can be written as a single line differential equation. This compact

solution was not found by the symbolic processing of the equations derived from the component-

oriented Modelica model. The case M14_B is an alternative implementation in Modelica code

where the same prior knowledge is used in the Modelica implementation of the model. This

compact Modelica model is then giving good results with more code memory but less data

memory.

The results of the effort estimations are illustrated as bar diagram in Figure 7. The examples M03,

M04 and M10 all show a productivity gain of ~90% compared to the state-of-the-art. In these

cases, it is not only the implementation and validation effort that has been significantly reduced,

but also the modeling effort is much smaller. This is due to the fact that in these cases a

component-oriented approach has been used to graphically build-up the model from existing

component models. Especially to manually derive the equations of motion for the slider crank

mechanism of the test case M10 with a closed kinematic loop took not only a lot more time but

also required the rare skills of an expert to find a proper solution of the inverse problem. These

examples demonstrate how the modeling effort can be reduced from month to weeks or days for

comparatively simple examples like a PID controller as well as complicated physical systems.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

160.00%

180.00%

200.00%

M03_B M04_A M10_B M14_A M14_B M15_A M16_A

M
em

o
ry

 in
 B

yt
es

Data Memory by Workflow

manual

eFMI

https://github.com/dzimmer/PlanarMechanics

12

EMPHYSIS

D7.9 eFMI for physics-based ECU controllers

Public report – No access limitations.

The rectifier example M14 can be seen as a counter example where for a small set of equations

an easy to implement and very compact formulation of the problem is already known. In this rare

case the direct implementation can be faster even though this assumption may not hold as soon

as this model becomes part of a larger set of equations.

Figure 7. Results of the productivity gain of all considered applications.

In terms of the code quality assessment only the two test cases M04 and M15 have been

considered due to the large effort of checking all available tool variants. A summary of the result

of the static code analysis performed with Bosch Static Code Checker (Software Analyze, MISRA

C: 2012) including the Bosch Maintainability Index (BMI) is provided in Table 2.

Table 2 Preliminary results of Static Code Check and Bosch Maintainability Index summary of eFMUs
generated by tools (best result in bold).

ID Test

Case Name

Compiler Warnings

Min./ Max. / Avg.

MISRA Findings

Min./ Max. / Avg.

BMI

Min./ Max. / Avg.

M04 Drivetrain 0 / 14 / 8 44 / 219 / 107 46 / 82 / 64

M15 Air System 2 / 15 / 9 41 / 250 / 112 33 / 75 / 58

The MISRA and compiler warnings for the eFMUs are mostly reported from the support source

files (math files) shipped with the eFMUs. In order to ensure that the SW components pass the

quality gates of series software production, their compiler warnings and MISRA findings must be

solved, and for warnings / MISRA findings that shall not be solved, relevant technical details must

be provided in the assessment report. The findings have been reported and discussed with the

tool vendors and further improvements have already been implemented in the tool prototypes.

Hence, the reported figures should be seen as preliminary results as the latest changes are not

yet considered.

The Bosch Maintainability Index (BMI) is computed based on the top-level file artifact which

defines the standard eFMU functions (Eg: Initialize/ DoStep), and the most complex among those

9
3

%

9
2

% 8
8

%

-1
3

%

5
2

%

1
8

%

-20%

0%

20%

40%

60%

80%

100%

0

20

40

60

80

100

120

140

Manual eFMI Manual eFMI Manual eFMI Manual eFMI Manual eFMI Manual eFMI

PID Drivetrain Inverse Slider Crank Rectifier Air System ROM

M03 M04 M10 M14 M15 M16

D
ev

el
o

p
m

en
t

Ef
fo

rt
 [

h
]

eFMI Productivity Gain

Modeling Embedded Implementation Validation

13

EMPHYSIS

D7.9 eFMI for physics-based ECU controllers

Public report – No access limitations.

functions is taken, usually DoStep(). The pass criteria for BMI is usually >-50 and within the range

of -100 to 100, the higher the value of BMI, better the quality.

With respect to the BMI it can be summarized that the best generated solution is better than the

hand coded solution. This leads to the conclusion that the generated code is not necessarily more

complicated so that in case of code inspection no additional burden has to be expected by using

eFMI. In terms of maintainability (an inherently complex problem), it can be stated that a physical

model is significantly easier to maintain than a manually derived and hand coded algorithm.

2.2.4. Summary and conclusions

The presented performance benchmark examples illustrate that a significant gain of ~90%

productivity in model-based development of physics-based control functions can be achieved. In

terms of computational performance and memory demand, compared with hand coded solutions,

no compromises have to be made. Against the expectation before project start , the highly

optimized auto-generated solutions were able to outperform the hand coded solutions in most

cases.

Even though counter examples may exist where an automated symbolic transformation is not able

to find the same compact formulation as an experienced user, it can be summarized that with

growing complexity of the model the benefits of the proposed eFMI workflow in terms of

productivity and performance are increasing.

With respect to code quality short comings w.r.t. MISRA compliance, especially in the provided

mathematical service functions, have been revealed. This will have to be improved in the future,

but there is no indication that this could be a serious obstacle.

In summary the technology enabled by the eFMI standard can be seen as a breakthrough for

physics-based functions for embedded software. This becomes even more apparent considering

examples where due to the complexity of the tasks a manual implementation would not be

commercially viable.

As an outlook it can be stated that very promising approaches using higher order real-time solvers

such as the Rosenbrock method are expected to be fully functioning soon after the end of the

project. This will allow to realize much smaller sampling rates for numerically challenging

examples. In general, it must be emphasized that the evaluated tools are in a prototype stage. An

even better performance can be expected when these tools have grown into mature products.

2.3. D7.3 Demonstrator for power train vibration reduction

2.3.1. Objective

The goal of this demonstrator is to investigate the eFMI workflow incorporating the Equation Code

Model representation according to Figure 8 applied to a physics-based controller for the reduction

of drivetrain vibrations.

The non-linear physical model of the drivetrain shall be used to design a feed-forward controller

based on a simplified inverted plant model. The standard path to derive this kind of physics-based

controller is part of the eFMI test cases described in D7.1. In this demonstrator the alternative

path is explored. This includes the usage of multiple eFMUs with model representations as

Equation Code, Algorithm Code and Production Code. In contrast to D7.1 is the Production Code

generated as AUTOSAR application software component (SW-C).

14

EMPHYSIS

D7.9 eFMI for physics-based ECU controllers

Public report – No access limitations.

The OpenModelica Flat Modelica export prototype and corresponding import prototype of

SCODE-CONGRA are demonstrated. It is illustrated how the non-Modelica tool SCODE-CONGRA

can be used to derive an inverse plant model from an acausal Modelica model.

The generated SW-C is finally tested on a Bosch MDG1 ECU.

Figure 8: Applied alternative workflow utilizing eFMI for the design of a physics-based controller.

2.3.2. Procedure

The step from an acausal plant model to an Equation Code eFMU is demonstrated based on the

developed Flat Modelica export of OpenModelica (D4.6). The standardized Flat Modelica

Language [5] (D3.4) is developed as Modelica Change Proposal (MCP) of the Modelica

Association Language Project (MAP_LANG) and is publicly available as branch of the github

repository under: https://github.com/modelica/ModelicaSpecification/tree/MCP/0031. The

EMPHYSIS partners (Bosch, DS, ETAS, LiU, RISE) have been contributing to this effort.

Starting point of the considered control design use case scenario is the feed-forward controlled

open loop system. A common physics-based approach to improve the undesired oscillations of

the system is a non-linear feed-forward compensation in combination with a linear PI controller as

shown in Figure 9.

Figure 9: Physics-based approach using a non-linear feed-forward compensation with PI controller

https://github.com/modelica/ModelicaSpecification/tree/MCP/0031

15

EMPHYSIS

D7.9 eFMI for physics-based ECU controllers

Public report – No access limitations.

As illustrated in the EMPHYSIS Test Case M04 this type of controller can be designed in a very

elegant way by taking advantage of the acausal nature of the Modelica language. As shown in

Figure 10, the inversion constraint block from the Modelica Standard Library (MSL) allows to

connect the approximated plant model against its original signal flow direction. The load torque at

the wheel side is considered as input and the motor torque is considered as output. In other

words, the inverse plant model determines the motor torque required to realize the desired wheel

torque. Furthermore, the inverse plant computes the relative angular velocity 𝜔𝑟𝑒𝑙 that is to be

expected by the distortion of the driveline. Using 𝜔𝑟𝑒𝑙 as command input to the PI controller allows

to control the actual velocity in a closed loop. The required torque and the output of the PI

controller are then added and used as command signal to the motor.

Figure 10: Non-linear controller with inverse plant model in the feed-forward path

Most critical for this architecture is a proper inverse model of the plant, which is able to capture

the dominant eigenmodes of the system, has pleasant numerical properties and minimal resource

demand such that it can be executed in real-time on an embedded device. This includes a

minimal number of states, no non-linear algebraic loops and no numerically stiff differential

equations.

Based on the proposed version of the specification, a Flat Modelica export prototype was created

in OpenModelica 1.16.29 and used to export the Modelica model from the test cases Library:

eFMI_TestCases.M04_DrivetrainTorqueControl.PlantModels.PlantForInversion. The developed

Flat Modelica parser was used to convert the model into the native data structure of SCODE-

CONGRA in the syq format.

approximate inverse model of driveline

approxPlant

w_Rel

M

PI

PI

filter

PTn

f_order

f=f_cut

k=gearRatio

gear

k=1/gearRatio

gear1 M_motor

M_desired

16

EMPHYSIS

D7.9 eFMI for physics-based ECU controllers

Public report – No access limitations.

2.3.3. Results

Based on the generated .syq file SCODE-CONGRA successfully generated graphical views for

the system and derived so called flows for the further analysis and processing of the equation

system.

The equation-based non-Modelica tool SCODE-CONGRA provides modeling and visualization

capabilities working directly with the bipartite graph of the equat ion system as shown in Figure 11.

These graph views in addition to the textual view provide full transparency of the structure of the

equation system. SCODE-CONGRA also provides features to perform a structural analysis (find

over- and underdetermined parts), symbolically derive derivatives and discretize differential

equations.

Figure 11: Undirected model of the approximated plant model in SCODE-CONGRA after import of the Flat

Modelica code from OpenModelica.

This way a proper computation order has been determined for the imported model considering an

inverted signal flow with a modified causality of the input and output signals. The computation

graph derived from the flow was ready to be used for code generation.

Code generation in SCODE-CONGRA can target both the generation of GALEC code and

embedded C code which can be used for eFMI production code. The production code can

optionally be generated as AUTOSAR Software component.

17

EMPHYSIS

D7.9 eFMI for physics-based ECU controllers

Public report – No access limitations.

Figure 12: eFMU generated by SCODE-CONGRA containing Algorithm Code and Production Code

The generated code can then be integrated with other embedded software, e.g. an AUTOSAR

project, to be compiled and deployed on the target.

This completes the whole eFMI workflow (Figure 8), going from a physical model to software on

an embedded target.

2.3.4. Summary and Conclusions

In this demonstrator the proposed alternative eFMI workflow has been successfully applied using

the tool prototypes of OpenModelica and SCODE-CONGRA. The preliminary Flat Modelica

language, proposed for future standardization, has been used as eFMI Equation Code language.

The application example illustrated the benefits of the alternative eFMI workflow which enables an

assisted transformation of the acausal equation-based model to a computable algorithm. This

allows to make informed design decision in the embedded software development process.

The proposed Flat Modelica language has been proven to be a suitable language for the intended

eFMI workflow including an Equation Code model representation. The tool chain is applicable also

to AUTOSAR software architectures.

2.4. D7.4 Demonstrator for Bosch engine control function

2.4.1. Objective

Model-based diagnosis is a very promising approach for automotive thermal systems to address

the need for managing software complexity, reducing risk in an early development stage and

increasing the development productivity of delivering robust diagnosis functions for embedded

devices (ECU). This demonstrator is illustrating how the proposed Equation Code Model

Representation of the new eFMI standard is enabling a new tool chain (see Figure 13) for

developing model-based diagnosis functions with more confidence and higher overall efficiency

already in a very early stage.

18

EMPHYSIS

D7.9 eFMI for physics-based ECU controllers

Public report – No access limitations.

Figure 13: Applied alternative workflow utilizing eFMI for the design of a physics-based controller.

2.4.2. Procedure

Diagnosis functions are aiming to provide indications of the current fault state of the observed

system. The fault detection is expected to signal if any of the considered faults is active. Beyond

the fault detection does the fault isolation allow to name which of the considered faults is causing

the problem. Dependent on the impact of the individual faults on the system and the available

sensors it may be that not all faults can be fully isolated but can at least be narrowed down to a

set of faults.

The coolant circuit considered in this demonstrator is from a Bosch application project of a hybrid

electrical vehicle with range extender. As shown in Figure 14, the thermal system consists of two

circuits (MT and LT) that can be operated in different modes. In the split mode the two circuits are

independent from each other. The MT circuit considered in this demonstrator is cooling the motor

(EM) and generator (Gen) together with their corresponding inverters (Inv, GenInv) in a serial

fashion. The heat is transferred to the air flow through the radiator. The air flow depends on the

vehicle speed and the speed of the radiator fan.

Figure 14: Thermal system of the range extender EV in split mode with the medium temperature (MT) and
low temperature (LT) circuits being disconnected from each other by the shut -off valve and the switching
valve.

Based on the newly developed IdealCoolantFlow Library the MT circuit model has been built up.

The circuit model is stimulated by measured control signals from a road test and simulated to

validate the system responses against the measured sensor signals.

19

EMPHYSIS

D7.9 eFMI for physics-based ECU controllers

Public report – No access limitations.

Following the proposed workflow shown in Figure 13 the coolant circuit model has been taken as

starting point of the further procedure. In the same way as described in the demonstrator D7.3 in

the previous section, the equations have been extracted using the proposed Equation Code

language “Flat Modelica” [5] (D3.4) exported by the OpenModelica prototype (D4.6). The Equation

Code import prototype of SCODE-CONGRA (D5.3) is then used to convert the imported equations

into its internal syq format and generate the corresponding dependency graph as shown in Figure

15.

Figure 15: Dependency graph in SCODE-CONGRA (ETAS) derived from the imported and converted Flat
Modelica coolant circuit model.

In addition to the above described signal causality, SCODE-CONGRA provides so-called

“Diagnostic” features. These allow to apply a diagnosis-specific semantics to variables and

relations. In addition to control inputs and available sensor signals , that is the “diagnostic inputs”,

the system is enhanced by a declaration of input variables that allow to trigger “faults”. Based on

this system definition, a “diagnostic flow” as shown in Figure 16 can be derived.

20

EMPHYSIS

D7.9 eFMI for physics-based ECU controllers

Public report – No access limitations.

Figure 16: Diagnostic flow considering the gradient of the coolant temperature as diagnostic input.

2.4.3. Results

The imported and enhanced model allowed to run a complete structural analysis resulti ng in the

full incidence matrix automatically generated after all temperature gradients of the temperature

sensor are marked as diagnostic input and the resulting overdetermined subset have been

resolved by introducing five additional residual equations to balance the system. This incidence

matrix allows to find out which faults can be isolated and which residuals are required to detect

and isolate them. After an appropriate selection has been applied based on this analysis the

corresponding computational graph is automatically compiled. This graph is then used for the

generation of production code and its conversion into an eFMU together with the corresponding

code files and manifest files (see Figure 17).

21

EMPHYSIS

D7.9 eFMI for physics-based ECU controllers

Public report – No access limitations.

Figure 17: Computation graph generated from a diagnostic flow corresponding to the desired residual and
generated production code according to the eFMI specification.

2.4.4. Summary and Conclusions

This demonstrator is presenting the IdealCoolantFlow Modelica library for thermal systems

designed for the component-oriented modeling of coolant circuits of HEVs and EVs capable for

real-time simulations. The library is used to create and validate the behaviour of the MT coolant

circuit of a HEV (range extender). The parameters of the model are fitted to measurement data.

The equations of the MT coolant circuit are derived from the model using the proposed Flat

Modelica language as eFMI Equation Code by OpenModelica. This code is parsed and converted

by SCODE-CONGRA. A structural analysis has been successfully applied and revealed that all

three faults can be detected but only one fault can be isolated.

The found residuals have been successfully exported as Algorithm Code and Production Code

eFMU.

The current Flat Modelica prototypes do not yet properly support Modelica tables and records so

that only a simplified variant of the coolant circuit model has been processed. Therefore, the

quantitative study of the residual responses could not yet be performed to validate the diagnosis

function.

The demonstrator was able to prove that the proposed eFMI workflow is able to perform

sophisticated structural analysis in an early project state in a highly efficient way by leveraging the

benefits of a component-oriented modelling approach using the developed IdealCoolantFlow

Modelica library.

22

EMPHYSIS

D7.9 eFMI for physics-based ECU controllers

Public report – No access limitations.

2.5. D7.5 Demonstrator for gasoline engine TDC air filling estimation

The demonstrator shows the development of a virtual sensor of air filling the cylinder of a 4

strokes internal combustion engine with variable valve timing.

In this demonstrator an eFMI is used as container of a Neural Network (NN) that provides a

parameter in a nonlinear prediction model, which is then used in an Extended Kalman Filter

(EKF). The EKF is needed to correct the error between the available measured air mass right

after the air filter and the actual air mass filling the cylinder. The EKF is implemented as virtual

sensor on real hardware and tested on a prototype vehicle.

This work was conducted in close collaboration with Renault SAS, Siemens, OSE and FH

electronics. Renault provided the use case and the engine data. OSE developed the physica l

plant model. Siemens developed the NN model and did the export of the NN model as eFMU.

Renault was responsible for the design of the EKF and FH electronics for its implementation in the

real hardware and prototype vehicle.

Figure 18: Schematic view of a gasoline Engine

The model is centered on the intake pressure 𝑃𝑐𝑜𝑙. The air filling factor 𝜂𝑉 is provided by an

external model. In a desk top study 𝜂𝑉 can be computed by the AMESim model. For

implementation in the vehicle it must be replaced by a surrogate model, in this demonstrator the

neural network. Other variables used in the model are the engine speed 𝑁 and the actual mass

flow entering the cylinder 𝑄𝑐𝑦𝑙. The measured air mass flow 𝑄𝐻𝐹𝑀 approximates 𝑄𝑐𝑦𝑙.

23

EMPHYSIS

D7.9 eFMI for physics-based ECU controllers

Public report – No access limitations.

Figure 19: eFMI Workflow applied to the TDC air filling estimator demonstrator

Step 1: AMESim Model: Calibration of one-degree crankshaft HF model using test cycles of air

filling, combustion, thermal losses, etc. The model is validated on Variable Valve Time sweeps

and transient driving cycles (NEDC, WLTC, RDE).

Step 2: DoE with calibrated AMESim model using static or dynamic tests, e.g. RDE type running

cycles. In the following step the model is used as a virtual engine bench to build a database to

train the NN based scale model. Being indestructible, it allows exploring larger areas than a real

engine and enables massive testing.

Step 3: Build of the NN filling model with native AMESim tool. The tool performs dedicated DoE to

train NN. Correlation between data from Step 1 AMESim HF model and reduced NN model shows

the absolute errors at the expected precision.

Step 4: eFMI export with the AMESim tool. The eFMU NN scale model is now ready to be

integrated in a MATLAB/Simulink code.

Step 5: Global model: Integration of eFMI NN in the nonlinear physical global model hybrid

model.

Step 6: EKF integration using the Step 5 prediction model and measurements to better accuracy

 The predictor is open loop, based on test data generated from the AMESim model.

 To absorb remaining dispersion, loop back to a reliable measurement on the engine, here,
the air flow before air filter.

 Use of a Kalman filter to have a certain level of optimality of observation.

 As the air filling problem is slightly nonlinear, usage of an EKF

Step 7: Integration on the vehicle

24

EMPHYSIS

D7.9 eFMI for physics-based ECU controllers

Public report – No access limitations.

2.6. D7.6 Demonstrator for high frequency throttle position estimation

The demonstrator shows the development of a virtual sensor of the throttle position of a 4 strokes

internal combustion engine.

The eFMI is used as container of a Neural Network (NN) that can then be implemented on real

hardware and tested on a prototype vehicle.

This work was conducted in close collaboration with Renault SAS, Siemens, and FH electronics.

Renault provided the use case and the data. Siemens developed the physical plan t model, the NN

model and did the export of the NN model as eFMU. FH electronics did the implementation in the

real hardware and prototype vehicle.

Figure 20: eFMI Workflow applied to the throttle position estimator demonstrator

Step 1: Collect a set of data from the physical system.

Figure 21: On desk test rig of throttle

25

EMPHYSIS

D7.9 eFMI for physics-based ECU controllers

Public report – No access limitations.

Step 2: Build the physical plant model and identify all model parameters.

Figure 22: AMESim High Frequency throttle model

Step 3: Build a neural network (NN) scale model on the physical plant model.

Figure 23: AMESim interface to define architecture of NN model and to mentor training

Step 1 is executed on test rig whereas the Steps 2 and 3 are done using a personal computer

running the commercial tool AMESim.

26

EMPHYSIS

D7.9 eFMI for physics-based ECU controllers

Public report – No access limitations.

Step 4: Export the NN model from AMESim to the commercial tool Matlab/Simulink. The eFMU is

used as a container that is then used in a Simulink S-function. The S-function is directly used as

virtual sensor.

Step 5: Implementation of the S-function in the commercial engine control unit of FH electronics.

The demonstrator shows the usage of the virtual sensor running in the FH electronics control unit

operating in a real car in real driving conditions.

2.7. D7.7 Demonstrator for vehicle dynamics control

The goal of this demonstrator is to validate the full eFMU toolchain by using a neural network

model coupled to a controller for semi-active damper regulation.

The physical model used for this work is a neural network (NN) model of the system which is

trained using the empirical data obtained through several road profiles and damper force

excitations. The semi-active suspension system is regulated using the parametrized Nonlinear

Model Predictive Control (pNMPC) controller which is coupled with the NN model. Under the

scope of this project, an OpenSource toolbox was developed to automatically generate the C

code/Simulink S-function of the controller. The final eFMU code was validated via simulations on

Simulink and on RT embedded target platforms such as dSPACE MicroAutoBox II and the INOVE

testbench at GIPSA-lab.

This work was conducted in close collaboration with GIPSA-lab, Siemens and dSPACE. Siemens

developed the NN model of the dynamics of the vehicle. Siemens and dSPACE supported the

conversion of the NN model into eFMU Algorithm Code and Production Code. GIPSA-lab was

responsible for the control algorithm development and the full -scale integration on the embedded

target systems. All the methods and tools are compliant with the eFMU module and standard C

code.

Figure 24: eFMI Workflow applied to vehicle dynamics control demonstrator.

- Step 1: Development of an AMESim model, representing the dynamics between chassis,

dampers, wheels and road.

- Step 2: Transformation of the AMESim model into an NN model with the Neural Network

Builder from AMESim.

27

EMPHYSIS

D7.9 eFMI for physics-based ECU controllers

Public report – No access limitations.

- Step 3: Transformation of the NN model into Algorithm Code eFMU with AMESim.

- Step 4: Transformation of the Algorithm Code eFMU into Production Code eFMU by using

TargetLink from dSPACE.

- Step 5: Integration of the eFMU in an S-function for Simulink with the S-function builder.

Integration of the eFMU with the controller with the pNMPC toolbox.

- Step 6: Deployment into the MicroAutoBox II from dSPACE, by using ControlDesk.

2.8. D7.8 Demonstrator for dual clutch transmission

This demonstrator shows how to use eFMI in the development of a virtual sensor, here, a virtual

sensor of the dynamical properties of a transmission with two coupled clutches, contributed by

Daimler AG, a member of the EMPHYSIS Advisory Board, in collaboration with Dassault

Systemes, dSPACE and Maplesoft.

In this demonstrator the eFMU is used as a container for a simplified plant model. This simplified

model is used as part of an observer, which uses the (previous) control signals and the sensor

signals from the plant, as well as historical state estimates, to estimate the current state of the

clutches (speed, acceleration, and torque). These state estimates will be used by a controller to

generate the new control signals.

The biggest contribution of the dual clutch use case is to draw the project’s attention to a physical

model which currently is in focus in real applications in the automotive industry.

The friction clutches in the transmission models demand very specific and highly complex

numerical solutions. A friction clutch is modeled as a very stiff and discontinuous equation system

and a successful solution to this numerical problem will enable a much broader applicability of the

eFMI standard to other industrial applications.

Daimler has performed a successful integration of the generated GALEC code of the dual clutch

system on a dSPACE HiL system. Dassault Systèmes has done the development of the required

numerical methods and the simulations used for comparison of the results in Dymola.

Applying eFMI is only one of many design steps of the virtual sensor design procedure that has

been used to build the demonstrator. The following prerequisite steps have been conducted

before eFMI was used in the design procedure:

1. Collect a set of data from an actual transmission. This step is executed on an engine test

bench. The data covers all relevant operating conditions in terms of range and dynamics.

2. Build a physical high-fidelity vehicle model and identify all model parameters. Validate the

resulting model against the actual engine and transmission.

3. Build a simplified plant model for the transmission to be used in the observer. Identify its

model parameters from the high-fidelity vehicle model.

Step 1 is executed on a test bench whereas Steps 2 and 3 are done using a personal computer

running the Dymola (Dassault Systèmes) simulation software. After collecting all prerequisite data

and modelling the physics system, eFMI tooling has been used as follows:

4. Export the simplified plant model from Dymola as an Algorithm Code eFMU.

28

EMPHYSIS

D7.9 eFMI for physics-based ECU controllers

Public report – No access limitations.

5. From the Algorithm Code eFMU, a Production Code eFMU is generated, using TargetLink.

Also, an FMU wrapper that can be used for SiL simulation in Dymola is generated.

6. Deployment of the eFMU/FMU on a target system (dSpace Scalexio) for HiL simulation

using ConfigurationDesk (dSpace) and PROVEtech (AKKA Technologies).

The following steps are still future work:

7. The eFMU/FMU is to be used inside a virtual sensor, which in turn is used inside a

controller.

8. Deployment of the eFMU/FMU on the final target prototype TCU (Schaeffler) using a

Matlab/Simulink (MathWorks) based environment.

Successful simulation of the simplified dual clutch model as a clocked model has been achieved.

This was not possible when the model was first provided, and it is a pre-requirement for

successful eFMI export.

The simulation still exhibits unacceptable artefacts, however. Several additional requirements for

eFMI, such as (differentiable) lookup tables and stiff solvers, have been identified over the course

of the project. Support for these was partially implemented in Dymola, but further work is required.

The model imposes a highly stiff system that is not suited for embedded code generation; further

work on the modeling side and on the supporting tools (e.g., numerical integrators) is required.

Parts of the eFMI tool chain – from (simplified) plant model to GALEC Code to Production Code –

have been validated for this use case, but no comparative simulation of the generated Production

Code eFMU with the high-fidelity vehicle model have been performed, due to the above simulation

artefacts.

The integration was carried out using a C-Code FMU as a container and the eFMU was integrated

into an existing model that is currently in use for software testing. The successful integration and

loading on the HiL simulator show the ability to deploy code that was created with the eFMI

toolchain to a real-time target.

The project developers recognized that the longer-term goal of supporting eFMU export for the

dual clutch model is a hard problem beyond the scope of the EMPHYSIS project. Daimler

understands this and considers the progress made by project developers towards this goal within

the project, as summarized above, a success.

2.9. D7.10 Demonstrator for Hybrid Air Virtual Sensor

A virtual sensor for the estimation of the torque of an engine in a hybrid drive train has been

created in the form of a neural network and tested.

During the demonstrator the transformations as shown in Figure 25 were followed.

29

EMPHYSIS

D7.9 eFMI for physics-based ECU controllers

Public report – No access limitations.

Figure 25: e-FMI path for D7.10 Demonstrator

Starting from an Amesim model it was transformed to Algorithm Code through a neural network.

From there dSPACE was used to transform the Algorithm Code into Production Code. Afterwards,

it was imported into CSD where the production code was tested and verified.

During this demonstrator particular attention has gone into translating simulation models into

neural networks. This led to some interesting conclusions on assessing and comparing the

trainings data upfront to understand its qualitative effect on the trained network. It allowed as well

to start generating the trainings data in such a way that it would improve the performance of the

network. This led to the root mean square (RMS) error of the new network to be only half as big

and reduce the max RMS error by more than 25% on the full range of operation.

Furthermore, attention has been spent on analyzing the design process, identify each critical step

in the process and define methodologies and operations that would help the user working with this

technology. To this end eFMI has been integrated with the Validity frame concept of the University

of Antwerp.

2.10. D7.12 Demonstrator for semi-active damping controller with hardware

tests

A vertical dynamics controller for semi-active dampers developed by the DLR Institute of System

Dynamics and Control (DLR-SR) serves as example for illustrating and testing the eFMI tool

chain. The demonstrator covers several aspects of model-based nonlinear control. The

considered semi-active dampers in a real vehicle are controlled by current setpoints every 1 ms.

The controller consists of two parts:

 a nonlinear Kalman filter to estimate non-measured variables and

 a nonlinear controller based on a dynamic nonlinear inverse model.

30

EMPHYSIS

D7.9 eFMI for physics-based ECU controllers

Public report – No access limitations.

The demonstrator (see Figure 26) covers the entire eFMI tool chain. The tool chain starts with

Modelica models of the vehicle, the controller and the prediction model of the Kalman filter and

results in production C code, which is compiled and executed in real time on a small series

electronic control unit (ECU) in vehicle driving tests.

Figure 26: Process of designing, generating and testing a semi-active damping controller using eFMI

In the early design stage, the controller is tested and parametrized in a closed loop simulation

utilizing a high-fidelity vehicle model. This high-fidelity model comprises several physical domains

such as multi-body mechanics of the chassis or a thermal brake model, all implemented using

Modelica. The vehicle model is parametrized using data provided by EFS and cross-checked with

an existing table-based vehicle dynamics model.

Both the controller model and the prediction model for the nonlinear Kalman filter are exported to

eFMI Algorithm code by a Dymola prototype (Dassault Systemes). Due to special requirements of

the applied Kalman filter algorithms, some manual modifications to the Algorithm Code of the

prediction model are necessary. In the next step, the eFMI Production Code is generated by a

TargetLink prototype (dSPACE). The C code of the prediction model is interfaced to a generic

nonlinear Kalman filter C library developed by DLR-SR. All C-code parts (controller, prediction

model and Kalman filter library) are integrated into the complete software framework of the ECU

to control the semi-active dampers of the vehicle.

Open-loop tests with the generated C code as well as open-loop tests with the integrated code on

the ECU show the expected behavior of the functions. To validate the controller as well as the

nonlinear Kalman filter in real operation, an Audi A4 is equipped with additional sensors and a

rapid-prototyping-platform (dSPACE MABX II) for sensor data processing. Different maneuvers

with driver-side excitations and with additional road-side excitations have been carried out to

separately evaluate the diverse functions of the controller. For the validation of the controller in

real vehicle operation, an identical trajectory has been driven at the same speed with an active

and inactive controller (passive system). A fixed damper characteristic curve is chosen for the

passive system, that is the damper current is set to a constant value. In the results the

performance of the controller is clearly visible by damped roll and pitch angles of the vehicle and

a reduced acceleration at the center of gravity.

31

EMPHYSIS

D7.9 eFMI for physics-based ECU controllers

Public report – No access limitations.

The demonstrator shows the successful application of a tool chain starting with a controller or

prediction model in Modelica up to compiled, tested and integrated production code on a small

series ECU for semi-active damping including driving tests on a vehicle.

2.11. D7.13 Demonstrator for virtual sensor for electric machine control

This demonstrator from Volvo Cars shows how to use eFMI in the development of a virtual sensor

of the transmission in an electric vehicle. The virtual sensor is used to improve the control

software of the electric machine in order to increase the drivability and durability of the vehicle.

One issue that is the focus of this demonstrator is the mitigation of backlash and resonance

frequencies in the electric driveline. This can be caused by incomplete information about the state

of the complete driveline, including driveshaft and wheel, when requesting torque from the electric

machine. In addition to making the driving experience uncomfortable, the occurrence of e.g.

backlash can cause decreased durability of mechanical components.

To solve the problem, more physical sensors could be used to increase the knowledge of the

state of the vehicle. However, adding sensors is a challenge due to, among other things, lack of

space, cost, and high latency in the communication network. An alternative is to use an advanced

physics-based model as a virtual sensor that can be used by the electric machine control software

to increase the amount of information available. Here, the eFMI standard adds the important

advantage of being able to reuse existing models of the physical hardware in question, in this

case the transmission. The reuse of models that are already verified and validated against

measurements is a great advantage when it comes to reliability and resources in terms of time.

The demonstrator is set up to add a virtual sensor to the controller of an electrical machine. The

control of delivering torque through the driveline needs to have a signal back from the wheels to

better judge possible vibrations and other behaviors that are unwanted. Vibrations lead to

increased wear on components of the transmission and feel and experience of the drive f or the

people in the vehicle that are unpleasant. By adding a virtual sensor that measures signals on a

physical model of the transmission, one can get improved performance compared to making

decisions based on a coarser signal coming from the ECU that measures the movement of the

wheels, removing the update frequency coming from the configuration of the communication

network and any latencies from the ECU software and possible gateways. By sampling the virtual

sensor, one gets a better view of the state of the transmission, with less wear on the transmission

and better performance.

In the demonstrator, the eFMI toolchain was successfully used to generate production code of a

physical model of the transmission of a battery electric vehicle (BEV) to be used in the control

software for the electric machine. The original acausal, equation-based physics model was

transformed to a causal, discretized form (eFMI GALEC code / Algorithm Code container) using

the Dymola Modelica IDE and then transformed to Production Code using three different eFMI

Production Code generators: ESP, TargetLink, and SCODA-CONGRA. To verify that the

generated production code representation of the physical system behaves in a similar way to the

original model, a Software-in-the-Loop (SiL) simulation was conducted with the Production Code

generated by ESP. The results from the SiL simulation was compared to the offline results from

the original model to ensure consistent behavior. Additionally, all three production codes have

been tested using TPT, based on an eFMI Behavioral Model container derived from the original

Modelica test scenarios.

32

EMPHYSIS

D7.9 eFMI for physics-based ECU controllers

Public report – No access limitations.

The objective of evaluating the eFMI toolchain for an industrial use case within the automotive

industry was successful and shows promise when it comes to reducing resources and errors when

using physical models as virtual sensors or other parts of software control algorithms. The main

advantages from Volvo Cars’ perspective is that an existing offline model of the physical system in

question can be used. The reuse of existing physics models decreases the development time and

reduces the risk of error, since only one model has to be developed, maintained, and validated.

To that end, it is important that existing physics models can be transformed to real -time suited

solutions. The automatic handling of mixed systems of equations, as demonstrated by Dymola’s

GALEC code generator, is impressive.

Another major advantage from Volvo Cars’ perspective is that the eFMI standard allows for

different tools to be part of the tool-chain. The ability to use tools from different vendors in the

tool-chain is important due to technical and cultural differences between departments involved in

the workflows of a large company, each with its own tooling and workflows.

2.12. D7.14 Demonstrator for Advanced Emergency Braking Systems

2.12.1. Objectives

The demonstrator shows an example of eFMI workflow through the Dassault Systèmes

applications, especially focused on the continuity of successive activities.

The scenario is based on an Advanced Emergency Braking System (AEBS) controller

development from Modelica design to AUTOSAR Adaptive Platform deployment, and towards the

execution on the target.

The objectives of this demonstration are:

 to demonstrate the suitability of Modelica for block-diagram controller development,

 to provide a seamless integrated eFMI-based tool-chain (with continuous verification &

validation of each step through each abstraction level),

 to prove the AUTOSAR compliance through the eFMI tool-chain.

In this demo, actors with different profiles do the successive activities.

Besides these points the goal is also to showcase the traceability and interoperability with

different tools based on the eFMI workflow with the compliance of different standards and

regulations (MISRA, SAFETY …).

33

EMPHYSIS

D7.9 eFMI for physics-based ECU controllers

Public report – No access limitations.

Figure 27: Loop of the controller development in the eFMI workflow

2.12.2. Demonstrator description

The scenario that we have built is composed of 9 steps:

1- New AEBS feature requested

In the 3DEXPERIENCE Platform, we start from a request to build this new feature at the product

management level: requirements and tasks to implement.

2- Design AEBS controller model

In this step, we have modeled the AEBS controller through Dymola with causal design and

enabled subsystems associated with signal locks. Before going further, we have also built the

associated simulation model with clocked open-loop test scenarios in order to verify and validate

it.

3- Transform model into Algorithm Code eFMU

After the validation of the AEBS Modelica model we start the Algorithm Code eFMU generation by

configuring the Dymola’s GALEC part with obfuscation level and the associated configuration

(sampling period, solver ..) directly into the tool and build an Algorithm Code container that could

be directly inspected with the GALEC code and manifest.

4- Transform model into Production Code eFMU

In the same way, we generate the Production Code eFMU by configuring the services from ESP

application (Embedded Software Producer) and build it to introspect the generated container with

MISRA-compliant C code and manifest file.

5- Generate Binary Code eFMU + AUTOSAR Layer (wrapper)

34

EMPHYSIS

D7.9 eFMI for physics-based ECU controllers

Public report – No access limitations.

After obtaining the Production Code, we use AUTOSAR Builder to generate the associated

AUTOSAR adaptive application. The Binary Code is generated through the AUTOSAR adaptive

SDK.

6- Execution on AUTOSAR Adaptive Platform (SiL) & Test Results

We now check the generated Binary Code eFMU directly through the AUTOSAR Builder

application, to validate it and generate associated test results automatically.

7- Manage & Release deliveries

Through this step, we come back into the 3DEXPERIENCE Platform to consolidate all the work

done. Each delivery can be captured through different ways and connected into the overall

architecture through the Systems Traceability application. By connecting the deliveries, we add

links between each component to see coverage analysis, implement links, and release the object

when the work done is validated.

Figure 28: Traceability and coverage levels along the eFMI workflow

8- Execute eFMU on target (HiL) – Co-simulation

With eFMU Binary Code, the final goal is now to execute it on a target for hardware in the loop

simulation. In our case, we execute it on a Raspberry Pi and do a co-simulation with the

3DEXPERIENCE Platform thanks to the SEV (Systems Experience Validation) application. We

visualize the results with the associated model and through conceptual HMI to interact with the

connected target.

In our case, to verify and validate that the correct behavior is obtained which is here the warning

of a possible issue and the automatic emergency braking in appropriate cases according to the

time-to-collision requirement.

35

EMPHYSIS

D7.9 eFMI for physics-based ECU controllers

Public report – No access limitations.

Figure 29: Controller execution with SEV

9- Traceability Project Review

To conclude on the project, we handle the traceability between the activities. Systems

Traceability application performs traceability assessment and change impact analysis.

In that way, we are able to see if the components are connected along the project life cycle and if

a change is needed, what will be impacted through the overall architecture.

Figure 30: Detailed project traceability

2.12.3. Results summary

We have highlighted the block-diagram controller modelling in Dymola and showcased seamless

transformation in an eFMI-based tool-chain from Modelica to AUTOSAR Adaptive Platform.

36

EMPHYSIS

D7.9 eFMI for physics-based ECU controllers

Public report – No access limitations.

Transformation was done from Modelica model to Binary Code.

Checks and tests are possible along the successive steps of this transformation.

The demonstrator also shows the possibility to support eFMI in both standalone individual tools,

and through the 3DEXPERIENCE platform integration (first integration level is shown here).

The eFMI support will continue to mature the eFMI within tools and pursue the integration, for a

fully supported eFMU workflow within the 3DEXPERIENCE Platform.

3. Summary

This report illustrates the readiness of the developed eFMI specification for industrial applications

and the high innovation potential for future applications in the automotive industry and beyond.

The presented test results prove the high maturity level of the developed tools and their

interoperability as tool chain implementing the proposed eFMI workflow.

The variety of demonstrators illustrate the flexibility and versatility of the workflow. Challenging

applications prove the developed technology to enable new and better ways of model-based

development of embedded software.

4. References

[1] Lenord, Oliver, Martin Otter, Christoff Bürger, Michael Hussmann, Pierre Le Bihan, Jörg Niere, Andreas

Pfeiffer, Robert Reicherdt, and Kai Werther. 2021. “eFMI: An Open Standard for Physical Models in

Embedded Software.” Proceedings of the 14th International Modelica Conference, Sept. 20-24, 2021.

Linköping, Sweden. https://doi.org/10.3384/ecp2118157.

[2] ITEA3 Call2 Project 15016 EMPHYSIS – Embedded systems with physical models in the production code

software https://itea3.org/project/emphysis.html.

[3] “EMPHYSIS - Functional Mock-up Interface for Embedded Systems.” 2021. Accessed May 14.

https://emphysis.github.io/.

[4] Armugham, Siva Sankar, Christian Bertsch, Oliver Lenord, and Kai Werther. 2021. “EFMI (FMI for

Embedded Systems) in AUTOSAR for Next Generation Automotive Software Development.” In

Proceedings of the 17th Symposium on International Automotive Technology (SIAT), Sept. 29-Oct.1, 2021.

Pune, India.

[5] Martin Sjölund, Oliver Lenord, Hans Olsson, Henrik Tidefelt, Kai Werther, and Adrian Pop (2021).

“Towards a simplified form of Modelica without object-orientation”. In Software-Intensive Cyber-Physical

Systems (SICS) (planned).

[6] Rueger, Johannes-Joerg, Alexander Wernet, Hasan-Ferit Kececi, and Thomas Thiel. 2013. “MDG1: The

New, Scalable, and Powerful ECU Platform from Bosch.” In Proceedings of the FISITA 2012 World

Automotive Congress, edited by SAE-China and FISITA, 194:417–25. Berlin, Heidelberg: Springer Berlin

Heidelberg. https://doi.org/10.1007/978-3-642-33829-8_39.

https://doi.org/10.3384/ecp2118157
https://itea3.org/project/emphysis.html
https://emphysis.github.io/
https://doi.org/10.1007/978-3-642-33829-8_39

