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1. Scope of eFMI®: GALEC as example of satisfying non-functional quality requirements

2. Delimitation in embedded software domain: eFMI® vs. FMI®, AUTOSAR, ASAM, …

Agenda



© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 4

eFMI is all about:

How to develop software satisfying non-functional requirements

besides just functional?

As an example, let us have a short look on eFMI GALEC.

(other examples would be eFMI Behavioral Models or inter-container linking for traceability)
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GALEC (Guarded Algorithmic Language for Embedded Control): Intermediate representation 

well-suited as code generation target for modelling tools & source for embedded-code generation

eFMI GALEC: Scope

GALEC program: sampled

algorithm with fixed

sampling period.

Block life-cycle specifies

usage via common 

interface:

• (default) initialization

• sampling

• recalibration

• reinitialization

⇒ Defines valid system 

integration scenarios.
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GALEC (Guarded Algorithmic Language for Embedded Control): Intermediate representation 

well-suited as code generation target for modelling tools & source for embedded-code generation

• Imperative / causal language of high abstraction level (e.g., multi-dimensional real arithmetic, built-in 

mathematical functions like sinus, cosine, interpolation 1-3D, solve linear equation systems etc.)

• Safe – embedded & real-time suited – and well-defined semantics

• Upper bound

• Statically known sizes and safe indexing

• Well-defined & never competing side effects

• Safe floating-point numerics

• Guaranteed NaN propagation

• Saturation of ranged variables

• Ordinary control-flow integrated, strict error handling concept

• Guaranteed error signal propagation enables delayed error handling

⇒ Guards further eFMI tooling

eFMI GALEC: Language characteristics



© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 8

GALEC (Guarded Algorithmic Language for Embedded Control): Intermediate representation 

well-suited as code generation target for modelling tools & source for embedded-code generation

Imperative / causal language of high abstraction level:

• Target machine characteristics abstracted in:

• Idealized types (Boolean, Integer & Real)

• Builtin functions (e.g., construct & check NaN or ∞, convert Real ↔ Integer, extract fractional, rounding)

⇒ Idealized, but executable algorithms (math algorithms on computers)

• Builtin operators for multi-dimensional real arithmetic & builtin functions encapsulating common 

mathematical algorithms (e.g., interpolation 1-3D, solve linear equations)

⇒ Optimization for target environment at production code generation

eFMI GALEC: Language characteristics
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GALEC (Guarded Algorithmic Language for Embedded Control): Intermediate representation 

well-suited as code generation target for modelling tools & source for embedded-code generation

Imperative / causal language of high abstraction level:

• Well-defined onion-layered initialization:

• Dependencies: constants ← tuneable parameters ← dependent parameters ← inputs ← states & outputs

• Each has separate algorithmic initialization function

⇒ Safe, complex and optimizable initialization

• Simple block life cycle with support for input-dependent initialization, reinitialization & recalibration

eFMI GALEC: Language characteristics
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GALEC (Guarded Algorithmic Language for Embedded Control): Intermediate representation 

well-suited as code generation target for modelling tools & source for embedded-code generation

Imperative / causal language of high abstraction level:

• Safety & simplicity first:

• Only for-loops and if-elseif-else control-flow

• Only Integer, no, int, short, unsigned, long long etc

• No implicit type conversions

• Unique way to write Real literals: X.X[e(+|-)X] (not 1e10, 1E+10, 1.0e10, .0)

• Only LF line endings, only UTF-8 encoding (code ASCII, comments UTF-8)

• …

eFMI GALEC: Language characteristics
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GALEC (Guarded Algorithmic Language for Embedded Control): Intermediate representation 

well-suited as code generation target for modelling tools & source for embedded-code generation.

Safe – embedded & real-time suited – and well-defined semantics:

• Statically known sizes and safe indexing:

• No pointer arithmetic

• No memory-layout implications for multi-dimensionals (like vector elements must be consecutive memory)

⇒ Production code generators can rearrange (e.g., scalarize & decompose) multi-dimensionals

• Clear separation of statically-evaluable and run-time expressions; same syntax, but different evaluation times

⇒ Complex indexing expressions including, e.g., function calls, supported

• Dependent dimensionalities (e.g., input must be square matrix, vector twice length of 1st dimension of matrix)

• Upper bound:

• No recursion, only statically known looping (over size-fixed multi-dimensionals)

⇒ GALEC programs can be unrolled to sequence of conditional assignments.

eFMI GALEC: Language characteristics
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GALEC (Guarded Algorithmic Language for Embedded Control): Intermediate representation 

well-suited as code generation target for modelling tools & source for embedded-code generation.

Safe – embedded & real-time suited – and well-defined semantics:

• Well-defined & never competing side effects

• Unique access to global state (self.name)

• Clear separation of functions (no access to global state) vs. methods (access to global state)

• Fixed evaluation order of function/method arguments (left-to-right)

• No method calls in argument-expressions

• No aliases, only call by value, inputs cannot be assigned

⇒ For every two GALEC statements, it is decidable if they can be switched (automatic parallelization).

eFMI GALEC: Language characteristics
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GALEC (Guarded Algorithmic Language for Embedded Control): Intermediate representation 

well-suited as code generation target for modelling tools & source for embedded-code generation.

Safe floating-point numerics & ordinary control-flow integrated, strict error handling concept :

• Errors must be either handled in ordinary if-statements or propagated

• Operations that can cause NaN signal errors (e.g., relational operators like <, <=, >, >=)

• Signaled errors can be checked at later if-statements

⇒ delayed error handling (not C style spaghetti code on machine flags after each and every operation)

• Builtin functions signal errors:

• Every builtin function when undefined either, propagates NaN as result or signals NaN error

• Predefined signals for singular or non-unique linear equation systems, size issues (convert Real ↔ Integer) etc

⇒ Errors are always recognized (nothing slips through).

⇒ Enables handling of unforeseen runtime errors, for example, using a backup controller, reset to 

previous state etc.

eFMI GALEC: Language characteristics
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GALEC (Guarded Algorithmic Language for Embedded Control): Intermediate representation 

well-suited as code generation target for modelling tools & source for embedded-code generation

⇒ GALEC is by language design safe and guards further eFMI tooling.

• Not an (operating) system level programming language

(that needs to be tamed by plethora of further anlyses tooling; pun on C & Co. intended)

• Production code tooling can optimize code – thanks to GALEC guarantees – by lowering abstraction

(which need no artificial taming, but can be if required, e.g., MISRA C:2012 compliance)

⇒ Simple language with well-defined semantic, well-suited for expressing and long term archiving 

algorithmic solutions of physics models.

⇒ A language for safety-critical and real-time suited (control-)algorithms.

eFMI GALEC: Summary
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1. Scope of eFMI®: GALEC as example of satisfying non-functional quality requirements

2. Delimitation in embedded software domain: eFMI® vs. FMI®, AUTOSAR, ASAM, …
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An eFMU is about the development of one software component (controller, virtual sensor etc) of a 

complex cyber-physical system:

• Not about system integration of components

• Many other standards in different industries available (e.g., AUTOSAR, ASAM etc)

⇒ Use established standards for eFMU system-integration

• Not about system level programming (embedded OS, drivers, software frameworks etc)

⇒ Production Code generators tailor code for given target environment

• Not about distributing, interconnecting and parameterizing system simulations

• That is what FMI, DCP & SSP are for

⇒ Use FMI & co. ecosystem to distribute and setup (desktop environment) system simulations…

…by exporting your production code as FMU

Scope of eFMI in embedded software domain
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FMI: Standardized C interface to enable exchange and interoperability of simulations

• About how to distribute and integrate simulations

• Single abstraction level, 1 ↔ 1 (producer to consumer)

• Focus on interface of black-box implemented functionality

eFMI: Standardized development workspace to implement models in embedded environments

• About how to step-wise develop simulations from high-level model to low-level code

• Chain of abstraction levels, N ↔ M ↔ … ↔ L

(many development stakeholders with different tools and viewpoints)

• Focus to guarantee non-functional requirements (safety-critical & real-time) besides functional

⇒ We can develop functionality with eFMI and distribute it with FMI

⇒ Two complementary standards

eFMI vs. FMI: Two complementary standards
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eFMI Standard: Deployment scenarios
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ProSTEP provides two interesting ”towards embedded software” recommendations:

• ProSTEP V-Model

• Software development process model

• Suited to position to which development processes eFMI contributes and helps with

• ProSTEP Smart Systems Engineering (SSE) group envisioned V-ECU levels

• Grades of ECU support (from high-level controller-model to deployment on ECU)

• Suited to position eFMUs and their supported containers

Classification of eFMI w.r.t. ProSTEP V-Model & V-ECUs
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Scale of eFMU: One software

component (controller, 

virtual sensor etc) of a 

complex cyber-physical

system.
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eFMI w.r.t. ProSTEP V-ECUs
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