
This work is licensed under a CC BY-SA 4.0 license.

© 2021-2023, Modelica Association and contributors.

Modelica® is a registered trademark of the Modelica Association.
eFMI® is a registered trademark of the Modelica Association.
FMI® is a registered trademark of the Modelica Association.
SSP® is a registered trademark of the Modelica Association.
DCP® is a registered trademark of the Modelica Association.

Third party marks and brands are the property of their respective holders.

https://creativecommons.org/licenses/by-sa/4.0/
https://modelica.org/

© 2023 Modelica Association | www.modelica.org

eFMI® scope and delimitation

Christoff Bürger
Dassault Systèmes

Christoff.Buerger@3ds.com

FMI User Meeting – 15th International Modelica Conference – 10th of October 2023

mailto:Christoff.Buerger@3ds.com

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 3

1. Scope of eFMI®: GALEC as example of satisfying non-functional quality requirements

2. Delimitation in embedded software domain: eFMI® vs. FMI®, AUTOSAR, ASAM, …

Agenda

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 4

eFMI is all about:

How to develop software satisfying non-functional requirements

besides just functional?

As an example, let us have a short look on eFMI GALEC.

(other examples would be eFMI Behavioral Models or inter-container linking for traceability)

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 5

Model

Bosch MDG1

ECU

Astrée

SimulationX

Amesim

Testing & code analyses

System integration

*several possible

Binary

Code*

Production

Code*

Algorithm

Code

Behavioral

Model*

eFMU Manifest

AUTOSAR Builder

Dymola

CATIA DBM Software Production

Engineering

Starting point of

further code

generation: GALEC

program generated by

modeling tool.

eFMI Standard: Toolchain & workflow
Former name:

CATIA ESP

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 6

GALEC (Guarded Algorithmic Language for Embedded Control): Intermediate representation

well-suited as code generation target for modelling tools & source for embedded-code generation

eFMI GALEC: Scope

GALEC program: sampled

algorithm with fixed

sampling period.

Block life-cycle specifies

usage via common

interface:

• (default) initialization

• sampling

• recalibration

• reinitialization

⇒ Defines valid system

integration scenarios.

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 7

GALEC (Guarded Algorithmic Language for Embedded Control): Intermediate representation

well-suited as code generation target for modelling tools & source for embedded-code generation

• Imperative / causal language of high abstraction level (e.g., multi-dimensional real arithmetic, built-in

mathematical functions like sinus, cosine, interpolation 1-3D, solve linear equation systems etc.)

• Safe – embedded & real-time suited – and well-defined semantics

• Upper bound

• Statically known sizes and safe indexing

• Well-defined & never competing side effects

• Safe floating-point numerics

• Guaranteed NaN propagation

• Saturation of ranged variables

• Ordinary control-flow integrated, strict error handling concept

• Guaranteed error signal propagation enables delayed error handling

⇒ Guards further eFMI tooling

eFMI GALEC: Language characteristics

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 8

GALEC (Guarded Algorithmic Language for Embedded Control): Intermediate representation

well-suited as code generation target for modelling tools & source for embedded-code generation

Imperative / causal language of high abstraction level:

• Target machine characteristics abstracted in:

• Idealized types (Boolean, Integer & Real)

• Builtin functions (e.g., construct & check NaN or ∞, convert Real ↔ Integer, extract fractional, rounding)

⇒ Idealized, but executable algorithms (math algorithms on computers)

• Builtin operators for multi-dimensional real arithmetic & builtin functions encapsulating common

mathematical algorithms (e.g., interpolation 1-3D, solve linear equations)

⇒ Optimization for target environment at production code generation

eFMI GALEC: Language characteristics

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 9

GALEC (Guarded Algorithmic Language for Embedded Control): Intermediate representation

well-suited as code generation target for modelling tools & source for embedded-code generation

Imperative / causal language of high abstraction level:

• Well-defined onion-layered initialization:

• Dependencies: constants ← tuneable parameters ← dependent parameters ← inputs ← states & outputs

• Each has separate algorithmic initialization function

⇒ Safe, complex and optimizable initialization

• Simple block life cycle with support for input-dependent initialization, reinitialization & recalibration

eFMI GALEC: Language characteristics

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 10

GALEC (Guarded Algorithmic Language for Embedded Control): Intermediate representation

well-suited as code generation target for modelling tools & source for embedded-code generation

Imperative / causal language of high abstraction level:

• Safety & simplicity first:

• Only for-loops and if-elseif-else control-flow

• Only Integer, no, int, short, unsigned, long long etc

• No implicit type conversions

• Unique way to write Real literals: X.X[e(+|-)X] (not 1e10, 1E+10, 1.0e10, .0)

• Only LF line endings, only UTF-8 encoding (code ASCII, comments UTF-8)

• …

eFMI GALEC: Language characteristics

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 11

GALEC (Guarded Algorithmic Language for Embedded Control): Intermediate representation

well-suited as code generation target for modelling tools & source for embedded-code generation.

Safe – embedded & real-time suited – and well-defined semantics:

• Statically known sizes and safe indexing:

• No pointer arithmetic

• No memory-layout implications for multi-dimensionals (like vector elements must be consecutive memory)

⇒ Production code generators can rearrange (e.g., scalarize & decompose) multi-dimensionals

• Clear separation of statically-evaluable and run-time expressions; same syntax, but different evaluation times

⇒ Complex indexing expressions including, e.g., function calls, supported

• Dependent dimensionalities (e.g., input must be square matrix, vector twice length of 1st dimension of matrix)

• Upper bound:

• No recursion, only statically known looping (over size-fixed multi-dimensionals)

⇒ GALEC programs can be unrolled to sequence of conditional assignments.

eFMI GALEC: Language characteristics

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 12

GALEC (Guarded Algorithmic Language for Embedded Control): Intermediate representation

well-suited as code generation target for modelling tools & source for embedded-code generation.

Safe – embedded & real-time suited – and well-defined semantics:

• Well-defined & never competing side effects

• Unique access to global state (self.name)

• Clear separation of functions (no access to global state) vs. methods (access to global state)

• Fixed evaluation order of function/method arguments (left-to-right)

• No method calls in argument-expressions

• No aliases, only call by value, inputs cannot be assigned

⇒ For every two GALEC statements, it is decidable if they can be switched (automatic parallelization).

eFMI GALEC: Language characteristics

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 13

GALEC (Guarded Algorithmic Language for Embedded Control): Intermediate representation

well-suited as code generation target for modelling tools & source for embedded-code generation.

Safe floating-point numerics & ordinary control-flow integrated, strict error handling concept :

• Errors must be either handled in ordinary if-statements or propagated

• Operations that can cause NaN signal errors (e.g., relational operators like <, <=, >, >=)

• Signaled errors can be checked at later if-statements

⇒ delayed error handling (not C style spaghetti code on machine flags after each and every operation)

• Builtin functions signal errors:

• Every builtin function when undefined either, propagates NaN as result or signals NaN error

• Predefined signals for singular or non-unique linear equation systems, size issues (convert Real ↔ Integer) etc

⇒ Errors are always recognized (nothing slips through).

⇒ Enables handling of unforeseen runtime errors, for example, using a backup controller, reset to

previous state etc.

eFMI GALEC: Language characteristics

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 14

GALEC (Guarded Algorithmic Language for Embedded Control): Intermediate representation

well-suited as code generation target for modelling tools & source for embedded-code generation

⇒ GALEC is by language design safe and guards further eFMI tooling.

• Not an (operating) system level programming language

(that needs to be tamed by plethora of further anlyses tooling; pun on C & Co. intended)

• Production code tooling can optimize code – thanks to GALEC guarantees – by lowering abstraction

(which need no artificial taming, but can be if required, e.g., MISRA C:2012 compliance)

⇒ Simple language with well-defined semantic, well-suited for expressing and long term archiving

algorithmic solutions of physics models.

⇒ A language for safety-critical and real-time suited (control-)algorithms.

eFMI GALEC: Summary

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 15

1. Scope of eFMI®: GALEC as example of satisfying non-functional quality requirements

2. Delimitation in embedded software domain: eFMI® vs. FMI®, AUTOSAR, ASAM, …

Agenda

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 16

An eFMU is about the development of one software component (controller, virtual sensor etc) of a

complex cyber-physical system:

• Not about system integration of components

• Many other standards in different industries available (e.g., AUTOSAR, ASAM etc)

⇒ Use established standards for eFMU system-integration

• Not about system level programming (embedded OS, drivers, software frameworks etc)

⇒ Production Code generators tailor code for given target environment

• Not about distributing, interconnecting and parameterizing system simulations

• That is what FMI, DCP & SSP are for

⇒ Use FMI & co. ecosystem to distribute and setup (desktop environment) system simulations…

…by exporting your production code as FMU

Scope of eFMI in embedded software domain

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 17

FMI: Standardized C interface to enable exchange and interoperability of simulations

• About how to distribute and integrate simulations

• Single abstraction level, 1 ↔ 1 (producer to consumer)

• Focus on interface of black-box implemented functionality

eFMI: Standardized development workspace to implement models in embedded environments

• About how to step-wise develop simulations from high-level model to low-level code

• Chain of abstraction levels, N ↔ M ↔ … ↔ L

(many development stakeholders with different tools and viewpoints)

• Focus to guarantee non-functional requirements (safety-critical & real-time) besides functional

⇒ We can develop functionality with eFMI and distribute it with FMI

⇒ Two complementary standards

eFMI vs. FMI: Two complementary standards

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 18

*several possible

CATIA DBM

SimulationX

Amesim

Dymola

eFMI Standard: Deployment scenarios
Model

Bosch MDG1

ECU

Astrée

Testing & code analyses

FMU

Binary

Code*

Production

Code*

Algorithm

Code

adapter for

FMI interface

Pick one

solution

when ready

and wrap in

FMU.

Behavioral

Model*

eFMU Manifest

modelDescription.xml

System integration

Software Production

Engineering

AUTOSAR Builder

Former name:

CATIA ESP

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 19

eFMI Standard: Deployment scenarios

Bosch MDG1

ECU

Amesim

Dymola

FMU

Binary

Code*

Production

Code*

Algorithm

Code

adapter for

FMI interface

Behavioral

Model*

eFMU Manifest

modelDescription.xml

HPC

PC
Cloud

FMI ecosystem

integration

customer

specific SW

integration

tool specific

wrapper
e.g., Matlab C

function block

target specific

binaries +

ecosystem

Use existing

standards /

ecosystems

for system

integration

(not defined

by eFMI).

*several possible

System integration

Pick one

solution

when ready

and wrap in

FMU.

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 20

ProSTEP provides two interesting ”towards embedded software” recommendations:

• ProSTEP V-Model

• Software development process model

• Suited to position to which development processes eFMI contributes and helps with

• ProSTEP Smart Systems Engineering (SSE) group envisioned V-ECU levels

• Grades of ECU support (from high-level controller-model to deployment on ECU)

• Suited to position eFMUs and their supported containers

Classification of eFMI w.r.t. ProSTEP V-Model & V-ECUs

© 2020, prostep ivip e.V. 9 January 2024 21

Product Definition

Product Requirements Analysis

System Requirements

Analysis

System Architecture Design

E/E-Requirements

Analysis & Design

Production

Electric / Electronic Comp.

Tooling
Production

Mechanical Comp.

E/E-Integration

& Test

System Integration & Calibration

System Signoff Test

Product Integration

& Calibration

Product Signoff Test

FMI Today

FMI To be

SW-

Implementation

eFMI w.r.t. ProSTEP V-Model

© 2020, prostep ivip e.V. 9 January 2024 22

Scale of eFMU: One software

component (controller,

virtual sensor etc) of a

complex cyber-physical

system.

Product Definition

Product Requirements Analysis

System Requirements

Analysis

System Architecture Design

E/E-Requirements

Analysis & Design

Production

Electric / Electronic Comp.

Tooling
Production

Mechanical Comp.

E/E-Integration

& Test

System Integration & Calibration

System Signoff Test

Product Integration

& Calibration

Product Signoff Test

FMI Today

FMI To be

eFMI helps

In simulation

environment

(eg. whole system

Modelica model with

controller(s) &

plant(s)).

eFMU

eFMI Behavioral Model

& Binary Code

containers can be used

(i.e, functional tests).

SW-

Implementation

eFMI GALEC

Recalibrate.

eFMI w.r.t. ProSTEP V-Model

© 2020, prostep ivip e.V. 9 January 2024 23

eFMI w.r.t. ProSTEP V-ECUs

eFMI also targets rapide prototyping platforms & HiL systems.

Physics

model, e.g,

in

Modelica

eFMI

Production

Code

container

without target

environment

specific

interface

eFMI Production Code container

with target environment interface

(e.g., AUTOSAR)

eFMI Binary Code container

one component for target

environment (target environment

not part of eFMU)

eFMU

FMU

Source:

ProSTEP - White

Paper - SmartSE

- Virtual

Electronic

Control Units

(released 3/2020)

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 24

Modelica Association Project eFMI (MAP eFMI)

https://efmi-standard.org/

Deputy project

leader:

Hubertus

Tummescheit

Project leader:

Christoff Bürger

https://efmi-standard.org/

