
This work is licensed under a CC BY-SA 4.0 license.

© 2021-2023, Modelica Association and contributors.

Modelica® is a registered trademark of the Modelica Association.
eFMI® is a registered trademark of the Modelica Association.
FMI® is a registered trademark of the Modelica Association.
SSP® is a registered trademark of the Modelica Association.
DCP® is a registered trademark of the Modelica Association.

Third party marks and brands are the property of their respective holders.

https://creativecommons.org/licenses/by-sa/4.0/
https://modelica.org/

License for

https://pixabay.com/illustrations/education-online-school-elearning-5307517/

© June 17, 2020 by ArtsyBee

I create these images with love and like to share them with you. My passion is to provide vintage designs to honor those artists that created something great and timeless. You are most welcome to use it for commercial projects, no need to ask for permission. I
only ask that you not resell my images AS IS or claim them as your own creation. As always, a BIG thank you for the coffee donations I received, every dollar is a blessing for my family.

Education Online School royalty-free stock illustration. Free for use & download.

Content License Summary

Welcome to Pixabay! Pixabay is a vibrant community of authors, artists and creators sharing royalty-free images, video, audio and other media. We refer to this collectively as “Content”. By accessing and using Content, or by contributing Content, you agree to
comply with our Content License.

At Pixabay, we like to keep things as simple as possible. For this reason, we have created this short summary of our Content License which is available in full here. Please keep in mind that only the full Content License is legally binding.

What are you allowed to do with Content?

• Subject to the Prohibited Uses (see below), the Content License allows users to:

• Use Content for free

• Use Content without having to attribute the author (although giving credit is always appreciated by our community!)

• Modify or adapt Content into new works

What are you not allowed to do with Content?

We refer to these as Prohibited Uses which include:

• You cannot sell or distribute Content (either in digital or physical form) on a Standalone basis. Standalone means where no creative effort has been applied to the Content and it remains in substantially the same form as it exists on our website.

• If Content contains any recognisable trademarks, logos or brands, you cannot use that Content for commercial purposes in relation to goods and services. In particular, you cannot print that Content on merchandise or other physical products for sale.

• You cannot use Content in any immoral or illegal way, especially Content which features recognisable people.

• You cannot use Content in a misleading or deceptive way.

• Please be aware that certain Content may be subject to additional intellectual property rights (such as copyrights, trademarks, design rights), moral rights, proprietary rights, property rights, privacy rights or similar. It is your responsibility to check whether
you require the consent of a third party or a license to use Content.

https://pixabay.com/illustrations/education-online-school-elearning-5307517/
https://pixabay.com/service/terms/

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 3

eFMI® Tutorial – Agenda

Presenter:

Oliver Lenord

Tutorial leader:

Christoff Bürger

Presenter:

Jörg Niere

Part 1: eFMI® motivation and overview (40 min)

Part 2: Running use-case introduction (10 min)

Part 3: Hands-on demonstration in Dymola and

Software Production Engineering (former name CATIA ESP) (25 min)

Coffee break (30 min)

Part 3: Hands-on demonstration in Dymola and

Software Production Engineering (former name CATIA ESP) (35 min)

Part 4: Live demonstration in TargetLink (30 min)

Part 5: Short presentation of further tooling (5 min)

Part 6: Conclusion (5 min)

© 2023 Modelica Association | www.modelica.org

eFMI® Tutorial – 15th International Modelica Conference – 9th of October 2023

Christoff Bürger
Dassault Systèmes

Christoff.Buerger@3ds.com

Modelica

model

Binary

Code*

Production

Code*

Algorithm

Code

Behavioral

Model*

eFMU Manifest

Software Production

Engineering

Dymola

✔

✖

✔

Part 3: Hands-on demonstration in Dymola and

Software Production Enginnering

mailto:Christoff.Buerger@3ds.com

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 5

This handout provides a step-by-step guide how to generate and

software-in-the-loop (SiL) test an eFMU in Dymola.

Tutorial requirements:

 Own computer with Windows 10 or 11, 64-Bit, x86

You – i.e., every tutorial participant – should have gotten a software bundle with:

 This documentation (eFMI-Tutorial-Part-3.pdf in root directory)

 Preinstalled Dymola 2024x Beta 4 (/Dymola)

 Preinstalled Software Production Engineering (fomer name CATIA ESP) prototype (included in Dymola)

 Workdirectory where eFMUs will be generated and simulation artefacts stored (/work-directory)

 Modelica models we actually want to develop; for your reference if something goes wrong (/reference-models)

 eFMUs we actually want to build; for your reference if something goes wrong (/reference-eFMUs)

 Portable Microsoft Visual C++ and Microsoft Windows SDK required by Dymola (/portable-MSVC)

 Portable Java required by Software Production Engineering (/portable-Java)

 Portable Cppcheck (/portable-Cppcheck) and Python (/portable-Python)

required for MISRA C:2012 compliance checks of production code

 Licenses of provided software (/licenses)

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 6

DISCLAIMER

The Microsoft Visual C++ and Microsoft Windows SDK provided in the /portable-MSVC directory are subject to licensing of Microsoft.

The Java Development Kit (OpenJDK) provided in the /portable-Java directory is subject to licensing of the Free Software Foundation,

Inc.

The Python provided in the /portable-Python directory is subject to licensing of the Python Software Foundation.

The Cppcheck provided in the /portable-Cppcheck directory is subject to licensing of Cppcheck Solutions AB.

The Dymola and Software Production Engineering provided in the /Dymola directory are subject to licensing of Dassault Systèmes.

The Python libraries and scripts pip, get-pip.py, argparse and Pygments are subject to their respective licensing.

BEFORE USING ANY OF ABOVE SOFTWARE, USERS MUST ACCEPT AND AGREE TO THEIR LICENSING

(all licenses can be found in the /licenses directory).

THE DISTRIBUTED SOFTWARE IS PROVIDED ONLY FOR USAGE IN THE SCOPE OF THE “eFMI® Tutorial” OF THE

“15th International Modelica Conference, 9-11 October 2023”; AND IT IS FOR PARTICIPANTS OF THE TUTORIAL

ONLY.

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 7

Before getting started, please make sure you can use the provided Dymola:

Execute /Dymola/start-Dymola.bat and

check your license:

1. Tools ribbon

2. License Setup

3. Details

4. Code export is checked (“Dymola Source

Code Generation License”)

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 8

Before getting started, please make sure you can use the provided Dymola:

Check compilers are available for simulation:

1. Simulation ribbon

2. Setup button

3. Compiler tab

4. Verify Compiler button

You can also pick any of the default Microsoft Visual

Studio versions if you have a local installation.

If not, please use the provided portable, on custom path
<< location of software bundle >>

/portable-MSVC/

<< location of software bundle >>\portable-MSVC

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 9

Ok, lets get started!

?

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 10

The user interface for eFMI support in Dymola is provided by means of a
Modelica library: DymolaEmbedded

Load DymolaEmbedded via the eFMI button in the Tools ribbon → Load Libraries… → OK:

:

Other menu entries permit to

build or delete eFMUs for whole

package hierarchies and load

their co-simulation stubs (this

convenience use-cases will

become clear throughout the

tutorial).

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 11

The following libraries are loaded:

eFMI:
• Support library to ease adaptation of existing Modelica

models for eFMI (mostly about MSL → eFMI table adapters)

• Public domain, © MA, MAP eFMI

eFMI_TestCases:
• eFMI application examples used for official cross-checks of

eFMI tooling; Modelica tooling agnostic

• Public domain, © MA, MAP eFMI

• Contains our running use-case, M04

DymolaEmbedded:
• Interface for Dymola’s eFMI facilities

• Provides means to configure eFMU generation & generate

various eFMI containers

eFMI_TestCases_EmbeddedConfigurations:
• eFMU generation configurations for eFMI_TestCases

• Already contains a configuration for M04 (we will develop

from scratch in the following)

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 12

Create a new eFMU generation configuration for the M04 controller:

Create package extending EmbeddedConfiguration:

1. File → New → Package, Name: MyM04eFMU

2. New package visible in Package Browser & Projects

(not Libraries)
3. Double click MyM04eFMU; switch to Text ribbon

4. Add extends .DymolaEmbedded

.EmbeddedConfiguration;

5. Switch to Graphics ribbon

Dymola and Software Production Engineering eFMU

code generation can be configured from the diagram
layer of MyM04eFMU.; it is an eFMU generation

configuration.

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 13

Create a new eFMU generation configuration for the M04 controller:

Configure Dymola’s GALEC code generation:

1. Double click model configuration

→ model_name

→ Edit (package tree icon)
→ select eFMI_TestCases
.M04_DrivetrainTorqueControl

.Controllers.Controller

→ OK

→ OK

2. Double click code configuration
→ obfuscate: None

→ OK

3. Double click integrator configuration
→ sample_period: 5e-4

→ solver_method: Explicit Euler

→ OK

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 14

Create a new eFMU generation configuration for the M04 controller:

Software Production Engineering is already default

configured:

• 32-Bit and 64-Bit floating-point precision production
codes

• 32-Bit and 64-Bit x86 ISA binary codes

(self-contained static linked libraries)
⇒ 2 Production Code & 4 Binary Code containers

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 15

Investigate the eFMU generation configuration MyM04eFMU for the M04 controller:

All eFMU build activities are inherited from
DymolaEmbedded.EmbeddedConfiguration:

• Available via the extends entry in the Package

Browser & Libraries / Projects view (depending if

configuration is write protected or not)
• Preconfigured with eFMU generation configuration

• Activities grouped according to eFMI container type:
• Algorithm Code: Generate GALEC code

• Behavioral Model: Derive experiment packages to

configure test scenarios & tolerances; use experiment

packages to generate respective Behavioral Models

• Production Code: Generate & MISRA C:2012 check

Software Production Engineering code

• Binary Code: Generate Software Production

Engineering binaries & Modelica proxies for co-

simulating such; export FMU

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 16

Generate the eFMU configured in MyM04eFMU for the M04 controller:

Build the eFMU with Algorithm Code, 2x Production

Code and 4x Binary Code containers:
1. Right click MyM04eFMU.build in the Package

Browser / Projects view

→ Call Function…

→ OK

2. You can check the build log in the Commands

window

Browse the generated eFMU:
1. Right click MyM04eFMU.browse_code in the

Package Browser / Projects view

→ Call Function…

→ OK

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 17

Investigate the generated eFMU (MyM04eFMU/eFMU):

Contained containers:

• Algorithm Code with GALEC code

• x64, 64-Bit floating-point precision Binary Code

• x86, 64-Bit floating-point precision Binary Code

• x64, 32-Bit floating-point precision Binary Code

• x86, 32-Bit floating-point precision Binary Code

• 64-Bit floating-point precision Production Code

• 32-Bit floating-point precision Production Code

• Content manifest listing all containers

Take some time to investigate the eFMU, e.g.:

• How cross references between manifests work

• Quality of generated GALEC code (self-contained / inlined,

error handling of symbolic optimized linear equation systems,

local vs. global variables etc)

• …

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 18

Check the eFMU and its production codes:

Check MISRA C:2012 compliance of all production

codes via Cppcheck:
1. Right click MyM04eFMU.ProductionCode

.check_code in Package Browser / Projects view

→ Call Function…

→ OK

2. Analyses reports for each production code are
provided in your webbrowser (note, that block.c,

the actual production code, satisfies MISRA)

Check eFMU with eFMI Container Manager and eFMI

Compliance Checker (MAP eFMI released tools):
1. Right click MyM04eFMU.check_eFMU in the

Package Browser / Projects view

→ Call Function…

→ OK

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 19

Congratulations, you are halfway through!

eFMU generation done.

Let’s go on to Behavioral Models &

software-in-the-loop (SiL) simulation.

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 20

Questions from the audience

For which target did we just

generate binaries?

How do I pick my embedded

target?

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 21

Questions from the audience

Which kind of limitations on Modelica models exist?

What is supported (signal buses, discrete, events, state machines, …)?

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 22

Questions from the audience

Which kind of Modelica models / equation systems do not work?

What about very stiff systems of equations?

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 23

Questions from the audience

What are the differences between

Dymola & Software Production

Engineering code configuration,

Dymola C code generation,

eFMI code generation and

eFMU bundle configuration?

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 24

Questions from the audience

What is the *.alg file in the

ACode_Dymola container of

the eFMU?

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 25

Congratulations, you are halfway through!

eFMU generation done.

Let’s go on to Behavioral Models &

software-in-the-loop (SiL) simulation.

See you in the second

half of the hands-on

after the coffee break!

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 26

Congratulations, you are halfway through!

eFMU generation done.

Let’s go on to Behavioral Models &

software-in-the-loop (SiL) simulation.

Welcome back to the

second half of the

hands-on!

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 27

Generate eFMU co-simulation stub:

1. Right click
MyM04eFMU.BinaryCode.build_binary_stub

in Package Browser / Projects view

→ Call Function…

→ OK

A new package 'MyM04eFMU.eFMU_SiL_Support' is

generated. Its BinaryStub model is a Modelica proxy

to the static linked libraries – and therefore production

codes – generated by Software Production Engineering.

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 28

Investigate generated eFMU co-simulation stub:

Main characteristics of eFMU co-simulation stubs:

• Support multiple instantiation (each is atomic)

• All production codes available (32-Bit & 64-Bit

floating-point precision simulation)

• Support modification, input-dependent initialization,

recalibration & reinitialization

• Provide & assert eFMI error signals

• Preserve original model interface (dimensionalities,

diagramatic layout of in- & output connectors etc)

• Provide sampling with period of generated eFMU

• ”Just” a production code proxy (no additional

equations; no solver required; ”simply” implement

GALEC block live-cycle)

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 29

Derive experiment package to define test scenarios & generate Behavioral Model container:

Derive experiment package from existing closed loop

experiment:
1. Right click MyM04eFMU.BehavioralModel

.build_tests in Package Browser / Projects view

→ Call Function…

→ source_experiment

→ Edit (package tree icon)
→ select eFMI_TestCases
.M04_DrivetrainTorqueControl

.ReferenceTests

.Controller_ExplEuler_ClosedLoop

→ OK

→ OK

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 30

Investigate the derived experiment package:

The generated experiment package contains:

• Records to define absolute & relative tolerances for

test scenarios

• Function to generate the Behavioral Model container

• Function to browse the Behavioral Model container

• A single reference experiment to regression test the

source experiment and generate reference results

• A SiL test for each ”controller” instance (i.e., test

scenario) in the source experiment

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 31

Define tolerances for the test scenarios of the experiment package:

Define absolute and relative tolerances for all floating-

point precisions and test scenarios (i.e., SiL tests). We

can use a default for all scenarios (here only a single):
1. Double click tolerances_default (labeld

default) in Diagram view of the experiment package
→ set tolerances for M_motor output a follows

absolute_x32(M_motor=1e-3)

relative_x32(M_motor=1e-4)

absolute_x64(M_motor=1e-6)

relative_x64(M_motor=1e-8)

→ OK

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 32

Generate Behavioral Model container form the experiment package:

Build the Behavioral Model container with reference

results taken from simulation of the reference
experiment Test_ReferenceExperiment:

1. Right click build of experiment package in

Package Browser / Projects view

→ Call Function…

→ OK

Browse the generated Behavioral Model container:
1. Right click browse_container of experiment

package in the Package Browser / Projects view

→ Call Function…

→ OK

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 33

Investigate the generated Behavioral Model container (BModel_Dymola_699250432):

Container content:

• XML manifest with

• Test scenarios

• Links to Algorithm Code manifest for variable names

and types (in-, output, tuneable parameter) & sample

period

• Variables → CSV column name links (multi-dimensions

are flattened to individual columns)

• Tolerances for various floating-point precisions

• Reference trajectories in comma separated values (CSV)

files (one file per test scenario)

Take some time to investigate the manifest and CSV file.

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 34

Conduct SiL test of Software Production Engineering generated production codes:

1. Double click Test_SiL_Scenario_1 of the

experiment package in Package Browser / Projects

view

2. Switch to Simulation ribbon

→ Click Simulate button
3. Right click 'M_motor|match' in diagram plot

→ Plot Variable

→ select act (actual SiL simulation trajectory)

→ select ref (expected reference trajectory)

4. Zoom into Plot window to see there are differences

Note, that the test did not fail (see Logs window &

dashboards). If you tighten tolerances – e.g., change

the 32-Bit floating-point precision tolerances to the 64-

Bit ones – it will fail.

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 35

Conduct SiL test of Software Production Engineering generated production codes:

__defining_code

parameter selects

production code to

test

resolve

code name →

configuration

How do we know and change which

production code is tested?

1. Double click Test_SiL_Scenario_1 of the

experiment package in Package Browser / Projects

view

2. Switch to Simulation ribbon

→ Click Simulate button
3. Right click 'M_motor|match' in diagram plot

→ Plot Variable

→ select act (actual SiL simulation trajectory)

→ select ref (expected reference trajectory)

4. Zoom into Plot window to see there are differences

Note, that the test did not fail (see Logs window &

dashboards). If you tighten tolerances – e.g., change

the 32-Bit floating-point precision tolerances to the 64-

Bit ones – it will fail.

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 36

Congratulations, you did it!

Let’s do some advanced SiL stuff,

like recalibration and reinitialization.

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 37

Load prepared recalibration & reinitialization example for M04 controller:

1. Either, drag and drop model
reference-models/Part-3/

RecalibrateAndReinitializeTest.mo in

Package Browser / Projects view or load it via

File → Open → Load…

The model has 4x M04 controller instances (eFMU co-

simulation stub instances):
1. untuned: not modified, recalibrated nor reinitialized

2. parameterized: modified c_res & k_PI

parameters, but not recalibrated nor reinitialized
3. tuned: unmodified, but via tuningBus runtime

recalibrated c_res & k_PI parameters

4. tuned_and_reinitialized: like 3, but

additionally at runtime reinitialized

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 38

Investigate recalibration & reinitialization example for M04 controller:

All 4 controllers use the same production code for
simulation (__defining_code modification set by the

global record parameter in the upper left of the

diagram).

The c_res & k_PI parameter changes are all switches

from the default value to the same new value, just at

different time points (as modification before simulation

or as recalibration during simulation):
• c_res: 4710 → 2710 at t = 0s or 0.25s (step

runtime value)
• k_PI: -73 → -10 at t = 0s or 0.6s (step1 runtime

value)

Reinitalization is done at t = 0.7005s (booleanTable

runtime value).

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 39

Investigate recalibration & reinitialization example for M04 controller:

Tuning is enabled by modifying co-simulation subs:
• __enable_tuning = true

• selecting/activating the tuned parameters via
__tuning_configuration

⇒ The tuning bus connector () is enabled.

New recalibration parameter values are provided as

runtime values connected to the tuning bus. Only

tuning-activated parameters have to be provisioned.

Tuning configuration & bus types are provided in the

generated eFMU co-simulation stub (drag and drop).

In this model: Tuneable parameters are selected by the
global __tuning_configuration record parameter

in the upper left

of the diagram.

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 40

Investigate recalibration & reinitialization example for M04 controller:

Reinitialization is enabled by modifying eFMI co-

simulation subs:
• __enable_reinitialization = true

⇒ The “stop push button” () is enabled.

New reinitialization requests are provided as runtime

values connected to the “stop push button”. Such are

locked until the next sampling; it is sufficient to signal at

any point inbetween two samplings that a reinitialization

is requested – it is not necessary to ensure
__reinitialize == true exactly at the sampling.

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 41

Investigate recalibration & reinitialization example for M04 controller:

1. Simulate RecalibrateAndReinitializeTest

2. Plot M_motor of all 4 co-simulation stubs

3. Plot __recalibrated (true, iff recalibration done)

4. Zoom into the plot at 0.0 ≤ t ≤ 1.05

When do parameterized and tuned plots align?

When does untuned align? Is the controller fast

adapting in case of errors that require a system restart?

Good to remember:

• All controllers use same production code
• c_res & k_PI parameters change consistently:

• c_res at t = 0s or 0.25s (step)

• k_PI at t = 0s or 0.6s (step1)

• Reinitalization at t = 0.7005s (booleanTable)

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 42

Investigate recalibration & reinitialization example for M04 controller:

1. Simulate RecalibrateAndReinitializeTest

2. Plot M_motor of all 4 co-simulation stubs

3. Plot __recalibrated (true, iff recalibration done)

4. Zoom into the plot at 0.0 ≤ t ≤ 1.05

When do parameterized and tuned plots align?

When does untuned align? Is the controller fast

adapting in case of errors that require a system restart?

Good to remember:

• All controllers use same production code
• c_res & k_PI parameters change consistently:

• c_res at t = 0s or 0.25s (step)

• k_PI at t = 0s or 0.6s (step1)

• Reinitalization at t = 0.7005s (booleanTable)

Bonus question:

Why can Dymola not generate – to be

precise it makes no sense – Behavioral

Model containers with recalibration and

reinitialization test scenarios?

Think about Modelica limitations and

chicken-egg problem.

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 43

Final touch – export eFMU as FMU:

1. Right click MyM04eFMU.BinaryCode.build_FMU

in Package Browser / Projects view

→ Call Function…

→ OK

The exported FMU has all conditional parameters of the

eFMU co-simulation stub fixed to their defaults:

• Floating-point precision: precision of
__defining_code production code

• Recalibration & reinitialization: disabled, i.e.,
__enable_tuning = false,

__enable_reinitialization = false

• Error signals: asserted, i.e.,
__assert_error_signals = true

• Internal sampling: embedded & fixed, i.e.,
__embedd_clock = true

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 44

Congratulations, you did it like a PRO!

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 45

Questions from the audience

Assume my embedded target platform provides functionality I like to reuse.

How do I link it to my GALEC / production code?

How can I interface existing C code / binaries in my controller?

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 46

Questions from the audience

What is the minimal setup I need, starting from Dymola?

Which eFMU containers are optional?

Which eFMI features are optional?

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 47

Questions from the audience

We used a lot of Modelica

libraries.

What are all the eFMI libraries

loaded in Dymola good for?

eFMI:
• Support library to ease adaptation of existing Modelica

models for eFMI (mostly about MSL → eFMI table adapters)

eFMI_TestCases:
• eFMI application examples used for official cross-checks of

eFMI tooling; Modelica tooling agnostic

DymolaEmbedded:
• Interface for Dymola’s eFMI facilities

eFMI_TestCases_EmbeddedConfigurations:
• eFMU generation configurations for eFMI_TestCases

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 48

Congratulations, you did it like a PRO!

© 2023 Modelica Association | www.modelica.org | CC BY-SA 4.0 49

eFMI® Tutorial – Agenda

Presenter:

Oliver Lenord

Tutorial leader:

Christoff Bürger

Presenter:

Jörg Niere

Part 1: eFMI® motivation and overview (40 min)

Part 2: Running use-case introduction (10 min)

Part 3: Hands-on demonstration in Dymola and

Software Production Engineering (former name CATIA ESP) (25 min)

Coffee break (30 min)

Part 3: Hands-on demonstration in Dymola and

Software Production Engineering (former name CATIA ESP) (35 min)

Part 4: Live demonstration in TargetLink (30 min)

Part 5: Short presentation of further tooling (5 min)

Part 6: Conclusion (5 min)

