
eFMI® Standard
Version 1.0.0 Beta 1 (candidate-draft), June 4, 2024

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 1 (251)

2 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Contents
Preamble . 7

.1. Abstract . 7

.2. Overview . 8

.3. Introduction. 9

1. General concepts . 11

1.1. Comparing FMI with eFMI . 11

1.2. FMI compliance . 12

1.3. Functions in eFMI . 13

1.3.1. Block methods. 13

1.3.2. Built-in functions. 13

1.3.3. Local functions . 14

2. eFMU container architecture . 15

2.1. Content description (efmiContainerManifest.xsd) . 16

2.2. Structure of Model Representations . 19

2.3. Model Representation Manifests. 19

2.3.1. Attributes of manifest files (efmiManifestAttributes.xsd) . 19

2.3.2. Listing of relevant other manifest files (efmiManifestReferences.xsd) 22

2.3.3. Listing of files belonging to the model representation (efmiFiles.xsd) 24

2.3.4. Referencing . 26

2.3.5. Checksum calculation . 30

2.3.6. FMU File References . 31

3. Algorithm Code Model Representation . 33

3.1. Algorithm Code manifest . 34

3.1.1. Definition of an eFMU Algorithm Code (efmiAlgorithmCodeManifest.xsd) 34

3.1.2. Definition of Clock . 36

3.1.3. Definition of BlockMethods. 37

3.1.4. Definition of ErrorSignalStatus . 38

3.1.5. Definition of Units. 38

3.1.6. Definition of Variables . 40

3.2. Guarded Language for Embedded Control (GALEC). 47

3.2.1. Language-design Overview. 48

3.2.2. Notation Conventions . 51

3.2.3. Block-interface and life-cycle . 57

3.2.4. General Syntactic and Semantic Rules . 63

3.2.5. Error handling . 93

3.2.6. Built-in Functions . 107

3.2.7. Example Application Scenarios . 132

4. Behavioral Model Representation . 151

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 3 (251)

4.1. Behavioral Model manifest. 152

§1: Encoding of manifests . 152

§2: General structure and content of manifests . 152

§3: Root of manifest . 154

§4: Test scenarios of manifest. 157

§5: Mapping configurations of manifest . 159

§6: Tolerances setups of manifest . 161

4.2. Behavioral Model semantic . 164

§1: Structure and content of reference trajectories files . 165

§2: Time grids and reference values at actual sampling points . 167

§3: Tolerances and acceptable deviation at actual sampling points. 171

§4: Interpretation of test scenarios . 171

5. Production Code Model Representation . 175

5.1. Production Code Manifest . 177

5.1.1. Technical description of Production Code . 179

5.1.2. Code Container . 180

5.1.3. Code Files. 187

5.1.4. Technical Information Lookups . 199

5.1.5. Logical Data . 199

5.2. Production Code Language . 201

6. Binary Code Model Representation . 205

6.1. Manifest. 206

6.1.1. Structure of the Manifest . 206

6.1.2. Binary Container. 207

6.1.3. Modules . 220

6.1.4. Binary Container Info (optional). 223

6.2. Binary Format . 228

7. Acronyms . 231

8. Glossary. 233

References . 235

Appendix A: Legal information . 237

Copyright . 237

Licensing. 237

Registered trademarks. 237

Colophon . 238

Disclaimer . 238

Appendix B: Contributors . 239

Specification . 239

Tool support . 240

Benchmark test cases . 241

4 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Industrial demonstrators . 242

Appendix C: Reserved Built-in Functions . 247

Overview of the reserved built-in functions . 247

Definition of the reserved built-in functions . 249

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 5 (251)

6 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Preamble

.1. Abstract
The eFMI (FMI for embedded systems) standard specified in this document aims to extend the scope
of FMI (https://fmi-standard.org) from simulation towards software development. The eFMI standard
is intended as exchange format for workflows and tool chains from physical models to embedded
software. It is defined as a layered approach built upon the FMI for Co-Simulation standard (any
version). An eFMI component, that is an eFMU (Functional Mock-Up Unit for embedded systems), can
be packed in different formats. Especially, an eFMU can be packed as FMU and can then be simulated
with any FMI compliant tool (https://fmi-standard.org/tools) to perform Software-in-the-loop (SiL)
testing. Code generation for an embedded device requires however dedicated tool support for eFMI.

This effort is motivated by the fact that especially the development of advanced control functions and
diagnosis functions can benefit from physical models. As of today the realization of such model-
based functions incorporating physical models, in the following refered to as physics-based
functions, is very involved. The expertise from the physical modeling domains, control design and
numerics for real time applications are required as well as implementation knowledge in terms of
rules & regulations for embedded software have to be taken into account in order to supply an
industry grade function on an embedded device.

The eFMI standard describes a container format that will allow to exchange models in a variety of
different types of model representations:

• The Algorithm Code representation describes the mathematical model in a target and
implementation independent fashion as input/output, sampled data block with one fixed or
variable sample time using the standardized intermediate language GALEC (Guarded Algorithmic
Language for Embedded Control) developed for this purpose. GALEC is based on a small subset
of Modelica functions together with changes and extensions as needed for embbeded real-time
systems. GALEC code can be scrambled to provide a certain degree of Intellectual Property
protection. Physical modeling tools should be able to generate this representation with
reasonable effort.

• The Production Code representations allow to ship C or C++ code within the same container,
either as nearly target-independent generic code and/or as highly optimized target specific code.
Contrary to FMI, there is no standardized API (getX, setX, doStep, …), but a description of the
actual code interface to allow the code to be integrated into existing software architectures with
minimal calling overhead. When an eFMI is packed as FMU, an FMU wrapper is added to a
selected code representation. Software development tools should be able to provide the

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 7 (251)

https://fmi-standard.org
https://fmi-standard.org/tools

transformation from an Algorithm Code to one or more Production Code representations with
reasonable effort.

• The Binary Code representations provide target specific executable codes. These code
representations naturally provide the best Intellectual Property protection.

• The Behavioral Model representation provides references results for different scenarios to allow
automatic tests of the Production and Binary Code representations. In the future this
representation might be extended to include the original model from which the eFMI
representations are derived, or computable scenarios might be added in form of FMUs.

By means of one global content XML description of all parts of an eFMU and by one XML manifest file
for every eFMI representation shipped in an eFMU, a highly flexible and extensible mechanism is
provided that allow to integrate eFMUs into arbitrary software architectures being deployed to any
kinds of execution environment, including for example AUTOSAR or adaptive AUTOSAR.

.2. Overview
This document specifies the eFMI (FMI for embedded systems standard) with references to the FMI
(Functional Mock-Up Interface) standard (https://fmi-standard.org/)

In section Section .3 the development of the eFMI standard and its intended usage is motivated.

The technical key concepts with reference to the current FMI standard are explained in section
Chapter 1 for the better understanding of the later sections.

Thereafter the eFMI standard is specified starting with the description of the overall container
structure of an eFMU (Functional Mock-Up Unit for embedded systems) in section Chapter 2.

The following sections Chapter 4, Chapter 3, Chapter 5, Chapter 6 are dedicated to the different types
of model representations supported by eFMI. Each description consists of an introductory section
followed by the specifications of the corresponding meta data and language:

• The Behavioral Model representation provides reference results to allow automatic verification of
the Production and Binary Code representations.

• The Algorithm Code representation describes the mathematical model of discrete-time, sampled
data, input/output blocks in a target and implementation independent fashion with the
standardized intermediate language GALEC (Guarded Algorithmic Language for Embedded
Control - a small subset of the Modelica language (https://www.modelica.org/modelicalanguage)
with extensions as needed for embbeded systems).

• The Production Code representation defines one or more mappings of an Algorithm Code
representation to C or C++ Code (for example 32-bit and/or 64-bit representation of floating point
numbers, generic ANSI C-Code and/or code specialized to a particular target environment like
AUTOSAR and/or specific target processors).

• The Binary Code representation provides one or more target specific executable codes for one
production code representation.

In the following image an overview of the eFMI representations is given, together with examples for
potential tool chains:

8 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

https://fmi-standard.org/
https://www.modelica.org/modelicalanguage

This standard document is accompanied by the following open source codes and files to allow tools
to more easily support the eFMI standard:

• XML schema files for all xml manifest files defined in this document.

• An eFMI compliance checker in form of a Python library, to check compliance of eFMUs
(Functional Mock-Up Units for embedded systems) with this specification.

• The eFMI_TestCases Modelica package providing > 20 dedicated Modelica models and variants of
them to test eFMI tool chains.

• The eFMI Modelica package providing all eFMI builtin-functions as Modelica functions with a
Modelica implementation, in order that Modelica models can use these functions.

• ReferenceResults for the models of the eFMI_TestCases library in form of > 50 csv files.

• eFMUs for the eFMI_TestCases library generated with various tools.

.3. Introduction
The goal of the eFMI standard (FMI for embedded Systems) is to enhance Production Code of
embedded control systems by physics-based models in an automated way. This shall improve the
performance of the underlying systems, reduce the maintenance costs and increase the productivity
of software development for embedded systems.

Embedded software is commonly used on ECUs (Electronic Control Units) to control or monitor a
system. In these cases it is beneficial to incorporate knowledge of the system behavior into the
function. Physical models aim to describe the behaviour of the system for a given range of operation.
These models are well described by differential- and algebraic equations or can be approximated by
projection on a neural network.

Physical models can be utilized to achieve a significantly better performance of the system in
applications such as:

• observers/virtual sensors (e.g. extended and unscented Kalman filters, moving horizon

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 9 (251)

estimation),

• model-based diagnosis (e.g. signal based fault detectors, linear/nonlinear residual generators),

• feedback and feedforward controllers (e.g. linear controllers with gain scheduling, nonlinear
inverse models, nonlinear dynamic inversion, feedback linearization, linear/nonlinear model-
predictive control),

• neural networks to approximate physical models and/or the above applications.

These types of functions are typically hand-coded software implemented and tested in an elaborate
and time-consuming fashion. The eFMI standard aims to provide model exchange capabilities that
allow to transfer physical models created in dedicated modeling and simulation tools to embedded
code generating tools for ECU software. This enables an end to end workflow from physical modeling
to the deployment of the software function on an embedded device.

The eFMI standard is an open standard based on the FMI standard (Functional Mock-Up Interface,
https://fmi-standard.org/). eFMI components are able to interoperate with software components
according to the automotive embedded system standards AUTOSAR (https://www.autosar.org/
standards/classic-platform/) and Adaptive AUTOSAR (https://www.autosar.org/standards/adaptive-
platform/). Generated code shall refer to typical safety measures and coding guidelines, e.g. in the
Automotive industry the ISO 26262 and MISRA-C 2012 for Autocode (https://www.misra.org.uk/
Activities/MISRAAutocode/tabid/72/Default.aspx).

Different types of model representation shall allow to separate the concerns of deriving a proper
computation algorithm and its compliant implementation for an embedded device. The container
architecture and rich meta information, extending the FMI model description, support the
integration in existing development processes and tool chains.

10 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

https://fmi-standard.org/
https://www.autosar.org/standards/classic-platform/
https://www.autosar.org/standards/classic-platform/
https://www.autosar.org/standards/adaptive-platform/
https://www.autosar.org/standards/adaptive-platform/
https://www.misra.org.uk/Activities/MISRAAutocode/tabid/72/Default.aspx
https://www.misra.org.uk/Activities/MISRAAutocode/tabid/72/Default.aspx

Chapter 1. General concepts
This section describes the general concepts of the eFMI standard

The goal of the standard is to extend the existing FMI standard to the embedded domain. The FMI
standard is focused on simulation of models and model parts, on few standardized execution
platforms (Windows, Linux) with well known tool chains. With this context in mind, the FMI standard
does not consider any constraints with respect to resource consumption or run time characteristics
of the model.

In contrast there is a considerable diversity of embedded platforms, each with their own constraints
with respect to runtime performance, memory limits or available compiler support. Given these
additional constraints the goal of the FMI standard "Compile once, run everywhere" is neither
feasible nor desirable.

A further aspect is the use of models not only for the sake of simulation but in a broad application
range, from advanced control strategies like model predictive control to model based diagnosis. The
eFMI standard must consider these aspects and is therefore designed as an extension to the FMI
standard as described in the following.

1.1. Comparing FMI with eFMI
A major enhancement of the eFMI standard in comparison to the FMI standard is the introduction of
different abstraction levels. The FMI standard is based on an executable C Code with an interface of
fixed and well defined functions (like getX, setX and doStep). This approach is well suited for the
purpose of simulation on a standardized platform (either Windows or Linux).

However, such an approach is not very suitable for (deeply) embedded code due to the following
reasons:

• Support of a diverse number of execution targets.

• Support of a diverse number of compilers.

• Integration of the code into existing code structures (in the following we will call this the
"Software context") with minimum overhead in data passing and function calling.

For this reason one fixed C Code (or one fixed executable) representing the implementation is not
sufficient. Instead the eFMI supports the concept of several C Code implementations (or also
binary implementations), each with a description of the interface of the C Code. These descriptions
are defined in so-called manifest files and are bundled with the corresponding code files into a
Production code container. More details on these manifest files can be found in the section on
Production Code manifests (Section 5.1). Here you will also find examples demonstrating the
influence of the software context onto the generated code and manifest descriptions.

An FMU represents exactly one model (implemented by the C Code or executable). The same shall be
true also for an eFMU despite of the fact that it may contain any number of C Code implementations,
and additionally, it shall be easily possible to add further implementations (e.g. for different targets
or software contexts) into the eFMU at any time.

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 11 (251)

This requirement is enabled by adding a higher level abstraction to the eFMU, namely the "Algorithm
Code".

The Algorithm Code contains an abstracted description of the function(s) to be computed, and
serves as the input to generate the C Code implementations. The functions are described in a pseudo
programming language (influenced by Modelica functions), and the meta data is also given in a
manifest file. The Algorithm Code is a solution to a causalization of this system by specifying

• Causalization: the input/output behaviour of the system.

• Discretization: discretization of differential equations (use of solver, time discretization).

The Algorithm Code is organized in code containers in the eFMU, similar to the Production Code
container. For more details on the organization of these containers to form a valid eFMU, please see
the section on container architecture (Chapter 2).

The following table summarizes the differences between FMI and eFMI.

Topic FMI eFMI

Goal (co-) simulation efficient ECU implementation

Execution platform standardized (Windows (.dll),
Linux)

diverse: different ECUs, different
compilers

Reuse "as is" in "all" simulation
environments

highly limited (therefore several
implementations possible)

Interface fixed based on standardized API
(getX, setX, doStep, …)

Only fixed on ideal algorithmic
level (GALEC program of
Algorithm Code container) but
not C production code (derived
Production and Binary Code
containers); actual interface of
production code described in
Production Code manifest.

Implementation one implementation (source
code) compiled for different
standard platforms

any number of implementations
compiled for arbitrary many
targets (vendor and target
instruction set architecture (ISA)
dependent)

Abstraction level C Code level Abstract model representation
algorithm (Algorithm Code) in
addition to (derived) C Code
implementation (Production
Code)

1.2. FMI compliance
An important fact is that despite the broadened scope of the eFMI, an eFMU can be packed into an

12 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

FMU. This is achieved by taking a distinguished Production Code level implementation and wrapping
this to an FMI compliant interface with corresponding model description file. Surely this Production
Code level implementation must be target independent and suitable for simulation targets like
Windows or Linux.

1.3. Functions in eFMI
In the following different kinds of functions considered in the eFMI standard are described. It is
mentioned for which model representation a certain function kind is available. Differences between
the kind of functions and consequences and requirements for e.g. transformation tools are also
covered.

1.3.1. Block methods

(Available in Algorithm Code and Production Code model representation)

The Algorithm and Production Code model representation is mathematically defined as a sampled
input/output block with one (potentially varying) sample period for the whole block. All variables of
the block have a defined type and all statements of the block are sorted and explicitely solved for a
particular variable. Three block methods are defined, so functions that operate on the same memory
self that is exchanged between the function calls. Especially, methods are provided to initialize the
self memory with function Startup and to perform one step at the actual sample instant with
method DoStep.

The block methods are defined in the Algorithm Code representation. A Production Code generator
translates these methods to C-functions. It is also possible to define Production Code interface
functions directly in C, without providing an Algorithm Code representation.

On Production Code level the block methods are highly integrated in the environment provided by
the embedded control unit (ECU). For example, if the ECU provides input signals at certain addresses
in memory or the parameters are part of an overall global C-struct. Consequently the actual
implementation/interface of the methods is at liberty of the Production Code generating tool.

1.3.2. Built-in functions

(Available in Algorithm Code and Production Code model representation)

Built-in functions are functions with well defined syntax and semantics in the eFMI standard. This
includes elementary functions such as sin, cos, log, exp, but also functions to solve linear equation
systems in various ways, for example

1 x := solveLinearEquations(A, b);

to solve the linear equation system A*x = b with regular A matrix for x.

Built-in functions can be used in Algorithm Code or Production Code. All built-in functions that are
supported by the eFMI standard are defined in Section 3.2.6. The names of the built-in functions are
reserved and must not be declared by the user.

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 13 (251)

A tool that transforms Algorithm Code into Production Code doesn’t need additional information for
those functions, because their syntax and semantics are clearly defined thus the tool knows how to
handle it.

1.3.3. Local functions

(Available at Algorithm Code and Production Code level)

In Algorithm Code, local functions can be defined together with the physics-based model that
underlies the eFMU. A local function is formally defined with the GALEC language, see section Section
3.2. A Production Code generator generates a C-function from this definition. Alternatively, a local
function can be provided as C Code, together with a GALEC wrapper that defines how the call of the
GALEC function is mapped to C (the syntax and semantics is identical to the Modelica external
function interface). The declaration of the logical function interface must be provided in the
corresponding manifest file.

Example of a local function implemented with the GALEC language:

1 function add
2 input Real u1;
3 input Real u2;
4 output Real y;
5 algorithm
6 y := u1 + u2;
7 end add

Example of a local function wrapper with the GALEC language around a C-function:

 1 /* GALEC function wrapper */
 2 function dot /* scalar product */
 3 input Real v1[:];
 4 input Real v2[size(v1,1)];
 5 output Real y;
 6 external "C" y = dot(size(v1,1), v1, v2)
 7 end dot
 8
 9 /* C Code signature */
10 float_t dot(const int32_t n, float_t const v1[], float_t const v2[]);

14 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Chapter 2. eFMU container architecture
An eFMU can be packed in different formats. The basic structure of the eFMU specific part is always:

<eFMU root directory> // depends on the package format
 // Directories for eFMU model representations (tool specific)
 schemas // directory with the used eFMI schemas
 __content.xml // defines the eFMU folder structure

The only required names are the file name __content.xml and the directory name schemas at the
root of the eFMU folder. All other directory and file names are defined by the eFMU generation tool.
The used directory and file names are stored in the __content.xml file and can therefore be
deduced by reading this file.

The following eFMU package formats are defined:

1. The <eFMU root directory> is a standard directory in the file system.
[This is useful to hold an eFMU in a text-based version control system, such as github, gitlab or
svn.]

2. The <eFMU root directory> of (1) is zipped with the efmu-content, especially __content.xml,
at the root of the zip-file. The zip-file has the extension .efmu.
[This packaging is useful to ship or distribute an eFMU.]

3. The <eFMU root directory> of (1) is path extra/org.efmi-standard inside a standard FMU
(Functional Mock-Up Unit) of any FMU type and any FMU version. The path is defined according to
the FMI 3.0 specification. With attribute activeFMU inside the __content.xml file it is defined
which of the Algorithm, Production or Binary code representations is used as basis of the FMU.
[This package format is useful to ship or distribute an eFMU for Software-in-the-Loop simulation
with any suitable FMU tool.]

Note, Algorithm Code, Production Code and Binary Code representations can optionally store
associated FMUs. For example Algorithm Code can store a Model-in-the-Loop FMU and Production
Code can store one or more Software-in-the-Loop FMUs for different targets. In order to execute
these FMUs directly, an eFMI tool is needed. Otherwise, one of the stored FMUs can be selected for
package format (3) in order that any FMI-tool can simulate this specific FMU.

Example:

An eFMU could be stored as zip-file with extension .fmu having the following internal structure:

modelDescription.xml // required FMI file
// optional FMI directories and files
extra // extra directoy of FMI 2.0 and 3.0
 org.efmi-standard // eFMU root directory
 // tool specific directories, e.g. AlgorithmCode
 schemas // directory with the used eFMI schemas
 __content.xml // defines the eFMU folder structure

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 15 (251)

An eFMU may contain any number of additional subdirectories below the <eFMU root directory>,
each subdirectory being a container of some model representation type. An eFMU must contain
exactly one Algorithm Code Model container; of any other model representation type arbitrary many
containers can be given, including the special cases of none. Each container can be structured
arbitrarily into further subdirectories and files, but must have a dedicated manifest file at its root.

2.1. Content description (efmiContainerManifest.xsd)
The __content.xml file is the registry for all model representations in the eFMU container. It has
the following schema definition:

Name Description

xsdVersion The version of the XSD Schema of the __content.xml in Semantic Versioning 2.0.0
format (https://semver.org).

activeFMU Value of name attribute of model representation whose FMU is currently unpacked
in the root directory of the FMU. If no FMU is unpacked currently, the value of this
attribute must not be set.

efmiManifest
AttributesBa
se

A group of attributes that is identical for all manifest files. For details see
[ManifestAttributesBase].

Each model representation that is a part in the eFMU container must have a corresponding entry in
the __content.xml file with the following information:

16 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

https://semver.org

Name Description

name Unique name of the container, also defining its root directory name.

kind The type of the model representation. The allowed values are AlgorithmCode,
ProductionCode, BinaryCode, BehavioralModel.

manifest Name of the container’s manifest file. The manifest is located in the container’s
root directory, cf. "name" attribute.

checksum SHA-1 hash — according to the Secure Hash Standard (SHS), FIPS PUB 180-4 — of
the binary content — i.e., content as is without any modifications like operating
environment specific line-ending or encoding localizations — of the manifest file of
the model representation. The given checksum must be correct; if it is not the SHA-
1 hash of the manifest file of the model representation, the eFMU is invalid. A
checksum of the whole content of the model representation container is not
required, because the files belonging to the container and their respective
checksums are listed in its manifest.

manifestRefI
d

The unique GUID of the manifest file (= corresponding attribute of
ManifestReference). References a manifest using the Manifest elements id
attribute. This information has been added for technical purposes only to speedup
resolving references between manifest files via the manifestRefId outlined
below. Otherwise, following an inter-manifest reference (via a manifestRefId
used in the source manifest) would demand to read other manifest files until a
manifest with the desired id is found).

The following is an example of such a content file:

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 17 (251)

 1 <?xml version="1.1" encoding="utf-8"?>
 2 <Content xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 3 xsi:noNamespaceSchemaLocation="schemas/efmiContainerManifest.xsd"
 4 xsdVersion ="0.9.0"
 5 efmiVersion="1.0.0"
 6 id ="{92b7edbe-e77d-419a-8457-bf8d452a98f6}"
 7 name ="MyModel"
 8 generationDateAndTime="2021-02-27T15:43:25Z"
 9 >
10 <ModelRepresentation kind ="ProductionCode"
11 name ="TLGeneratedCode_v1"
12 manifest ="mark.xml"
13 checksum ="e29810938a2a535dc8f6f9b8f51c5febe834ee01"
14 manifestRefId="63f8c810-f008-47f0-a4b6-7a243f83e46b" />
15 <ModelRepresentation kind ="AlgorithmCode"
16 name ="algoCode_v1"
17 manifest ="luke.xml"
18 checksum ="e29810938a2a535dc8f6f9b8f51c5febe834ee05"
19 manifestRefId="63f8c810-f008-47f0-a4b6-7a243f85e46b" />
20 <ModelRepresentation kind ="BinaryCode"
21 name ="binCode_v1"
22 manifest ="matthew.xml"
23 checksum ="e29810938a2a535dc8f6f9b8f51c5febe834ee08>"
24 manifestRefId="63f8c810-f008-47f0-a4b6-7a243f85e47b" />
25 </content>

This __content.xml file describes therefore the following directory structure:

<eFMU root directory>
 TLGeneratedCode_v1
 mark.xml
 algoCode_v1
 luke.xml
 binCode_v1
 matthew.xml
 schemas // directory with the used eFMI schemas
 __content.xml // the xml-file of the example above

This example just demonstrates that the folder names of the model representations and the
manifest file names are defined by the generating tool. Typically, more descriptive names would be
used, such as:

<eFMU root directory>
 BehavioralModel
 manifest.xml
 AlgorithmCode
 manifest.xml
 ProductionCode_Generic_C_Float32
 manifest.xml
 ProductionCode_Generic_C_Float64
 manifest.xml
 ProductionCode_Autosar_Float32
 manifest.xml

18 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

 schemas
 __content.xml

2.2. Structure of Model Representations
Each model representation can have its own flexible structure. Its content and the structuring of
information is described in the manifest file (for details on specific manifest files for the different kind
of model representations refer to the corresponding sections). Which file in a model representation
is its manifest file can be found as the reference entry in the __content.xml file. The manifest file
must be located in the model representation’s root folder.

eFMI allows for having model representations consisting of a manifest file only, hence information
should not be doubled. For example, a tool generating directly a Production Code Model
Representation must also generate an Algorithm Code Model Representation, because information
relevant for Algorithm Code is stored only in the corresponding manifest file and not in the
Production Code manifest.

2.3. Model Representation Manifests
The model representation manifests share the same guiding principles:

1. Entity names start with a capital letter

2. Attribute names start with a lower-case letter and use camelCase where needed.

3. Entities that serve as a group get the name of the grouped entities and an 's' as postfix.

4. Each entity that should be referred to has an attribute called id.

5. The type of an id attribute is an arbitrary string.

6. All id attribute values in a manifest file are unique.

7. References to other elements within or across manifest are established through attributes
ending with "RefId". The value is the id of the referenced element.

8. For file references a string attribute is used and the value is interpreted as the relative path
starting at the corresponding model representations root folder.

9. The context of a reference is specified in the definition of the manifest element and could be
either within the same manifest (local context) or within the a referenced manifest (foreign
context).

All manifests also share the principles outlined in the following sections:

2.3.1. Attributes of manifest files (efmiManifestAttributes.xsd)

The top-level element of a manifest file has the two attributes xsdVersion and kind that have a
fixed value specific for the varying kinds of manifest. For example, for Algorithm Code manifests the
two attributes must be:

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 19 (251)

The attributes have the following meaning:

AName Description

xsdVersio
n

The version of the XSD Schema of the manifest in Semantic Versioning 2.0.0 format
(https://semver.org).

kind The type of the manifest. The allowed values are: AlgorithmCode, ProductionCode,
BinaryCode and BehavioralModel.

Additionally, the top-level element of a manifest file has the following attributes (that are not specific
to the manifest kind):

20 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

https://semver.org

The attributes have the following meaning:

Name Description

efmiVersion The version of the eFMI Standard in Semantic Versioning 2.0.0 format
(https://semver.org).

id The UUID for this manifest file.

name The name of the block (controller, diagnosis system etc.) as used in the modeling
environment from which the manifest file was created, such as
"Modelica.Mechanics.Rotational.Examples.CoupledClutches".

description Optional string with a brief description of the block.

version Optional version number of the block as used in the modeling environment from
which the manifest file was created. [Example: "1.0"].

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 21 (251)

https://semver.org

Name Description

generationDa
teAndTime

Date and time of last modification of the manifest or any contents within its
container. Must be an xs:dateTime in Coordinated Universal Time (UTC), i.e,
without time offset, only using arabic numerals, with hours, minutes and seconds
but no smaller fractions, satisfying the pattern YYYY-MM-DDTHH:MM:SSZ whereas
Y is the year, M the month, D the day, H the hour, M the minutes and S the
seconds. This format is satisfying ISO 8601-1:2019. [Example:
generationDateAndTime="2009-12-08T14:33:22Z"]

generationTo
ol

Optional name of the tool that created the manifest file. If the files have been
created manually use generationTool="manual".

copyright Optional information on the intellectual property copyright for the manifest and
code files.
[Example: copyright = "© My Company 2020"].

license Optional information on the intellectual property licensing for the manifest and
code files.
[Example: license = "BSD license <license text or link to license>" or "Proprietary" or
"Public Domain"].

Note, optional attributes defined in the __content.xml file, hold also for the manifest files in folders
below this file, if not redefined in a manifest file. For example, if attribute license is defined in the
__content.xml, but in no other manifest file of this eFMU, then the defined license holds for all
directories and files below the <eFMU root directory>. If, say, a Production Code manifest
defines a license attribute, then this license holds for all directories and folders in this Production
Code model representation, independently what is defined in the __content.xml file.

2.3.2. Listing of relevant other manifest files (efmiManifestReferences.xsd)

The information about the eFMU is layered into several model representations (e.g. Algorithm Code,
Production Code). In order to allow cross referencing between these model representations, the
manifest files to be referenced need to be registered in a manifest file of a certain model
representation. For this the ManifestReference tag is used with the following attributes

22 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Name Description

id Unique id of the manifest reference entry. This id is used to establish cross manifest
references.

manifestRe
fId

The unique GUID of the manifest. [Note, the name of the associated model
representation in the __content.xml file is not used, in order to decouple the
manifest files from the container manifest.]

checksum The expected SHA-1 hash — according to the Secure Hash Standard (SHS), FIPS PUB
180-4 — of the binary content — i.e., content as is without any modifications like
operating environment specific line-ending or encoding localizations — of the
referenced manifest file. If the actual SHA-1 hash of the referenced manifest, as listed
in the __content.xml, and the expected one are not equivalent, this container is
stale (i.e., the referenced container changed since the last update of this container).

origin Boolean flag to indicate if that referenced model representation is the one that was
used to derive the current model representation.

Example:

 1 <ManifestReferences>
 2 <ManifestReference id ="ID_1"
 3 manifestRefId="{63f8c810-f008-47f0-a4b6-7a243f85e46b}"
 4 checksum ="e29810938a2a535dc8f6f9b8f51c5febe834ee05"
 5 origin = true />
 6 <ManifestReference id ="ID_2"
 7 manifestRefId="{63f8c810-f008-47f0-a4b1-7a243f85222b}"
 8 checksum ="b4b84af148e587b95300d7a734302d1b911a6e58"
 9 origin =false />

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 23 (251)

10 </ManifestReferences>

2.3.3. Listing of files belonging to the model representation (efmiFiles.xsd)

Each manifest contains a list of the files that are part of its model representation. These files are
listed in a manifest as follows in the Files elements tag.

A File element has the following attributes:

Name Description

id id of the file reference entry. This is id is used to refer to the file reference within the
manifests.

name Name of the file

path Directory part of path to the file (relative to root of model representation). Value has to
start with ./ and end with /.

needsChec
ksum

Boolean flag indicating if the file is considered in the checksum calculation (the default
value is "true").

checksum Optional SHA-1 hash — according to the Secure Hash Standard (SHS), FIPS PUB 180-
4 — of the binary content — i.e., content as is without any modifications like operating
environment specific line-ending or encoding localizations — of the file. Must be given,
if, and only if, needsChecksum="true". A given checksum must be correct; if it is not
the SHA-1 hash of the file, the eFMU is invalid.

24 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Name Description

role The role of the file in the model representation. This attribute is an enumeration with
the following valid values:

- "Code": File containing code (Algorithm Code, Production Code or Binary Code).

- "Manifest": The manifest file itself.

- "FMU": One and only zip-file that is an FMU-container. Any version and any
representation of an FMU can be used (for example FMI for ModelExchange, or FMI for
CoSimulation, or FMU with a DLL, or an FMU with C-Code). This representation is useful
to directly utilize the FMU in any FMI-compliant tool.

- "FMUFolder": The content of an FMU (so the files after unzipping an FMU). Any
version and any representation of an FMU can be used. This representation is useful
when an eFMU is stored in a version control system, such as github, gitlab or svn.

- "ReferenceData": File containing reference data (for example a csv file that stores
reference values of variables).

- "other": All other files (for example an AUTOSAR description file *.arxml). Note, a
description of the file can be stored in attribute description.

NOTE: The enumeration values have been selected such that each value may be used
on an arbitrary level of abstraction, that is kind of model representation. In the future,
more enumeration values might be added.

descripti
on

An optional description of the file (especially if role = \"other\").

ForeignFi
le

See below.

Example of a list of files:

 1 <Files>
 2 <File id="ID_1" name ="model.c"
 3 path ="./code/"
 4 needsChecksum="true"
 5 checksum ="b4b84af148e587b95300d7a734302d1b912a6e58"
 6 role ="Code"/>
 7 <File id="ID_2" name ="model.h"
 8 path ="./code/"
 9 needsChecksum="true"
10 checksum ="b4b84af148e587b95300d7a734402d1b911a6e58"
11 role ="Code"/>
12 <File id="ID_3" name ="misra.doc"
13 path ="./code/"
14 needsChecksum="true"
15 checksum ="b4b84af148e587b95300d7a734302d1b914a6e58"

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 25 (251)

16 role ="other"/>
17 <File id="ID_4" name ="model.arxml"
18 path ="./code/"
19 needsChecksum="true"
20 checksum ="b4b84af148e587b95300d7a734302d1b911a7e58"
21 role ="other"/>
22 <File id="ID_5" name ="model.doc"
23 path ="./description/"
24 needsChecksum="false"
25 role ="other"/>
26 </Files>

2.3.4. Referencing

Referencing inside a model representation

Reference attributes pointing to entities in the same manifest must fulfill the naming convention that
the attribute name consists of the original entity name and adding "RefId" as postfix. The value of the
reference attribute must thereby be a valid id in the given context of the reference attribute,
meaning that the id must exist in the context and be of the right type. For example a value of
reference attribute variableRefId is an id number in the same manifest referencing a variable. In
the Production Code Model Representation manifest file shown below, the DataReference with
ID_100 references the variable T with ID_33 using the attribute variableRefId.

Referencing files

Files play a certain role in the eFMU model representation and are listed in a Files element of each
manifest. Referencing files inside a model representation is done by using a FileReference
element that comes along with Files and File element itself and not using a fileRefId attribute
only. The reason to use a certain FileReference element is that the element comes along with a
kind attribute of type string to allow for specifying the kind of a file in more detail.

Name Description

fileRefId Reference to the id in the file overview

kind Attribute for a more detailed specification of the kind of file used. The list of allowed
values is not predescribed but should follow the guideline ????

1 <CodeFile id="ID_13" fileType="ProductionCode">
2 <FileReference fileRefId="ID_1" kind="SourceCode"/>
3 </CodeFile>

26 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Note, that a FileReference attribute has no id attribute and therefore can’t be referenced. This
prevents transitive file referencing.

Referencing into other model representation - ForeignReference (efmiManifestReferences.xsd)

The eFMU describes one model on different levels of abstraction. Thereby the level of abstraction
decreases in the following order

1. Behavioral Model

2. Algorithm Code

3. Production Code

4. Binary Code

In order to establish cross referencing between these model representations, the "derived" model
representation must include a ManifestReference to that model representation as described
above. The consistency to the referenced one is ensured as follows:

The manifestRefId is used to retrieve the (current) model representation checksum of the entry in
the __content.xml file. This (current) checksum can be compared with the (stored) checksum that is
part of the ManifestReference to ensure consistency; if the checksums are not equivalent, the
referencing container is stale (i.e., the referenced container changed since the last update of this
container).

In order to cross reference into a referenced container’s manifest, a ForeignReference element is
present that has the following required two attributes:

Name Description

manifestRefe
renceRefId

The (manifest local) id of a ManifestReference.

foreignRefId The id inside the referenced manifest file.

Example:

 1 <ManifestReferences>
 2 <ManifestReference id ="ID_1"
 3 manifestRefId="{63f8c810-f008-47f0-a4b6-7a243f85e46b}"
 4 checksum ="e29810938a2a535dc8f6f9b8f51c5febe835ee05"
 5 origin ="true"/>
 6 ...
 7 </ManifestReference>

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 27 (251)

 8 ...
 9 <Variable name ="T"
10 id ="ID_33"
11 typeDefRefId="ID_25"
12 pointer ="false"
13 value ="0.1"
14 const ="false"
15 volatile ="true"
16 static ="false" />
17 <Variable name ="_Clocks_interval"
18 id ="ID_34"
19 typeDefRefId="ID_25"
20 pointer ="false"
21 value ="0.005"
22 const ="false"
23 volatile ="true"
24 static ="false" />
25 <Variable name ="gearRatio"
26 id ="ID_35"
27 typeDefRefId="ID_25"
28 pointer ="false"
29 value ="105"
30 const ="false"
31 volatile ="true"
32 static ="false" />
33 ...
34 <DataReferences>
35 <DataReference id="ID_100" variableRefId="ID_33" >
36 <ForeignVariableReference manifestReferenceRefId="ID_1"
 foreignRefId="ALG_ID_101"/>
37 </DataReference>
38 <DataReference id="ID_101" variableRefId="ID_34" >
39 <ForeignVariableReference manifestReferenceRefId="ID_1"
 foreignRefId="ALG_ID_100"/>
40 </DataReference>
41 <DataReference id="ID_102" variableRefId="ID_35" >
42 <ForeignVariableReference manifestReferenceRefId="ID_1"
 foreignRefId="ALG_ID_103"/>
43 </DataReference>
44 ...

In the example above (a cut-out of a Production Code Model Representation manifest file), the
manifestReferenceRefId attribute (with value "ID_1") identifies the ManifestReference as the
one that references the Algorithm Code Model Representation with the Manifest id "63f8c810-f008-
47f0-a4b6-7a243f85e46b" in the eFMU container and the foreignVariableRefId attribute the
element in that container with the given id (e.g. "ALG_ID_102").

It has to be checked, that the referenced ids actually are valid and are used for the objects of the
right type.

Important restriction: The names of a variable can differ in the manifests of the Behavioral Model,
the Algorithm Code, and the Production Code. But for input and output variables of the eFMI block,
that are defined in the Algorithm Code manifest, the structure (e.g. scalar or vector or matrix) has to
be preserved over the different model representations. It means, an output vector y in the Algorithm
Code manifest corresponds to a vector with the same length in all other model representations.

28 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Referencing Files in Foreign Model Representations (efmiFiles.xsd)

In cases where a file in another model representation is used without change in the current model
representation, one should use ForeignFile elements in the Files list.

Name Description

id The (manifest local) id.

ForeignRefer
ence

Identifying the foreign manifest and the file inside the manifest.

Example:

 1 <ManifestReferences>
 2 <ManifestReference
 3 id="ID_0"
 4 manifestRefId="{63f8c810-f008-47f0-a4b6-7a243f85e46b}"
 checksum="e29810938a2a535dc8f6f9b8f51c5febe835ee05"
 5 origin="true"/>
 6 ...
 7 </ManifestReference>
 8 ...
 9 <Files>
10 <File id="ID_1" name="model.c" path="./code"
11 needsChecksum="true" checksum="e29810938a2a535dc8f6f9b8f51c5febe835ee05" role="Code"/>
12 <File id="ID_2" name="model.h" path="./code"
13 needsChecksum="true" checksum="e29810938a2a535dc8f6f9b8f51c6febe835ee05" role="Code"/>
14 <File id="ID_3" name="misra.doc" path="./code"
15 needsChecksum="true" checksum="e29810938a2a535dc8f6f9b8f51c5febe835ee06" role=
 "other"/>
16 <File id="ID_4" name="model.arxml" path="./code"
17 needsChecksum="true" checksum="e29810938a2a535dc8f6f9b8f51c5febe835ee06" role=
 "other"/>
18 <File id="ID_5" name="model.doc" path="./description"
19 needsChecksum="false" role="other"/>
20 <ForeignFile id="ID_6">
21 <ForeignFileReference manifestReferenceRefId="ID_0"
22 foreignRefId ="ID_26" />

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 29 (251)

23 </ForeignFile>
24 </Files>

Annotations

Optional, non-standardized, vendor-specific information — that a vendor might want to store and
other vendors can ignore — are defined via <Annotation> elements in an optional <Annotations>
list. The XSD is defined in efmiAnnotation.xsd and aligned to the corresponding elements of the
FMI 3.0 standard:

The only difference to FMI 3.0 is, that eFMI adds the additional reserved value "org.efmi-
standard" for the type attribute of <Annotation> elements (besides the values already reserved
in FMI 3.0).

2.3.5. Checksum calculation

The calculation of checksums is based on SHA-1 according to the Secure Hash Standard (SHS), FIPS
PUB 180-4. Checksums are computed based on binary content — i.e., content as is without any
modifications like operating environment specific line-ending or encoding localizations.

The checksum is the mean to ensure integrity across different containers in an eFMU. These different
container relate to each other and may be changed independent of each other. In order to ensure /
check the integrity, with each change of a container, its checksum is updated in the reference entry
in the __content.xml file.

For containers, that reference information from other containers or depend on them, also the
checksum of these referenced containers is locally stored in that manifest. The comparison of these
checksums is now an appropriate mean to check the consistency within the eFMU.

The calculation of checksums is done on the files that are listed in the manifest of the container (for
which the needsChecksum attribute has the value "true") and the checksum is stored in the
checksum attribute of the corresponding "File" list entry of the "Files" elememt of each manifest file.

The overall checksum of a model representation is the checksum of the manifest file, where all
checksums of files of the model representation has been stored. Since the paths of the files are part
of the manifest file itself it is ensured that a change of names, structure or content of the concerned
files will result in a different checksum and allows for detecting changes, e.g. a model representation

30 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

has been changed in the container, but has been taken as input for transformation tools before.

On the other hand, changes to files with attribute needsChecksum="false" (e.g. description files)
will not affect the checksum as well as adding of files not listed in the manifest (listing in the manifest
would also alter the checksum).

2.3.6. FMU File References

An eFMU container must be downward-compatible to an FMU container. Hence, it may have an FMU
which is stored in the root directory of the container (above the "eFMU" directory). Such FMU needs
to be associated with a certain model representation located in the eFMU container. In general, each
model representation may have an optional FMU, especially a Production Code model
representation.

The currently activated FMU needs to be specified in the __content.xml file by using the optional
attribute activeFmu. If it is set, its value must correspond to the name of the associated model
representation. If no FMU is unpacked currently, the value of this attribute must not be set.

The optional FMU of a model representation is specified within the manifest file of the model
representation, where one and only one file in the list of files has the role attribute set to FMU. Its
value must be a relative path inside the model representation to the FMU file.

When the FMU of a model representation M is activated, the following steps are performed:

1. All files in the container’s root except the "eFMU" directory are removed.

2. The FMU file referenced by M is unzipped to the container’s root.

3. The value of the attribute activeFmu is set to the name of the model representation M.

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 31 (251)

32 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Chapter 3. Algorithm Code Model
Representation

The Algorithm Code model is a portable and tool-independent intermediate representation for
coupling physics-modeling tools with embedded Production Code generation. Mathematically, it is
described as a sampled input/output block with one (potentially varying) sample period Ti for the
whole block where inputs ui and previous (block internal) states xi are provided at sample time ti and
outputs yi and new states xi+1 are computed and are latest used at sample time ti+1 = ti + Ti (see figure
to the right). All variables of the block have a defined type and all statements of the block are sorted
and explicitely solved for a particular variable. Functions are provided to execute the relevant parts of
the block, especially to initialize it and to perform one step.

The purpose of the Algorithm Code model representation is to provide a well defined reusable basis
for the Production Code generating tools. It can be seen as a target-independent Production Code on
a logical level where the relationship to the original model is clearly visible (for example, the
hierarchy of the original model is visible in the variable names). Depending on the embedded device
the eFMU should be run on, a single Algorithm Code model representation can be used to generate
multiple Production Code model representations and is therefore the last target independent model
representation of the eFMU.

The Algorithm Code model representation consists

• of a manifest file in XML format in which all interface variables are defined (see Section 3.1),

• one code file with extension .alg that represents the executable part of the block consisting of a
block with declarations, and mandatory definitions of the three methods Startup, DoStep and
Recalibrate. These methods are defined in a target-independent way with the new language
GALEC (Guarded Algorithmic Language for Embedded Control) which is based on the syntax of a
Modelica function (https://www.modelica.org/modelicalanguage) with extensions as needed for
embbeded systems (see section Section 3.2).

In the Algorithm Code specification and its examples the following coding conventions are used:

• Types — primitives and components — start with capital letters, and each successive word part
starts capitalized. Examples: Real, Boolean, Pid, GearBox, CrankShaftPid.

• Stateless functions — including builtin functions — are defined with keyword function. The
function names start with lower-case letters, and each successive word part starts capitalized.
Examples: sin, solveLinearEquations, computeCrankShaftPid.

• Stateful functions are defined with keyword method. The method names start with capital letters,

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 33 (251)

https://www.modelica.org/modelicalanguage

and each successive word part starts capitalized. Examples: Startup, Recalibrate, DoStep.

• Functions for scalars that are generalized to one and two dimensions use the scalar function
name with suffix 1D and 2D appended. Examples: roundTowardsZero1D, interpolate2D.

3.1. Algorithm Code manifest

The manifest file of the Algorithm Code model representation is an instance of an XML schema
definition and defines the variables and block methods that represent a sampled input/output block,
see figure to the right.

3.1.1. Definition of an eFMU Algorithm Code
(efmiAlgorithmCodeManifest.xsd)

This is the root-level schema file of the Algorithm Code model representation and contains the
following definition:

34 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

On the top level, the schema consists of the following elements (see figure above):

Element-Name Description

attributes The attributes of the top-level element are the same for all manifest kinds
and are defined in section Section 2.3.1.
Current kind-specific values: kind = "AlgorithmCode", xsdVersion
(value is the current xsd version of the schema for the Algorithm Code
model manifest).

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 35 (251)

Element-Name Description

Files List of files referenced in this model representation. There must be at least
one file that contains the code of the BlockMethods. This element is the
same for all manifest kinds and is defined in section Section 2.3.3.

Clock A reference to the sample period defined by a block variable. For details
see Section 3.1.2.

BlockMethods The properties of the block methods DoStep, Recalibrate, and DoStep. For
details see Section 3.1.3.

ErrorSignalStatus Unique anchor that is used by derived model representations — like
production code referring to this manifest — to mark error signal
variables. For details see Section 3.1.4.

Units An optional global list of unit definitions. These definitions are used in the
XML element Variables. This element is nearly identical to the
corresponding FMI 3.0 UnitDefinitions element. For details see Section
3.1.5.

Variables A list of all variables that are accessible from the block methods defined in
element BlockMethods. A variable might be a scalar or an array of an
elementary type. Contrary to FMI 3.0, no target type variables (such a
Float64) are defined here, but mathematical variable types (such as
RealVariable). The reason is that target specific types are defined for the
Production Codes [otherwise it would not be possible to define, for
example, Float32 and Float64 Production Codes in the same eFMU] . For
details see Section 3.1.6.

Annotations Additional data that a vendor might want to store and that other vendors
might ignore. For details see Section 2.3.4.5.

3.1.2. Definition of Clock

Element Clock provides a reference to the block variable defining the sample period for which the
block was designed; only fixed sample periods are permitted, i.e., the referenced variable must be a
constant. According to the GALEC block life-cycle (cf. Section 3.2.3, §3), system integration must
execute the block periodically with the defined fixed sample period.

36 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Element-Name Description

id The id of the sample period of the block.

variableRefI
d

Reference to the variable in <Variables> that defines the sample period. This
variable must have value constant for its blockCausality attribute. If the
variabe has a unit, it must be seconds; otherwise the implicit unit is seconds. The
restrictions — constant in seconds — are required to guarantee a well-defined,
unique interpretation of Behavioral Model representations for testing (cf. §1.3 and
§4 of Section 4.2).

When the production code of this block is integrated in the target system (for example as AUTOSAR
Adaptive Platform component), then it is expected that the block is executed as periodic sampled
data system with the sample period defined by the variable variableRefId refers to. It might be
that also a slightly changed sample period in the target system may still result in reasonable
performance; in that case, system integration must adapt the sample period respectively in
generated production code and take special care to adjust the sampling points of test tooling using
Behavioral Model containers referring to this Algorithm Code manifest (cf. §1.3 and §4 of Section 4.2).

3.1.3. Definition of BlockMethods

Element BlockMethods defines properties of the defined block methods. Exactly three
BlockMethod elements must be defined.

Name Description

fileRefId A reference to the file (defined in <Files><File>, cf. Section Section 2.3.3) in
which the code of the block methods is stored.

id The ID of the block method

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 37 (251)

Name Description

kind The kind of the block method (this is also the name of the method). Currently
possible values are Startup, DoStep, Recalibrate.

Signals The error signals exposed by the respective block method. The value attribute of
each <Signal> defines one possible pre-defined error signal that can be signaled.
Cf. Section 3.2.5, §1.1 and §1.6, for permitted values and their semantic.

3.1.4. Definition of ErrorSignalStatus

This element defines an unique anchor that is used by derived model representations — like
production code referring to this manifest — to mark error signal variables. Such hold the error
signal status of a block-interface method after its execution and therefore can be used to check if the
method’s execution succeeded or encountered any errors (cf. Section 3.2.5, §1.6 and Section 3.2.3, §3
regarding GALEC error signals and block-interface methods).

The <ErrorSignalStatus> consists only of attribute id that defines the unqiue ID of the anchor.

E-1: Behavioral Model representations for example have to use the <ErrorSignalStatus> to
conclude how to access the error signal status of the implementation of a block-interface
method of tested production code. This is required, because testing error signals is mandatory
for Behavioral Models (cf. §2.3 and §4 of Section 4.2).

3.1.5. Definition of Units

Element Units defines the units that are used by the Variables element.

This element is identical to element UnitDefinitions of FMI 3.0 with the only exception that there
is an additional attribute id to identify a unit uniquely in the Algorithm Code manifest and that there
is no support for display units (element DisplayUnit):

38 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 39 (251)

3.1.6. Definition of Variables

The Variables element consists of an ordered list of all variables used as model states of the
methods defined in element BlockMethods, so the values of these variables can be directly accessed
and changed in the respective method using the name of the variable prepended with the instance
name self (for example self.previous_x if the variable has name previous_x). Variables that
are defined with blockCausality = input are set from the environment at the beginning of a
sampling period. Variables that are defined with blockCausality = output are used at the end of
the sampling period by the environment in an appropriate way. Variables that are defined locally in a
block method are not listed in the Variables element.

40 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Variables are defined as (hereby one variable is defined according to schema group efmiVariable
in file efmiVariable.xsd):

The schema definition contains basically the same information as element ModelVariables in FMI
3.0, but using mathematical instead of target types and having the following deviations:

• There is no String type.

• A type might have Dimensions where the size of a dimension is an Integer literal (a dimension
cannot depend on a structural parameter as in FMI 3.0).

• The variable attributes causality, variability and initial of FMI 3.0 are replaced with the
new attribute blockCausality (see below).

• The following FMI 3.0 attributes are not present:

◦ valueReference

◦ canHandleMultipleSetPerTimeInstant

◦ clockReference

◦ clockElementIndex

◦ intermediateUpdate

◦ declaredType

◦ quantity

◦ displayUnit

◦ unbounded

◦ derivative

◦ reinit

Variable Base (attributes + elements)

All variable kinds (so RealVariable, IntegerVariable, BooleanVariable) have the following
base attributes/elements:

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 41 (251)

Name Description

id The unique identification of the variable with respect to the AlgorithmCode
manifest file (can be referenced from other manifest files).

name The full, unique name of the variable. Every variable is uniquely identified within an
eFMI AlgorithmCode instance by this name.

description An optional description string describing the meaning of the variable.

42 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Name Description

blockCausali
ty

Enumeration that defines the causality, variability and initialization of the variable.
Allowed values of this enumeration:

• "input": The variable value is set by the environment at the start of a
sampling period.

• "output": The variable value can be used by the environment once it is
computed.

• "tunableParameter": Independent parameter that is constant during a call
to DoStep() and can be calibrated.

• "calculatedParameter": A data value that is constant during a call to
DoStep() and is computed during initialization or when tunable parameters
change.

• "constant": The value of the variable defined with the start attribute never
changes.

• "state": Local state variable that is initialized in Startup and is calculated
from other variables. The value of this variable is kept between method calls.

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 43 (251)

Name Description

start Initial value of the variable as defined by default initialization.

The given xs:token value can encode either a scalar value or a multi-dimensional
value where each element value is separated by an XML whitespace character. In
the latter case, the array elements are given in row-major order, that is the
elements of the last index are given in sequence.

[For example, a table T[4,3,2] (first dimension 4 entries, second dimension 3
entries, third dimension 2 entries) is mapped into the following sequence of
values:
T[1,1,1],
T[1,1,2],
T[1,2,1],
T[1,2,2],
T[1,3,1],
T[1,3,2],
T[2,1,1],
T[2,1,2],
T[2,3,1],
…]

If the variable is a scalar, the string must encode a scalar value. If the variable is a
multi-dimensional array, the string can either: (1) encode a scalar value, meaning
that each element of the multi-dimensional array has the respective scalar value as
start value or (2) encode a multi-dimensional value, meaning that the start values
of the elements of the multi-dimensional array are the respective encoded multi-
dimensional value.

Encoded values must be of the variable’s type and each must satisfy its min and
max value (if min and/or max elements are defined).

Dimensions If the variable is an array, then the fixed dimensions of the array are defined by
this element. For every dimension, the number defines the number of the
dimension (must be consecutive numbers 1, 2, …) and size defines the fixed size
of the dimension (must be >= 1).

Annotations Additional data of the variable, e.g., for the dialog menu or the graphical layout.
For details see Section 2.3.4.5.

In FMI 3.0 the attributes causality, variability, initial are defined, which combinations
are allowed and why the allowed combinations are needed for an offline simulation program with
events. However, for eFMI most of the combinations cannot occur. For simplicity, eFMI uses
therefore only the attribute blockCausality. In the following table the mapping of
blockCausality to the FMI 3.0 attributes is defined:

eFMI FMI 3.0

blockCausality causality variability initial

44 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

eFMI FMI 3.0

input input discrete --- (no initial)

output output discrete exact

tunableParameter parameter tunable exact

dependentParameter calculatedParameter tunable calculated

constant local constant exact

state local discrete exact

RealVariable-specific attributes

The following RealVariable specific attributes are defined:

Attribute-
Name

Description

unitRefId Identifier of the unit of the variable defined in list Units.Unit (Section 3.1.5). The
value of the variable is with respect to this unit.

relativeQua
ntity

Defines if BaseUnit-based unit conversions have to consider the base-unit’s offset
(relativeQuantity=false) or not (relativeQuantity=true). [For example, 10 degree Celsius
= 10 Kelvin if relativeQuantity = "true" and not 283.15 Kelvin.]

min Minimum value of variable (variable value ≥ min). If not defined, the minimum is the
largest negative number that can be represented on the machine. If the variable is a
multi-dimensional array, min is a scalar value that holds for all array elements.

max Maximum value of variable (variable value ≤ max). If not defined, the maximum is the
largest positive number that can be represented on the machine. If the variable is a
multi-dimensional array, max is a scalar value that holds for all array elements.

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 45 (251)

Attribute-
Name

Description

nominal Nominal value of variable. If the variable is a multi-dimensional array, nominal is a
scalar value that holds for all array elements.

If not defined and no other information about the nominal value is available, then
nominal = 1 is assumed.
[The nominal value of a variable can be, for example, used to define tolerances or
scaling values for numerical algorithms in which the variable is used.]

Example:

 1 <Units>
 2 <Unit id="UnitID_1" name="s"/>
 3 </Units
 4
 5 <Variables>
 6 <RealVariable id="ID_1" name="Ti" unitRefId="UnitID_1" blockCausality="tunableParameter"
 start="0.1"/>
 7 <RealVariable id="ID_A" name="A" blockCausality="constant" start="1.1 1.2 2.1 2.2">
 8 <Dimensions>
 9 <Dimension number="1", size="4"/>
10 </Dimensions>
11 </RealVariable>
12 <RealVariable id="ID_2" name="previous(I.x)" blockCausality="state" start="0.0" min="0.0" />
13 </Variables>

IntegerVariable-specific attributes

The following IntegerVariable specific attributes are defined:

Attribute-
Name

Description

min Minimum value of variable (variable value ≥ min). If not defined, the minimum is the
largest negative number that can be represented on the machine. If the variable is a
multi-dimensional array, min is a scalar value that holds for all array elements.

max Maximum value of variable (variable value ≤ max). If not defined, the maximum is the
largest positive number that can be represented on the machine. If the variable is a
multi-dimensional array, max is a scalar value that holds for all array elements.

Examples:

46 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

1 <Variables>
2 <IntegerVariable id="ID_11" name="numberOfCylinders" blockCausality="tunableParameter"
 start="6" min="0" />
3 <IntegerVariable id="ID_12" name="pivots" start="0">
4 <Dimensions>
5 <Dimension number="1" size="8"/>
6 </Dimensions>
7 </IntegerVariable>
8 </Variables>

BooleanVariable-specific attributes

The BooleanVariable element has no additional attributes.

3.2. Guarded Language for Embedded Control (GALEC)

The algorithm that defines an input/output, sampled data block is defined with the new language
GALEC (Guarded Algorithmic Language for Embedded Control) that is specified in this sub-section.
GALEC is based on a small subset of the Modelica Language (especially on Modelica functions,
Modelica External Function Interface, and on Synchronous Language Elements) of the Modelica
Specification 3.4 (https://www.modelica.org/documents/ModelicaSpec34.pdf) together with changes
and extensions as needed for embbeded real-time systems. GALEC has the following features that
are not present in the Modelica Language:

• The language is designed so that only algorithms can be defined that have an upper-bound on
the number of operations for each control-cycle to satisfy hard real-time constraints (for example,
there are no while loops). Furthermore, all needed memory, especially of arrays and operations
on arrays, is known statically.

• The language is designed for computational safety. For example it can be statically guaranteed
that out-of-bounds and otherwise illegal memory accesses for all possible executions cannot
occur at run-time.

• The language is designed for traceability so that GALEC code can be understood in terms of the
original model and vice versa.

• The language has a restricted set of methods to efficiently pass the block state between
functions.

• A set of built-in functions is defined so that physical models and their solvers can be reasonably
mapped to GALEC code. For example, there are built-in functions for interpolation and for the
solution of linear equation systems.

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 47 (251)

https://www.modelica.org/documents/ModelicaSpec34.pdf

• The language is designed to handle erroneous situations in a safe way. For example, it is possible
to determine at the end of the algorithm whether the computed outputs can be used for further
processing, or whether it is necessary to switch to a backup code, for example, if operations
produced qNaN (quiet-Not-a-Number) values. Furthermore, min/max values defined in the
declaration of variables are used to implicitly limit the variable values at the start and at the end
of the DoStep method. This is different to the Modelica language that raises assertions if
min/max definitions are violated.

The GALEC code of a block is stored in a file with extension *.alg and is a self-contained file that can
be parsed and interpreted without inspecting the Algorithm Code manifest file. For examples of
GALEC programs, see Section 3.2.7.

3.2.1. Language-design Overview

GALEC code generation is subject to many, often contradicting, requirements imposed by physics
and mathematics (physics-modeling domain), embedded real-time system-control (Production Code
domain) and development processes for certified systems (embedded development domain):

(a) An algorithmic source-language for embedded real-time

GALEC code has to take into account that further embedded code generation typically must
satisfy hard real-time constraints. Generated algorithmic solutions must have an upper-bound of
algorithmic steps executed each control-cycle, such that termination within a statically fixed
number of computational steps can be guaranteed. To derive such upper-bounds for actual
GALEC code is subject of the termination-analysis, which checks that functions of GALEC code are
transitively non-recursive and loops always have a statically fixed maximal number of iterations.
To transform equation-based models to such solutions may not always be possible. To that end,
GALEC code generators are free to reject valid models of their modeling-language as not being
suitable for GALEC code generation.

Another important concern of embedded applications is computational safety, requiring for
example that programs are free of out-of-bounds or otherwise illegal memory accesses for all
possible executions; and that control-flows for error detection and handling always shortcut
normal program execution [1]. To that end, a dimensionality-analysis is enforced, which statically
defines the sizes of multi-dimensions w.r.t. function call contexts; considering all possible call
contexts is required to support generic functions working on arbitrary sized multi-dimensions.
The dimensions derived are used to statically ensure that all multi-dimensional accesses always
will be within bounds throughout later program executions. Dimensionality and termination-
analysis are closely linked; bounded loops can conveniently iterate multi-dimensions whose
statically known dimensions in turn define respective upper iteration bounds. Since iteration
bounds can depend on the sizes of any multi-dimension, other iteration indices or integer
expressions combining such, GALEC code supports advanced iteration schemes that are still
guaranteed to be well-defined.

(b) An algorithmic target-language for simulation of physics-models

GALEC code generators have to rearrange original physics-model equations to derive an
algorithmic solution. The more comprehensive, complex and mathematically challenging a
controller design is — and therefore interesting for modeling its physics — the more rigorous such
transformations are typically. Particularly later real-time constraints as described in (a) often

48 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

require radical transformations to handle algebraic loops and enable equation-system
optimisations like symbolic processing, tearing and index reduction. GALEC code generators are
therefore encouraged to apply whichever mathematical and logical equation-system
transformations they consider required to yield an equivalent algorithmic solution.

Besides the requirement to achieve an algorithmic solution in terms of expression- and
assignment-sequences that compute the next state of the simulated control-cycle, no further
transformation has to be performed. GALEC provides means to compute with structured-data as
common in physics-modeling languages, particularly higher-level matrix-operations. And a library
of builtin functions supports common mathematical tasks like solving a linear system of
equations. The exact implementation of all these mathematical-abstractions is the responsibility
of Production Code generators, leaving opportunity for later target-machine specific optimization.
To that end, GALEC code generators are highly encouraged to leverage on the provided
mathematical-abstractions.

(c) An intermediate-language leaning towards algorithm-logics and mathematical-
optimization, not algorithm-implementation and target-specific optimization

The emphasis in (b) has been on mathematical transformations only; otherwise GALEC code
generators should not apply transformations that curtail Production Code generators in their
code generation decisions, particularly regarding optimisations leveraging on target-specifics.
Typical target-specific optimisations are for example data-structure changes to improve memory-
layout for faster access-operations or optimisations of the trade-off between code-size and
performance like loop-unrolling. Especially higher-level matrix-operations and builtin function
calls are interesting for target-specific Production Code optimisations. Although it seems obvious
not to further reduce such mathematical abstractions, it is non-trivial in practice.

The mathematical equation-system transformations described in (b) typically imply separation or
reduction of existing and introduction of new multi-dimensional data-structures, influencing
matrix-operation and builtin function calls in turn. For example, tearing may be used to reduce
the required numerical integration, in turn yielding smaller but also more frequent matrix
allocations for linear solving. Fortunately, such mathematical transformations most often also
result in more efficient embedded code generated by Production Code generators; but that is
hard to say in general. Of course, if required to achieve an algorithmic solution at all, such
transformations have to be done. But otherwise, the resulting decomposition of matrices
accompanied by matrix-operation flattening and therefore increase in code size may very well
supersede the advantage.

On the other hand, GALEC code generators have the domain-knowledge for mathematical-
optimisations that Production Code generators lack. An important case for trade-offs between
mathematical and Production Code optimisations is scalarization to eliminate controller-output
irrelevant or redundant state-variables and equations. Physics-models often contain simple
equality-equations between the state-variables of two components; likewise, the components
constituting a certain controller may be generalized for more advanced cases than their actual
application context, leaving equation-parts unused. GALEC code generators are encouraged to
eliminate such system parts, which typically results in multi-dimensions with unused elements like
a 2x3 matrix of which only four entries are actually required to compute the outputs. Eliminating
the unused entries means to change model structure, while shifting the matrix or changing its
dimensionality is not an option because of traceability and a lack of knowledge regarding the final

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 49 (251)

matrix-layout Production Code will eventually apply.

As an alternative, GALEC code can scalarize such multi-dimensions, i.e., flatten the higher-level
multi-dimensional entity to a set of scalars — and therefore dimension-less — otherwise equally
typed entities. Unused scalars can then just be discarded. The drawback of scalarization is, that all
expressions containing higher-level matrix-operations with scalarized multi-dimensions and loops
referring to such must be expanded to respective sequences of scalar operations. Besides being
in conflict with the requirement to not curtail Production Code from optimizing higher-level
matrix-operations, the resulting code-size increase due to expansions may very well render the
savings in elements futile.

(d) A language for algorithmic controller implementation

TODO: Startup and DoStep (with input parameters); eFMU state and method vs. function;
previous and derivative state-variables.

(e) A language part of a trustworthy tool-chain from physics-models to embedded-code

GALEC code generators have to maintain traceability, such that embedded solutions derived from
physics-based controller designs can be understood in terms of the original model; and vice versa,
all parts of a controller-model can be traced to its embedded implementation. To link individual
physics-equations to their respective algorithmic solution is very challenging in general, since
equations are likely subject to rigorous transformations as described in (b). A common
denominator between a physics-model and its transformed solution is however, that both
simulate the same system. It therefore is a starting point for GALEC code to at least refer to the
states of the original physics-model components whenever using or updating such. The premise
is of course, that controllers are modeled as systems consisting of well-structured parts; only then
GALEC code generators can, and are highly encouraged, to utilize original system-structure for
traceability. To that end, GALEC does not only provide mathematical multi-dimensions as
described in (b), but also nested multi-dimensional components with matrix- and scalar-variables;
and in case of optimisations resulting in scalarization as described in (c), a quotation-based
notation can be used to denote scalarized elements as if their original multi-dimensions still exist.
GALEC code generators have to maintain traceability, such that embedded solutions derived from
physics-based controller designs can be understood in terms of the original model; and vice versa,
all parts of a controller-model can be traced to its embedded implementation. To link individual
physics-equations to their respective algorithmic solution is very challenging in general, since
equations are likely subject to rigorous transformations as described in (b). A common
denominator between a physics-model and its transformed solution is however, that both
simulate the same system. It therefore is a starting point for GALEC code to at least refer to the
states of the original physics-model components whenever using or updating such. The premise
is of course, that controllers are modeled as systems consisting of well-structured parts; only then
GALEC code generators can, and are highly encouraged, to utilize original system-structure for
traceability. To that end, GALEC does not only provide mathematical multi-dimensions as
described in (b), but also nested multi-dimensional components with matrix- and scalar-variables;
and in case of optimisations resulting in scalarization as described in (c), a quotation-based
notation can be used to denote scalarized elements as if their original multi-dimensions still exist.
For example, a scalarized real variable may have the name 'a.b[2].c[2,3]', linking it with
original model structure for traceability although all output-relevant combinations of components
a and b and matrix c are scalarized into individual variables.

50 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

(f) A portable and tool-independent language for standardized tool-integration and
distribution of controller implementations

GALEC code is at the center of eFMUs, linking physics-modeling with embedded-development
tooling. Although eFMUs are free to only contain target-specific source code, build scripts and
resulting binaries, such eFMUs are just fancy containers for embedded solutions; and vice versa, a
pure modeling eFMU without executable embedded-solutions misses the actual purpose of eFMI
compared to the ordinary FMI standard. It is the GALEC code that brings both worlds together
and exposes their relation to eFMU users. The latter does not only imply traceability as described
in (e), but also to adhere to a common specification of controller inputs, outputs, states and
parameters and control-cycle functionality — an abstract controller usage interface. In the spirit of
the FMI standard, and to not preclude a potential future integration with it, this interface is given
in terms of an FMI like XML manifest declaring all entities and functionalities of interest for users
of the eFMU. The control-state defined in GALEC code — the state components with state
variables, control-inputs and -outputs and their nesting — therefore always is linked to entities
declared in the manifest; likewise, the initialization and control-cycle functions are exposed in the
manifest to clearly declare the functionality an eFMU provides. GALEC code generators are
required to derive respective manifests if asked for.

3.2.2. Notation Conventions

The concrete syntax of GALEC code is defined using Extended Backus–Naur Form (EBNF) according to
ISO/IEC 14977 [https://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip]. The
whole grammar is split into different sections, each defining a specific language construct — i.e.,
syntactic concept — of GALEC code like lexemes, references, expressions, statements etc. The EBNF-
rules — i.e., syntactic rules — defining the syntactic concept a section is about can be amended with
further semantic rules given in prose. Semantic rules constrain the applicability of the syntactic rules
they refer to. They are in turn classified w.r.t. the different semantic concepts of GALEC code they
contribute to like type-analysis, dimensionality-analysis, termination-analysis etc.

Due to the decision to structure the whole specification w.r.t. language constructs, semantic
concepts cross-cut sections. Table TODO summarizes all semantic concepts, the semantic rules
contributing to their definition and the section they are defined. The inevitable complexity of cross-
dependencies, typical for any serious formal language, is further attenuated by using a consistent
notation for semantic rules, enabling explicit linkage between defined rules, the semantic concepts
they contribute to and further rules relevant for or later refining a definition. Likewise, syntactic rules
are well-prepared for usage in semantic-rules, i.e., usage in prescriptive definitions given in prose.

Syntactic Rules, Terms and Relations

Each syntactic rule has a unique rule-number of the form G-X1.X2, where X1 is the section the rule is
part of and X2 is its unique rule-number within that section; the actual EBNF rule follows separated by
a colon. The non-terminals defined by syntactic rules are human readable terms that are well-suited
for prose-text usage. Semantic rules denote such usage by writing the respective non-terminal in
italic. For readability reasons, every non-terminal can be used in plural or singular form and its first
letter can be capitalized when used at the beginning of a sentence. The meaning of a non-terminal
within a semantic rule is defined by the following meta-rule:

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 51 (251)

https://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip

M-1.1 (syntactic term / Meta-rules, terminology): Parts of semantic rules typeset in italic
refer to non-terminals; they are called syntactic term. Let N be a non-terminal referred to in a
semantic rule S; let G be the syntactic rule defining N (cf. M-1.2 for uniqueness of syntactic
rules). The semantic of N in S is: a code fragment F of a whole GALEC program P, where F is
derived according to G throughout the derivation of P and satisfies all semantic rules amended
to G.

M-1.1 requires that the syntactic rule a syntactic term refers to is unique; to that end we define:

M-1.2 (uniqueness of syntactic rules / Meta-rules): For every non-terminal N exists a single
syntactic rule whose EBNF syntax-rule has N as meta-identifier (cf. ISO/IEC 14977).

M-1.1 has severe consequences. If, for example, the specification refers to loop-iterator-declarations,
it is clear that this must be names declared by a for-loop regardless in which context the syntactic
term loop-iterator-declaration is used; this implication is given because loop-iterator-declaration just
derives to name and is only used by bounded-iteration[2] which in turn is only used by for-loop.
Besides such implicit restrictions, further explicit restrictions about the syntactic relation between
syntactic terms — i.e., that some term’s own derivation must be in a well-defined relation to another
term’s derivation throughout the whole derivation — are used:

M-1.3 (syntactic relations / Meta-rules, terminology): Let N1 and N2 be syntactic terms.

N1 is contained in N2, if, and only if, N1 is derived throughout the derivation of N2; in this case N2

is called a container of N1 and we say N2 contains N1 and N1 is part of N2. If, and only if, N2

contains N1 and both refer to the same non-terminal N, N1 is called a nested N. N2 is the closest
container of N1, if, and only if, N2 contains N1 and for all N3 containing N1 and that refer to the
same non-terminal as N2 it holds that N3 contains N2.

N1 is preceding N2, if, and only if, neither is contained in the other and the left-most derivation
of the closest container of N1 and N2 derives N1 before N2; in this case N2 follows N1. Instead of
preceding also the term before is used; and instead of follows also the term after. If, and only
if, either, N1 follows N2 or N2 follows N1, both are siblings. N1 and N2 are different, if, and only if,
they are siblings or the one contains the other.

N1 is lexically-equivalent to a sequence of characters α, written N1 =lexical α, if, and only if, N1

derives to α. N1 is lexically-equivalent to N2, written N1 =lexical N2, if, and only if, N1 and N2 derive
to the same sequence of characters.

If, and only if, N2 contains N1 and throughout all possible derivations of the non-terminal N2

refers to the non-terminal N1 refers to can be derived at most once, we speak of the N1 of N2;
obviously, N2 is the closest container of N1 in that case.

Let d = β1, …, βn be a single definition according to ISO/IEC 14977; βi with 1 ≤ i ≤ n is called the
i’th factor of d. A δz is called the γ2-…-γz'th factor of δ1, if, and only if, ∀i,j∈ℕ+; i = j - 1; 2 ≤ j ≤ z: δj

is the γj'th factor of δi. Let G be the syntactic rule of N2. We call N1 the i1-…-ik'th child of N2, if,
and only if, N1 has been derived for the i1-…-ik'th factor of G when deriving N2; in this case N2 is

52 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

called the parent of N1. If, and only if, the i1-…-ik'th factor of G has been derived when deriving
N2, we say N2 has a i1-…-ik'th child; otherwise it is without i1-…-ik'th child.

A syntactic term F is without a code fragment according to some non-terminal N, if, and only if,
N is not derived throughout the derivation of F; in this case, we say F does not contain a N, it is
N-free. Note, that F is a syntactic term — i.e., a code fragment derived according to the
syntactic rule for the non-terminal F — whereas N is just a non-terminal referring to some
syntactic rule; nevertheless, N will be highlighted italic in semantic rules as if it is a syntactic
term, denoting that it is a non-existing code fragment.

E-1: The derivation of the following block fragment defines various syntactic relations
(denoted by using capitals only). Note, that according to M-1.1 syntactic relations are
only defined for syntactically correct inputs, i.e., blocks (cf. S-2.1).

 1 /*
 2 For-loop CONTAINING another for-loop.
 3 Thus, neither for-loop is BEFORE or AFTER the other.
 4 Both for-loops are function-call-FREE:
 5 */
 6 for i in 1:size(A,1) loop
 7 /*
 8 If-statement PART OF a for-loop and CONTAINING a
 9 DIFFERENT for-loop. The if-statement is WITHOUT a
10 function-call since it does NOT CONTAIN such:
11 */
12 if
13 /*
14 The 2ND CHILD of the if-statement is an expression:
15 */
16 mod(i,2) == 0
17 then
18 /*
19 NESTED for-loop, i.e., a for-loop CONTAINED in
20 another for-loop. The NESTED for-loop FOLLOWS its
21 CONTAINING if-statement's 2ND CHILD:
22 */
23 for j in 1:size(A,2) loop
24 /*
25 Assignment α PRECEDING another assignment β, with
26 which its 1ST CHILD is LEXICALLY-EQUIVALENT.
27 The assignment is also BEFORE another assignment γ
28 that is DIFFERENT to β; all three assignments are
29 SIBLINGS:
30 */
31 A[i,j] := 1; /* α */
32 end for;
33 else
34 /*
35 Assignment β AFTER a PRECEDING assignment α with
36 LEXICALLY-EQUIVALENT 1ST CHILD:
37 */
38 A[i,j] := 0; /* β */
39 end if;
40 end for;

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 53 (251)

41 /*
42 Assignment γ most likely not PART OF a for-loop,
43 but for sure with exactly one function-declaration CONTAINER
44 that trivially is its CLOSEST function-declaration CONTAINER:
45 */
46 A[size(A,1), size(A,2)] := -1; /* γ */

E-2: Consider the syntactic rule G-2.3:

 1 function-declaration =
 2 ("function" | "method"),
 3 name,
 4 { parameter-declaration },
 5 ["protected", { local-variable-declaration }],
 6 "algorithm",
 7 { statement },
 8 "end",
 9 name,
10 ";" ;

Its first factor is ("function" | "method"), its 1-2’th factor is "method", its 4’th
factor is ["protected", { local-variable-declaration }], its 4-2’th factor is {
local-variable-declaration } and its 4-2-1’th factor is local-variable-
declaration. According to the presented syntactic rule, every function-declaration
must have a 5’th child lexically-equivalent to "algorithm" even if it contains no
statements; it can also be without 4-2’th child although it has a 4’th and 4-1’th child. It is
important to note here, that if without 4-2’th child, a function-declaration cannot contain
local-variable-declarations; the reason is because the 4-2’th factor is the only possibility
to derive local-variable-declaration throughout any possible derivation of function-
declaration. Likewise the 6’th factor is the only possibility to derive statements
throughout the derivation of function-declarations. Finally, note the difference between
without an i'th child vs. without a code fragment according to some non-terminal. Local-
variable-declaration and parameter-declaration will always derive variable-declaration
throughout their own derivation. Thus, function-declarations for example can be without
4-2’th child and still contain a variable-declaration if they have a 3’rd child, i.e., a function-
declaration can be without 4-2’th child but still not variable-declaration-free.

Consider the following function-declaration:

1 function foo
2 protected
3 algorithm
4 end foo;

Its second and eight children are names lexically-equivalent to foo. It is without 1-2’th
child because it has a 1-1’th child lexically-equivalent to "function". And although it has
a 4’th child, it is without a local-variable-declaration.

54 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Using syntactic relations, complicated constraints can be conveniently and precisely defined. For
example, the usage of references in statically-evaluated expressions is restricted; on the one hand,
they never must be used to access control-state-dependent — i.e., runtime — values, but on the other
hand, they should be available to access runtime-independent values provided by the dimensionality-
and termination-analysis like the dimensional-sizes of variables or the iteration-values of loop-
iterator variables which are always statically-bound. A respective formal definition, based on
syntactic relations only, is: every reference contained in a constant-scalar-integer-expression must
either, be the 3’rd child of a dimension-query or have a unique for-loop container whose loop-
iterator-declaration is lexically-equivalent to the reference. Although such constraints sound like
common prose, they are completely formally well-defined by meta-rules M-1.1 to M-1.3 and the
derivation semantics of EBNF as defined in Section 5 of ISO/IEC 14977.

It is important to note, that meta-rules, like M-1.1 to M-1.3, are used by nearly all semantic rules and
therefore not explicitly referenced by definitions even if relevant.

Semantic Rules

Likewise syntactic rules, also semantic rules have unique rule-numbers. The structure for semantic
rule-numbers is S-X1.X2; again X1 is the section the rule is part of and X2 a unique rule-number within
that section. The unique rule-number is followed by an informal rule name describing the rule-
intention, a slash and finally one or more semantic concepts the rule contributes to, all wrapped in
parenthesis. The actual definition follows separated by colon.

As an example consider the following semantic rule:

S-TODO (guarded multi-dimension access / Dimensionality-analysis): For each
dimensional-context of the function-declaration a reference R is part of (cf. S-TODO), the
dimensional-bounds of the computed-dimensions of R must be within the dimensional-bounds
of the declaration R refers to (cf. S-TODO).

The general definition of dimensional-bounds and what it means for one to be within another is
given by meta-rule M-TODO to which — like for all common meta-rules — is not explicitly referred to.

Rationales, Limitations and Examples

Besides syntactic and semantic rules, sections also list rationales, limitations and examples. A
rationale gives further reason why something is specified as it is, like usage-considerations, other
specifications of interest or easy overlooked cases that are non-trivial to handle. A limitation clarifies
a language constraint that might be relaxed in further iterations of the standard to support future
use-cases, that is required to support further tooling working with GALEC code or that is very hard to
ease in general for which reason it has been introduced. Examples are used to investigate the
implications of the specification by demonstrating code fragments that are illegal GALEC code or that
are valid but with a twist fostering understanding of the specification. All three — rationales,
limitations and examples — can be part of semantic rules, in which case they are uniquely numbered
within the rule they are part of. If more general, they can also be freestanding, in which case their
unique number is constructed likewise syntactic and semantic rule numbers, only that rationales are
prefixed by R-, limitations by L- and examples by E-. In any case, rationales and limitations have an

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 55 (251)

informal name describing their intention likewise semantic rules have. If freestanding, they also can
be associated with semantic concepts, again separated by a slash like for semantic rules; if not
freestanding and part of a semantic rule, they implicitly contribute to the same semantic concepts as
the rule they are part of.

As an example consider the following non-freestanding rationales, example and limitation:

S-TODO (uniqueness of early loop exits / Termination-analysis): Let B1 and B2 be two
different early-loop-exits. Their respective closest for-loop containers must be different; and
their loop-iterator-references must refer to different for-loops.

R-1 (well-formedness): That early-loop-exits must be part of a for-loop, and the name-
analysis of their loop-iterator-references, are already defined by S-TODO.

R-2 (MISRA C:2012 compliance): The rule is introduced to enforce compliance with
MISRA C:2012, Rule 15.4.

E-1: The following for-loop is illegal due to multiple early loop exits for each of the nested
loops:

 1 for i in 1:3 loop /* Outer loop. */
 2 for j in 1:3 loop /* Inner loop. */
 3 if b1 then
 4 break i; /* First break of outer and inner loop. */
 5 else
 6 break j; /* Illegal: Second break of inner loop. */
 7 end if;
 8 end for;
 9 if b3 then
10 break i; /* Illegal: Second break of outer loop. */
11 end if;
12 end for;

L-1 (relaxation of MISRA C:2012 compliance): To transform non-unique early loop
exists to a unique form complying with MISRA C:2012 is not trivial. Production code
generators may miss support for such transformations, to which end this rule has been
introduced. On the other hand, it may unnecessarily constrain GALEC code generators,
even forcing them to fail to generate an algorithmic solution. To shift the responsibility
of compliance from GALEC code generators to Production Code generators, the rule can
be disabled using the consider-misra=false flag throughout GALEC code generation.

Other specification parts can refer to enclosed rationales, limitations and examples by appending

56 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

their unique number separated by a colon to the number of the enclosing semantic rule; for
example, one can refer to the limitation of above example by writing S-TODO:L-1.

3.2.3. Block-interface and life-cycle

This Section investigates the utilization of GALEC programs (i.e., blocks) that are due for deployment
on an embedded target and its runtime environment.

§1: Embedded target, runtime environment, system integration, block instance & block-
interface (terminology, system integration)

GALEC defines an operational interface for blocks — called block-interface — that must be preserved
by Production Code generators when translating a block to code that is subject of embedded system
integration. Embedded system integration is not just achieved by means of a block’s interface; it
must over and above adhere to the operational restrictions defined in §1 to 3 (particularly the block
life-cycle of §3 must be satisfied).

A single block can be instanziated many times on an embedded target and its runtime environment;
each instance is operationally isolated. There are no restrictions on the number or kind of block
instances (in particular different blocks can be instanciated within the same runtime environment).
Any interaction of the runtime environment with a block instance must be via its block-interface
(even instances of the same block must interact via their block-interface).

§2: Block-interface variables & methods (runtime semantic, system integration)

The block-interface constitues of block-interface variables and block-interface methods.

The block-interface variables are:

• Block inputs: The sampling inputs provided by the runtime environment.

• Block outputs: The sampling results consumed by the runtime environment; they must never be
written by the runtime environment.

• Tunable parameters: Parameters sporadically, and not necessarily each sampling, changed by
the runtime environment.

Besides this block-interface variables, other block-variables exist, which are block internal and
therefore cannot (and must not, cf. §1) be written or read by the runtime environment:

• Dependent parameters: The parameters derived from tunable parameters.

• Block states: The internal states.

All block-variables are persistently stored in block instances, such that their values survive block-
interface method calls and therefore can be used in call sequences of such. Each block instance has
its individual set of block-variables; changing some tunable parameter t of a block instance b1 does
not change t of another block instance b2 of the same block.

The block-interface methods are:

• Startup(): Computes initial values for all block-variables.

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 57 (251)

• Recalibrate(): Updates the dependent parameters considering the currently set tunable
parameters.

• DoStep(): Computes the block outputs and updates the block states for the given block inputs
and the current tunable and dependent parameters for a single sampling.

L-1 (design-space of Production Code generation and system integration): Production
Code generators and system integration are free to realize a GALEC block by any means they
see fit as long as its operational semantic is satisfied. They can achieve a mutual agreement
that block-interface functionality is not supported, like recalibration by means of
Recalibrate() or reading block inputs from the runtime environment, given that the use-
case and system integration scenario does not require such. In general however, Production
Code generators must support the full block-interface and life-cycle to be eFMI specification
conformant.

Examples of integration scenario specific design-space agreements are:

1. Not generate and call Startup(), but instead statically evaluate it and store start values in
read only memory or only load them once when the runtime system boots.

2. Not generate a dedicated DoStep() function, but instead inline the implementation in the
runtime environment.

3. Not generate Recalibrate(), transforming tunable and dependent parameters to
become constants which can be constant-folded.

4. Store block-variables globally, leveraging on knowing that there is exactly one instance and
not several (no need to support individual block-instances).

5. Not persist block inputs (cf. §3:R-1, last paragraph), but instead provide new values for
every input every sampling, for example as function arguments to DoStep().

Particularly (3) is a common integration scenario, since recalibration typically is only performed
during the development phase of an embedded system and no longer supported in production
systems.

R-1 (block-variable initialization and Algorithm Code Container manifest start values):
The start values of the variables in the manifest of an Algorithm Code Container are
conceptually determined by calling Startup() on the target system and its runtime
environment. A Production Code generator can for example (1) use these start values directly
in the C-Code for static initialization (i.e., as precomputed values), hereby casting from the
concrete manifest-variable type in which the start-values are stored to the best fitting
concrete type of the target system, or (2) provide an implementation of Startup() to be called
by the runtime environment during startup, or (3) use any other means to ensure block-
variables have initial values according to Startup() (cf. §2:R-1).

§3: Block life-cycle (runtime semantic, system integration)

The permitted interactions with block instances are defined by the following state machine,

58 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

specifying a universal life-cycle for block instances, called block life-cycle (the do-actions of states
refer to the block-interface methods defined in §2):

The block-interface methods of a single block instance must be called in sequence by the runtime
environment; parallel execution of such is prohibited. The block-interface methods of separate block
instances can be executed in parallel. The block-interface variables of a block instance must not be
read or written by the runtime environment while any of its block-interface methods is in execution.

R-1 (block life-cycle implications for system integration): The following discussion refers to
the block life-cycle state machine. Italic refers to states or transitions of it; monospace refers to
state actions, i.e., block-interface methods according to §2.

The block life-cycle does not enforce the runtime environment to set inputs and tunable
parameters (input written and tuneable parameter written transitions) separately in sequence
or at most once before each sampling. It does not prohibit the runtime environment to read

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 59 (251)

block inputs or tunable parameters or execute Recalibrate() several times before a single
sampling. This allows complex system integration scenarios where the runtime environment
has to setup the next sampling depending on the state of a block instance.

The block life-cycle enforces however, that whenever a tunable parameter is changed via
tunable parameter written, all dependent parameters must be recomputed via
Recalibrate() before the next sampling (recalibration required conditional). Otherwise, a
protocol error is given and the block behavior is undefined (idle (protocol error) state). Several
tunable parameter changes can be bundled though; it is not required to switch to recalibrating
after each individual new tunable parameter is set, but sufficient to do so once before the next
sampling.

Likewise, the block life-cycle enforces that DoStep() is executed exactly once for each
sampling (sampling clock ticks transition).

The block life-cycle also enforces that the new block inputs, to be used for the next sampling,
must be ready before the execution of DoStep() starts (all inputs set condition of sampling
clock ticks transition). It is however not enforced that every input must be assigned a new
value each sampling. Since Startup() assigns all block-variables a well-defined value,
including block inputs, following samplings will be well-defined even if an input is not set anew
(assuming recalibration is done as described in the last but one paragraph). If a block-input is
not updated before a sampling, it has the last value set. It is however very uncommon not to
set all inputs each sampling; one reasonable scenario not to do so is if the block is super-
sampled compared to some of its inputs (e.g., a sensor provides a new input value every 2ms,
but the block is sampled every 1ms because of other faster changing inputs).

E-1: The following C99 pseudo-code snippets sketch typical system integration scenarios
for blocks.

All examples share the following conventions. It is assumed that the Production Code
generator mapped the block-interface methods Startup(), Recalibrate() and
DoStep() to equally named C functions that expect the block-variables to operate on as
argument, e.g., a struct pointer; to that end, c is a constant pointer to the static struct
holding the block-variables (it encapsulates a single block instance). Prose text bracket by
[[and]] denotes arbitrary C code implementing the respective action, but does not
interact any further with the block-interface than denoted.

The most common integration scheme, with support for recalibration throughout
samplings, is:

 1 /*
 2 Initialization:
 3 */
 4 Startup(c); /* Assigns every block-variable a value, particularly outputs. */
 5 [[process initial outputs of block]]
 6
 7 /*
 8 Sampling cycle:
 9 */

60 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

10 while ([[block not shutdown]])
11 {
12 if ([[recalibration desired]])
13 {
14 [[set new tunable parameters of block]]
15 Recalibrate(c); /* Recompute dependent parameters of block. */
16 }
17 [[set new inputs of block]]
18 [[wait until sampling clock ticks]]
19 DoStep(c); /* Recompute internal states and outputs of block. */
20 [[process new outputs of block]]
21 }

A more simple integration scenario may not utilize recalibration throughout sampling,
but only once immediately after initialization:

 1 /*
 2 Initialization:
 3 */
 4 Startup(c); /* Assigns every block-variable a value, particularly outputs. */
 5 [[process initial outputs of block]]
 6 [[set new tunable parameters of block]]
 7 Recalibrate(c); /* Recompute dependent parameters of block. */
 8
 9 /*
10 Sampling cycle:
11 */
12 while ([[block not shutdown]])
13 {
14 [[set new inputs of block]]
15 [[wait until sampling clock ticks]]
16 DoStep(c); /* Recompute internal states and outputs of block. */
17 [[process new outputs of block]]
18 }

An even more simple integration scenario may not require recalibration at all, effectively
transforming tunable and dependent parameters to constants since they can not change
anymore after initialization:

 1 /*
 2 Initialization:
 3 */
 4 Startup(c); /* Assigns every block-variable a value, particularly outputs. */
 5 [[process initial outputs of block]]
 6
 7 /*
 8 Sampling cycle:
 9 */
10 while ([[block not shutdown]])
11 {
12 [[set new inputs of block]]
13 [[wait until sampling clock ticks]]
14 DoStep(c); /* Recompute internal states and outputs of block. */
15 [[process new outputs of block]]

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 61 (251)

16 }

A Production Code generator can optimize this scenario, leveraging on enhanced
constant-folding.

An advanced integration scenario might also require several different recalibartions and
input modifications depending on the state of the runtime environment:

 1 /*
 2 Initialization:
 3 */
 4 Startup(c); /* Assigns every block-variable a value, particularly outputs. */
 5 [[process initial outputs of block]]
 6
 7 /*
 8 Sampling cycle:
 9 */
10 while ([[block not shutdown]])
11 {
12 /* Handle default setup: */
13 [[set new inputs of block]]
14
15 /* Handle first special case, modifying the default: */
16 v1 = [[some value provided by the runtime environment]];
17 t1 = [[read tunable parameter t1]];
18 o1 = [[read output o1]]; /* Previous sampling output, or initial if first
 sampling. */
19 if (o1 / t1 > v)
20 {
21 [[set input i1 to v1]]
22 if (t1 > 2*v)
23 {
24 [[set tunable parameter t1]]
25 Recalibrate(c);
26 }
27 }
28
29 /* Handle second special case (may amend the first case): */
30 v2 = [[some value provided by the runtime environment]];
31 t2 = [[read tunable parameter t2]];
32 if (t2 < v2)
33 {
34 [[set tunable parameter t2]]
35 Recalibrate(c); /* Recompute dependent parameters of block. */
36 [[set input i2 to input i1]]
37 }
38
39 /* Everything is prepared for next sampling: */
40 [[wait until sampling clock ticks]]
41 DoStep(c); /* Recompute internal states and outputs of block. */
42 [[process new outputs of block]]
43 }

62 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

3.2.4. General Syntactic and Semantic Rules

Lexemes

G-1.1 — G-1.7 (white space characters):

 1 character = ? any valid ISO/IEC 10646:2020 code point ? ;
 2
 3 white-space = { space | new-line-character | comment } - () ;
 4
 5 space = " " | ? tabulator (ISO/IEC 10646:2020 code point 9) ? ;
 6
 7 new-line-character =
 8 ? carriage return, line feed or carriage return followed by line feed
 9 (ISO/IEC 10646:2020 code point 13 or 10 or 13 followed by 10) ? ;
10
11 comment =
12 "/*",
13 {
14 { character } - ({ character }, ("/*" | "*/"), { character })
15 | comment
16 },
17 "*/" ;

G-1.8 — G-1.17 (constants):

 1 boolean = "false" | "true" ;
 2
 3 digit = (* ? any ISO/IEC 10646:2020 code point in range [48, 57]: ? *)
 4 "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;
 5
 6 non-zero-digit = digit - ("0") ;
 7
 8 integer = ["-"], ("0" | positive-integer) ;
 9
10 positive-integer = non-zero-digit, { digit } ;
11
12 real = integer-places, decimal-places, [exponent] ;
13
14 integer-places = integer ;
15
16 decimal-places = ".", digit, { digit } ;
17
18 exponent = "e", ("+" | "-"), digit, { digit } ;
19
20 constant = boolean | integer | real ;

G-1.19 — G-1.26 (names):

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 63 (251)

 1 keyword =
 2 "block" | "protected" | "public" | "end"
 3 | "record"
 4 | "function" | "method" | "signals" | "algorithm"
 5 | "input" | "output"
 6 | "Boolean" | "Integer" | "Real"
 7 | "limit"
 8 | "if" | "signal" | "in" | "then" | "elseif" | "else"
 9 | "for" | "loop"
10 | "and" | "or" | "not" |
11 | "size"
12 | "self"
13 (* reserved for future extensions: *)
14 | "while" | "do" | "until"
15 | "break" | "return"
16 | "enumeration"
17 | "__", identifier ;
18
19 alphabetic-character =
20 (* ? any ISO/IEC 10646:2020 code point in ranges [65, 90] or [97, 122]: ? *)
21 "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | "l" | "m"
22 | "n" | "o" | "p" | "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"
23 | "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" | "K" | "L" | "M"
24 | "N" | "O" | "P" | "Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z" ;
25
26 identifier = (alphabetic-character, { alphabetic-character | "_" | digit }) - (keyword
) ;
27
28 quoted-identifier =
29 "'",
30 (
31 "previous", "(", scalarized-reference, ")"
32 | "derivative", "(", quoted-identifier-higher-order-derivative, ")"
33 | scalarized-reference
34),
35 "'" ;
36
37 quoted-identifier-higher-order-derivative =
38 scalarized-reference
39 | "derivative", "(", quoted-identifier-higher-order-derivative, ")" ;
40
41 scalarized-reference =
42 (identifier | keyword),
43 [fixed-dimensions],
44 { ".", (identifier | keyword), [fixed-dimensions] } ;
45
46 fixed-dimensions = "[", positive-integer, { ",", positive-integer }, "]" ;
47
48 name = identifier | quoted-identifier ;

S-1.1 (longest match / Meta-rules, lexical-structure): Given the following EBNF grammar:
Glexemes = { ? all meta-identifiers of G-1.1 — G-1.26 concatenated by | ? }. Let αβγδ be an arbitrary
GALEC program P, with α being an arbitrarily long sequence of characters matched throughout

64 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

a left-most derivation of P according to Glexemes, β and γ being arbitrary long but not empty
sequences of characters, and δ being an arbitrary long sequence of characters. Let G1 and G2

be any two different rules of G-1.1 — G-1.26 that can be applied next throughout the left-most
derivation of P according to Glexemes. Assume G1 would match β and G2 would match βγ; in that
case G1 is not applicable.

For every left-most derivation of any GALEC program P it must hold that the sequence of G-
1.1 — G-1.26 applications is the same as the sequence of G-1.1 — G-1.26 applications for the
left-most derivation of P by Glexemes.

E-1: Let α, β, γ and δ be as defined above, with β = i, γ = 4 and δ starts with white-space.
The next rule applied within the set G-1.1 — G-1.26 must be G-1.21 (identifier).

S-1.2 (universality of white space / Meta-rules, lexical-structure): Except for rules G-
1.1 — G-1.26, { white-space } is implicitly preceding and following each syntactic-factor of a
syntax-rule (cf. ISO/IEC 14977).

E-1: The expanded rule of G-TODO, showing its implicit white-space, is:

 1 state-reference =
 2 { white-space },
 3 "self",
 4 { white-space },
 5 ".",
 6 { white-space },
 7 name,
 8 { white-space },
 9 [{ white-space }, computed-dimensions, { white-space }],
10 { white-space },
11 {
12 { white-space },
13 ".",
14 { white-space },
15 name,
16 { white-space },
17 [{ white-space }, computed-dimensions, { white-space }],
18 { white-space }
19 },
20 { white-space } ;

E-2: According to E-1, the following is a valid state-reference:

1 self.
2 a . b [2] /* vector */
3 . 'c[2].d[3]'
4 .

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 65 (251)

5 m [
6 3 , /* matrix access */ 4
7]

E-3: The following is an illegal quoted-identifier due to white-space within its quotes:

1 'a . b [2] /* vector */
2 .
3 m [
4 3 , /* matrix access */ 4
5]'

S-1.3 (primitive names / Name-analysis, terminology): Names, identifiers and quoted-
identifiers are primitive names. Let α be lexically-equivalent to a primitive name N; α is the
name of N. Syntactic terms with a name are called named. Let α be the name of a named
syntactic term N; we say N has name α and N is named α.

R-1: The set of named syntactic terms can be easily extended by semantic rules by just
defining a name for a syntactic term.

R-1.1 (scalarization and quoted identifiers / Traceability): Quoted-identifiers are provided to
denote scalarized entities — typically multi-dimensional nested components of the original
physics-model whose elements are flattened to individual scalar entities for further numeric
optimisations throughout the generation of an algorithmic solution. By reusing the original
multi-dimensional query for an element that is now an independent scalar as the scalar’s
name, traceability can be achieved.

The previous(α) and derivative(α) notations are intended to be used for support-
variables holding the value a variable α had at the end of the last control-cycle or its derivative
respectively. Many physics-modeling languages, like Modelica, provide such values implicitly by
means of operators applicable to any variable. Since algorithmic solutions are discrete
however, no continuous derivatives exist. And the meaning of previous, in terms of the last
value before the current, depends on the applied discretization scheme. For backward
discretization it indeed is the last control-cycle’s value; for forward discretization however, it is
the current value. For mixed schemes the meaning is unclear. Due to these issues, no specific
operators are provided. Instead, algorithmic solutions have to explicitly introduce variables to
hold values or compute derivates. The previous(α) and derivative(α) notations can be
used to give the explicit variables introduced for the variables α that have been subject of such
implicit operations convenient names, ultimately increasing traceability.

E-1: The Modelica model

66 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

 1 model M
 2 model MI
 3 model MII
 4 Real x;
 5 Boolean y;
 6 equation
 7 ...
 8 end MII;
 9 MII b[3];
10 equation
11 ...
12 end MI;
13 MI a[2];
14 equation
15 ...
16 end M;

could be scalarized to

 1 Real 'a[1].b[1].x';
 2 Boolean 'a[1].b[1].y';
 3 Real 'a[1].b[2].x';
 4 Boolean 'a[1].b[2].y';
 5 Real 'a[1].b[3].x';
 6 Boolean 'a[1].b[3].y';
 7 Real 'a[2].b[1].x';
 8 Boolean 'a[2].b[1].y';
 9 Real 'a[2].b[2].x';
10 Boolean 'a[2].b[2].y';
11 Real 'a[2].b[3].x';
12 Boolean 'a[2].b[3].y';

Further numeric analyses could conclude that a.b[2] is an alias or irrelevant for the
simulation for which reason it can be eliminated, reducing the set of individual scalar
state variables to only

1 Real 'a[1].b[1].x';
2 Boolean 'a[1].b[1].y';
3 Real 'a[1].b[3].x';
4 Boolean 'a[1].b[3].y';
5 Real 'a[2].b[1].x';
6 Boolean 'a[2].b[1].y';
7 Real 'a[2].b[3].x';
8 Boolean 'a[2].b[3].y';

R-1.2 (reserved keywords): G-1.19 (keyword) reserves certain character sequences for future
language extensions; the respective sequences are not used elsewhere in the grammar. The
sequences while, do and until are reserved for a potential future introduction of non-
bounded or more complicated loops, return and break for potential early function and loop

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 67 (251)

exit statements and enumeration for a potential extension with enumeration types. Such
reservations do not imply by any means that the language indeed will be extended
accordingly; they rather serve to preserve up-wards compatibility of code when respective
language extensions are added. The "__", identifier alternative reserves names that
might collide with internal compiler macros of further tooling; it is in the spirit of 6.11.9 of
ISO/IEC 9899:TC3.

E-1: Boolean until; is not a local-variable-declaration due to until being a reserved
keyword.

Blocks and Declarations: Control-state and -cycle (memory and inter-functional flowchart)

G-2.1 — G-2.3 (blocks, state compartments and functions):

 1 block =
 2 "block",
 3 name,
 4 { state-entity-declaration } (* TODO: must be inputs, followed by outputs followed by
 parameters *),
 5 "protected",
 6 { state-compartment-declaration },
 7 { state-entity-declaration },
 8 { error-signal-declaration },
 9 { function-declaration },
10 "public",
11 { function-declaration },
12 "end",
13 name,
14 ";" ;
15
16 error-signal-declaration = "signal", identifier, ";" ;
17
18 state-compartment-declaration =
19 "record",
20 name,
21 { state-entity-declaration },
22 "end",
23 name,
24 ";" ;
25
26 function-declaration =
27 ("function" | "method"),
28 name,
29 [signal-interface],
30 { parameter-declaration },
31 ["protected", { local-variable-declaration }],
32 "algorithm",
33 { statement },
34 "end",
35 name,
36 ";" ;

68 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

37
38 signal-interface = "signals", identifier, { ",", identifier }, ";" ;

G-2.4 — G-2.12 (state entity, parameter and local variable declarations):

 1 state-entity-declaration =
 2 ["constant" | "parameter"], (* TODO: Definition of terms and semantic of constants
 and tuneable and dependent parameters *)
 3 variable-declaration ;
 4
 5 parameter-declaration = data-flow-direction, variable-declaration ;
 6
 7 local-variable-declaration = variable-declaration ;
 8
 9 data-flow-direction = "input" | "output" ;
10
11 variable-declaration =
12 (primitive-type | state-compartment-reference),
13 name,
14 [constant-dimensions],
15 ";" ;
16
17 primitive-type = "Boolean" | "Integer" | "Real" ;
18
19 state-compartment-reference = name ;
20
21 constant-dimensions =
22 "[",
23 (derived-dimension | constant-scalar-integer-expression),
24 { ",", (derived-dimension | constant-scalar-integer-expression) },
25 "]" ;
26
27 derived-dimension = ":" ;

R-2.1 (unique start symbol): According to ISO/IEC 14977 and S-1.2, block is the only start
symbol.

S-2.1 (consistent naming / Name-analysis): The 2nd and 12th child of blocks must be
lexically-equivalent. The 2nd and 5th child of a state-compartment-declaration must be
lexically-equivalent. The 2nd and 9th child of a function-declaration must be lexically-
equivalent.

E-1: The following block fragment is illegal due to inconsistent state compartment and
function names:

1 record GearBox /* Illegal: GearBox and gearBox not lexically-equivalent. */

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 69 (251)

2 Real w;
3 end gearBox; /* Illegal: GearBox and gearBox not lexically-equivalent. */
4
5 method UpdateGearBox /* Illegal: UpdateGearBox and 'UpdateGearBox' not lexically-
 equivalent. */
6 input Real x;
7 algorithm
8 self.gearBox.w := (x / self.gearBox.w) * self.gearBox.w;
9 end 'UpdateGearBox'; /* Illegal: UpdateGearBox and 'UpdateGearBox' not lexically-
 equivalent. */

S-2.2 (state compartments, components and variables and control-inputs and -outputs;
input and output parameters; local variables / Type-analysis, terminology): A state-entity-
declaration without primitive-type is called state component, otherwise it is called state
variable. State components and variables are called state entities.

State-compartment-declarations are called state compartment; the state entities contained in a
state compartment are called its local entities (thus, state compartments have local
components and variables).

State entities whose data-flow-direction is lexically-equivalent to input are called control-
input; state entities whose data-flow-direction is lexically-equivalent to output are called
control-output. Control-inputs and -outputs must be state variables and not be part of state
compartments (i.e., state components cannot be control-inputs or -outputs nor can such be
local entities of any state compartment).

A parameter-declaration whose data-flow-direction is lexically-equivalent to input is called an
input parameter; otherwise it is called an output parameter. Input and output parameters are
called parameters.

Local-variable-declarations are called local variable.

E-1: The following valid block fragment defines various non-functional entities:

 1 /*
 2 State compartment that is the control-state (cf. S-2.8).
 3 It has two local state entities, one variable and one component.
 4 */
 5 block Controller
 6 record C
 7 Real r;
 8 Integer i;
 9 end C;
10
11 Integer i; /* State entity that is a state variable. */
12 C c; /* State entity that is a state component. */
13
14 function f
15 output Real out_1[size(in, 1)]; /* Parameter that is an output parameter.

70 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

 */
16 input Real in[:]; /* Parameter that is an input parameter.
 */
17 output Real out_2[size(in, 1)]; /* Parameter that is an output parameter.
 */
18 protected
19 Integer s; /* Local variable. */
20 algorithm
21 s := 0;
22 for i in 1:size(in, 1) loop
23 s := s + in[i];
24 end for;
25 out_1 := in / s;
26 out_2 := s * in;
27 end f;
28 end Controller;

S-2.3 (stateless and stateful functions / Side-effect-analysis, terminology): Function-
declarations are just called functions. Functions whose first child is lexically-equivalent to
method are called stateful function; otherwise, they are called stateless function.

R-1 (state of stateful functions / Runtime-semantic): The motivation to separate
stateful functions from stateless is, that the latter cannot change the control-state by any
means; only stateful functions can write state variables as long as they are not control-
inputs (cf. S-TODO.TODO (non-writeable control-inputs, input parameters and loop
iterators; side-effect-freeness of stateless functions / Side-effect-analysis)). There
are no restrictions on reading state variables however, including control-inputs and
-outputs; stateless functions therefore still can depend on the control-state. These
restrictions on when control-state changes are permitted improve readability of GALEC
code and enable the generation of Production Code leveraging on parallel computing (cf.
S-3.TODO:R-1 (isolated side-effects of stateful function calls and parallel computing
/ Runtime-semantic)).

S-2.4 (names of state compartments and entities, functions, parameters and local
variables / Name-analysis): State compartments, state entities, functions, parameters and
local variables are named.

The name of a state compartment is the name of its 2nd child.

The name of a function is the name of its 2nd child.

The name of a state entity, parameter and local variable is the name of its variable-declaration
where the name of a variable-declaration is the name of its 2nd child.

E-1: The following valid block fragment defines various names:

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 71 (251)

 1 block Controller2
 2 Real 'derivative(shaft[2].x)'; /* Scalar named 'derivative(shaft[2].x)'. */
 3 GearBox 'shaft[2].gear'[3]; /* State component vector named
 'shaft[2].gear'. */
 4 Real w; /* Scalar named w. */
 5
 6 method 'shaft[2].gear.update' /* Stateful function named
 'shaft[2].gear.update'. */
 7 input Real 'previous(shaft[2].y)'; /* Scalar input parameter named
 'previous(shaft[2].y)'. */
 8 input Integer index; /* Scalar input parameter named index.
 */
 9 protected
10 Real exp_y; /* Scalar local variable named exp_y.
 */
11 algorithm
12 exp_y := exp('previous(shaft[2].y)');
13 self.'shaft[2].gear'[index].w :=
14 exp_y^2 - self.'derivative(shaft[2].x)' * exp_y;
15 end 'shaft[2].gear.update';
16 end Controller2;

S-2.5 (unique declarations (Part I) / Name-analysis): Blocks must not contain two different
functions or state compartments with equivalent names. Functions and state compartments
must have different names. Parameters and local variables must not be named like functions
or state compartments. Functions must not contain two different parameters or local variables
with equivalent names. Parameters and local variables contained in the same function must
have different names. Different local entities of a state compartment must have different
names.

S-TODO incorporates and adds further unique declaration restrictions for iterators.

R-1 (MISRA C:2012 compliance): The restriction that parameters and local variables
must not have function or state compartment names is introduced to avoid hiding of
outer-scope declarations in accordance with MISRA C:2012, Rules 5.3, 5.8 and 5.9.

R-2 (separate name-space for state entities): State entities can have the name of a
state compartment, function, parameter, local variable or iterator because, according to
S-TODO, they can only be accessed using a state-reference which always starts with the
unique sequence self.. Thus, the intention to refer to a state entity always is clearly
denoted; state entities are within their own separate name-space. State entities not local
to the same state compartment can have equivalent names because they are always
differently accessed.

E-1: The following block is illegal due to hiding of outer-scope declarations and re-

72 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

declarations (for the definition of preceding and follows cf. M-1.3; for hiding of outer-
scope declarations cf. the ISO/IEC 9899:TC3 and MISRA C:2012 standards):

 1 /*
 2 The comments in this example are just abbreviations for
 3 /* Illegal: Equally named <C>. */
 4 where <C> is the comment and refers to the relative locations of
 5 equally named entities.
 6 */
 7
 8 record efmu /* state compartment follows */
 9 end efmu;
10
11 record efmu /* state compartment preceding */
12 C v; /* state entity follows */
13 Real v; /* state entity preceding */
14 end efmu;
15
16 record C /* function and local variable follow */
17 end C;
18
19 method DoStep /* function follows */
20 protected
21 Real v; /* local variable follows */
22 Real v; /* local variable preceding */
23 algorithm
24 end DoStep;
25
26 method DoStep /* function preceding */
27 protected
28 Integer f; /* function follows */
29 algorithm
30 end DoStep;
31
32 function C /* state compartment preceding and local variable follows */
33 output Real r; /* local variable follows */
34 protected
35 Boolean r[4]; /* parameter preceding */
36 algorithm
37 end C;
38
39 function f /* local variable preceding */
40 protected
41 Integer C; /* state compartment and function preceding */
42 algorithm
43 end f;

E-2: The following valid block has no re-declarations or hiding of outer-scope
declarations:

 1 block Controller3
 2 C C; /* Type and name are lexically-equivalent. */
 3 /*

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 73 (251)

 4 Name lexically-equivalent to self.C.r, parameter of
 5 function f and local variable of function DoStep:
 6 */
 7 Real r;
 8
 9 record C
10 /*
11 Name lexically-equivalent to self.r, parameter of
12 function f and local variable of function DoStep:
13 */
14 Real r;
15 Boolean DoStep; /* Name lexically-equivalent to function DoStep. */
16 end C;
17
18 method DoStep
19 protected
20 /*
21 Name lexically-equivalent to self.r, self.C.r and
22 parameter of function f:
23 */
24 Real r;
25 algorithm
26 end DoStep;
27
28 method Startup
29 algorithm
30 end Startup;
31
32 function f
33 /*
34 Name lexically-equivalent to self.r, self.C.r and
35 local variable of function DoStep:
36 */
37 output Real r;
38 algorithm
39 end f;
40 end Controller3;

S-2.6 (state compartment lookup / Name-analysis): Let R be a state-compartment-reference.
There must exist a state compartment D named like the name of R; according to S-2.5, D must
be unique. We say R refers to D.

S-2.7 (types of state entities, parameters and local variables / Type-analysis): The first child
of a variable-declaration D defines its type. If, and only if, D contains a primitive-type T, the type
of D is lexically-equivalent to T. In this case D has a variable type; otherwise, the type of D is the
state compartment its state-compartment-reference refers to and D has a component type.

The type of a state entity, parameter and local variable is the type of its variable-declaration.

The type of parameters and local variables must not be a component type.

74 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

E-1: The following valid block fragment defines entities of various types. Note, that type
and dimensionality (cf. S-2.12) are orthogonal characteristics; declarations can combine
every type with any dimensionality.

 1 block Controller
 2 record GearBox
 3 Real w; /* State variable of type Real. */
 4 end GearBox;
 5
 6 Boolean s; /* State variable of type Boolean. */
 7 Real w[3]; /* State variable of type Real. */
 8 GearBox g[3]; /* State component of type GearBox. */
 9
10 function 'g.w.T_sum'
11 input Integer T[3, 3]; /* Input parameter of type Integer. */
12 output Real y; /* Output parameter of type Real; */
13 protected
14 Real 'g.w'[3]; /* Local variable of type Real; */
15 algorithm
16 for i in 1:3 loop
17 'g.w'[i] := emfu.g[i].w;
18 end for;
19 y := (if efmu.s then 1 else -1) * sum(real(T) * 'g.w');
20 end 'g.w.T_sum';
21 end Controller;

E-2: The following function is illegal due to parameters and local variables with
component types:

1 method UpdateGearBox
2 input Shaft s; /* Illegal: Input parameter has a component type. */
3 input Integer i;
4 protected
5 GearBox g; /* Illegal: Local variable has a component type. */
6 algorithm
7 g := s.gear[i]; /* Illegal: Cf. S-TODO.TODO (type of references / Type-
 analysis):L-1. */
8 g.w := (g.x / g.w) * g.w;
9 end UpdateGearBox;

S-2.8 (state compartment composition graph, control-state and control-state extent /
Termination-analysis): We define the following directed graph G. For every state
compartment C, G contains a node labeled with the name of C. For every state component with
type T and local to C, we add a directed edge from C to T. G is called the state compartment
composition graph.

The state compartment composition graph must be cycle-free and it must contain a node N

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 75 (251)

labeled efmu from which all other nodes are reachable (and which therefore is its only root,
i.e., the only node without incoming edges).

The state compartment named efmu is called the control-state.

Control-inputs and outputs must be local state entities of the control-state.

L-1 (unique, all-embracing, finite control-state extent / Runtime-semantic):
According to S-2.5, state compartments are unique for which reason the state
compartment composition graph cannot contain two nodes with equivalent label. It can
contain multiple edges between two nodes however, since for each state component of
type nt contained in state compartment ns the state compartment composition graph will
contain a separate edge from ns to nt. Nodes can also have several incoming edges from
different nodes, since state components of equivalent type can be part of different state
compartments. Considering all these constraints, the state compartment composition
graph must be a directed, cycle-free graph with unique root (and not necessarily a
directed tree).

TODO: transform state compartment composition graph to tree defining control-state
extent. Argue why that one is unique, all-embracing and finite and why that is good-
for/required-by embedded code. Define that in the context of runtime-semantic the term
control-state always refers to the control-state extent.

The control-state must be unique; and considering the restrictions of the state
compartment composition graph, it must comprise all state entities defined, i.e., be all-
embracing (reachability) and finite (cycle-free).

E-1: The following state compartments are illegal because they have a cyclic composition,
miss the efmu root and have other roots:

 1 record C1 /* Illegal: Part of C1, C2, C3 cycle. */
 2 C2 c;
 3 end C1;
 4
 5 record C2 /* Illegal: Part of C1, C2, C3 cycle. */
 6 C3 c;
 7 end C2;
 8
 9 record C3 /* Illegal: Part of C1, C2, C3 cycle. */
10 C1 c;
11 end C3;
12
13 record C /* Illegal: Non-efmu root. */
14 C2 c;
15 end C;
16
17 /* Illegal: The control-state (efmu root) is missing. */

76 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

E-2: The following state compartments are illegal because the control-state is not a root:

 1 record C1
 2 end C1;
 3
 4 record C2
 5 end C2;
 6
 7 /*
 8 Illegal: Control-state is not a root (C1 not reachable from
 9 efmu in state compartment composition graph):
10 */
11 record efmu
12 C2 c;
13 end efmu;

E-3: The following state compartments are illegal because there are control-inputs and
-outputs that are not local state entities of the control-state or are state components (cf.
S-2.2):

 1 record C
 2 input Real i; /* Illegal: Control-input not local to the control-state. */
 3 output Real o; /* Illegal: Control-output not local to the control-state. */
 4 end C;
 5
 6 record efmu
 7 C c;
 8 input Real i_1;
 9 output Real o_1;
10 input C i_2; /* Illegal: Control-input is a state component. */
11 output C o_2; /* Illegal: Control-output is a state component. */
12 end efmu;

S-2.10 (locally and transitively called functions, static function call graph and recursion-
freeness / Termination-analysis): Let Cf be the set of names of the function-calls contained in
a function f; Cf is called the local function call set of f and we say for each function fc whose
name is in Cf that it is locally called by f and that f locally calls fc.

We define the following directed graph G. For every function f (including builtin functions), G
contains a node labeled with the name of f. For every function fc locally called by a function f,
we add a directed edge from f to fc. G is called the static function call graph.

Let n be a node of the static function call graph and nr be a node reachable from n; let f be the
function named like the label of n and fr the function named like nr. We say fr is transitively
called by f and f transitively calls fr.

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 77 (251)

The static function call graph must be cycle-free.

S-2.11 (initialization and control-cycle functions / Name-analysis): Every block must contain
a function named Startup; respective functions are called initialization function. Initialization
functions must be stateful and parameter-declaration-free. Initialization functions must not
locally call user-defined functions (i.e., initialization functions can only call builtin functions).

Every block must contain a function named DoStep; respective functions are called control-
cycle function. Control-cycle functions must be stateful and parameter-declaration-free.

All user-defined functions, except the control-cycle and initialization functions, must be
transitively called from the control-cycle function (thus, let Nuser-defined be the set of nodes of the
static function call graph labeled with the name of a user-defined function, excluding the
control-cycle and initialization functions, and let ncontrol-cycle be the node labeled with the name of
the control-cycle function: ∀nuser-defined∈Nuser-defined: nuser-defined is reachable from ncontrol-cycle).

R-1 (controller interface / Runtime-semantic): According to S-2.5, the initialization and
control-cycle functions are unique. They and the control-state are the controller
interface, i.e., the functionality visible for the runtime environment executing the eFMU.

L-1 (initialization and control-cycle; control-state consistency / Runtime-semantic):
At runtime, the Production Code generated for the initialization function must be
executed at least once before the production code for the control-cycle function is
executed for the very first time; its purpose is to initialize the control-state at startup and
provide the outputs for the first clock tick. Thereafter, the Production Code generated for
the control-cycle function must be executed at every sampling-step to update the
blocks’s control-state and compute the block outputs.

To ensure the consistency of the control-state and the computations based on it, the
runtime environment must never call any function of the controller interface of an eFMU
while any of its functions is still executing. Any runtime environment interaction with an
eFMU must be via its controller interface; and any such interaction must satisfy above
restrictions. This prohibits third parties, for example, to recalibrate an eFMU while its
control-cycle function is executing or to execute user-defined functions that are not part
of the controller interface.

Note, that production code is not restricted in terms of parallel execution of different
controllers (i.e., independent applications of the Production Code generated for a single
or different GALEC programs) as long as the generated production code and its runtime
environment ensure that each individual application (i.e., block) satisfies above
restrictions.

S-2.12 (scalars, multi-dimensions, vectors and matrices / Dimensionality-analysis,

78 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

terminology): State entities, parameters and local variables without constant-dimensions are
called scalar; otherwise multi-dimension. Let d = [α1, …, αn] be the constant-dimensions of a
state entity, parameter or local variable v; in that case v is n-dimensional/multi-dimensional, n
is the number of its dimensions and each αi with 1 ≤ i ≤ n is its i'th dimension. Scalars are zero-
dimensional. If, and only if, v is one-dimensional it is called vector; if, and only if, it is two-
dimensional, matrix. The first dimension of a matrix are its rows, the second its columns.

E-1: The following block fragment declares various scalars and multi-dimensions
(denoted by using capitals only):

 1 block S
 2 /*
 3 A 0-DIMENSIONAL state component, i.e.,
 4 a state component SCALAR:
 5 */
 6 C a;
 7 /*
 8 A 1-DIMENSIONAL state component, i.e.,
 9 a state component VECTOR:
10 */
11 C b[2];
12 /*
13 A 2-DIMENSIONAL state component, i.e.,
14 a state component MATRIX
15 with 2 ROWS and 3 COLUMNS:
16 */
17 C c[2,3];
18 /*
19 A 3-DIMENSIONAL state component, i.e.,
20 a MULTI-DIMENSIONAL state component, i.e.,
21 a state component MULTI-DIMENSION,
22 that is neither, a VECTOR nor a MATRIX:
23 */
24 C d[1,1,1];
25 Real r[3,3]; /* a state variable MULTI-DIMENSION */
26
27 function f
28 input Real i[:,:]; /* an input parameter MATRIX */
29 output Integer o; /* an output parameter SCALAR */
30 protected
31 Integer j[size(i,1)]; /* a MULTI-DIMENSIONAL local variable */
32 Real k[size(i,2)]; /* a VECTOR, i.e., a MULTI-DIMENSION */
33 algorithm
34 end f;
35 end S;

S-2.13 (dimensional-sizes of state entities / Dimensionality-analysis): State entities must
not contain dimension-queries or derived-dimensions.

TODO: More relaxed alternative: Contained dimension-queries must refer to state entities; the

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 79 (251)

resulting dependency graph must be cycle-free. More restrict alternative: The constant-scalar-
integer-expressions of their constant-dimensions must derive to positive-integers.

TODO: Static computation of actual dimensions.

S-2.14 (dimensional-sizes of parameters and local variables / Dimensionality-analysis):
Output parameters and local variables must not contain derived-dimensions (i.e., only input
parameters can contain derived-dimensions).

TODO: Static computation of actual dimensions.

S-2.15 (signature of functions; procedures / Type-analysis, terminology): The parameters a
function contains define its signature, i.e., its input-arity, output-arity and order of inputs and
outputs.

Let Sinput be the set of all input parameters contained in a function f; let Soutput be the set of all
output parameters contained in f. The inputs of f are the tuple Tinput = (p1,…,pn) with n = |Tinput| =
|Sinput| and ∀pi,pj∈Tinput ; i,j∈ℕ+ ; i < j ≤ n: pi∈Sinput ∧ pj∈Sinput ∧ pi is preceding pj; likewise, the
outputs of f are the tuple Toutput = (q1,…,qm) with m = |Toutput| = |Soutput| and ∀qi,qj∈Toutput ; i,j∈ℕ+ ;
i < j ≤ m: qi∈Soutput ∧ qj∈Soutput ∧ qi is preceding qj. The input-arity of f is n; its output-arity is m.

An input parameter is called the i'th input of a function f, if, and only if, it is the i'th element of
the inputs of f; likewise, an output parameter is called the i'th output, if, and only if, it is the i'th
element of the outputs. Trivially, an input parameter part of a function f is an input of f and an
output parameter an output.

Functions of output-arity 0 are called procedure.

R-1: The signature of a function defines its whole interface, since the types and
dimensions of input and output parameters are already defined by S-2.7 and S-2.14.
Given for example a function of input-arity 3, one can talk about the type and
dimensionality of its second input.

Expressions: Scalar and Multi-dimensional Arithmetic

G-3.1 — G-3.4 (statically- and dynamically-evaluated expressions):

 1 expression =
 2 constant
 3 | reference
 4 | dimension-query
 5 | function-call
 6 | parenthesized-expression
 7 | if-expression

80 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

 8 | multi-dimension-constructor
 9 | unary-operation
10 | binary-operation ;
11
12 parenthesized-expression = "(", expression, ")" ;
13
14 dimension-query = "size", "(", reference, ",", constant-scalar-integer-expression, ")" ;
15
16 constant-scalar-integer-expression = expression ;

G-3.5 — G-3.10 (operations):

 1 unary-operation =
 2 (
 3 "-", reference
 4 | "not", (parenthesized-expression | if-expression)
 5) ;
 6
 7 binary-operation = expression, binary-operator, expression ;
 8
 9 binary-operator = arithmetic-operator | relational-operator | logical-operator ;
10
11 arithmetic-operator = "+" | "-" | "*" | "/" | "^" ;
12
13 relational-operator = "<" | ">" | "<=" | ">=" | "==" | "<>" ;
14
15 logical-operator = "and" | "or" ;

G-3.11 — G-3.14 (multi-dimension constructors, function calls and conditional
expressions):

 1 multi-dimension-constructor =
 2 "{",
 3 multi-dimension-constructor-element,
 4 { ",", multi-dimension-constructor-element },
 5 "}" ;
 6
 7 multi-dimension-constructor-element = expression | multi-dimension-constructor ;
 8
 9 function-call = name, "(", [expression, { ",", expression }], ")" ;
10
11 if-expression =
12 "(",
13 "if",
14 expression,
15 "then",
16 expression,
17 { "elseif", expression, "then", expression },
18 "else",
19 expression,

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 81 (251)

20 ")" ;

S-3.1 (statically- and dynamically-evaluated expressions / Syntactical-structure,
terminology): Expressions and all children of such, as well as constant-scalar-integer-
expressions, are called expression. Expressions part of, or that are, a constant-scalar-integer-
expression are called statically-evaluated; all other expressions are called dynamically-
evaluated.

References contained in statically-evaluated expressions must either, be the third child of a
dimension-query or refer to a loop-iterator-declaration. Function-calls contained in statically-
evaluated expressions must refer to builtin functions.

R-1: Considering that builtin functions are stateless (cf. S-2.9:R-2) and loop-iterator-
declarations are unrelated to state variables (the value of a loop-iterator-declaration is a
statically-defined, finite sequence of iteration-values within a fixed range, cf. S-TODO),
statically-evaluated expressions cannot use or change the control-state. Their evaluation
is control-state independent and therefore independent of control-inputs and -outputs
(cf. S-TODO); they can be evaluated throughout Production Code generation, hence,
statically-evaluated.

Dynamically-evaluated expression on the other hand can directly or indirectly depend on
the control-state and, by means of assignments, change it.

S-3.2 (operations, operators and arguments of operations / Type-analysis, terminology):
Binary-operations and unary-operations are also just called operation. The 2’nd child of a
binary-operation and the 1’st child of an unary-operation are called its operator. The 1’st and
3’rd child of a binary-operation O are called its first and second argument respectively; they are
the arguments of O. The 2’nd child of an unary-operation is called its argument.

Let ⊕ be lexically-equivalent to the operator O⊕ of an operation O; we call O an ⊕-operation and
O⊕ the ⊕-operator. If, and only if, O is a binary-operation it and its operator are called binary;
otherwise unary.

E-1: The expression -v is a unary --operation, whereas v_1 - v_2 is a binary -
-operation; both can be either, statically- or dynamically-evaluated (cf. S-3.1) depending
on their application context. For example, in A[v_1 - v_2] := -v * A[v_1 - v_2],
the binary --operations are statically-evaluated whereas the unary --operation is
dynamically-evaluated.

not-operations are always unary and and- and or-operations are always binary. Note,
that they can be statically-evaluated, like in A[(if remainderEuclidean(i, 2) == 0
and i <= size(A, 1) then i else size(A, 1))].

82 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

S-3.3 (operator precedence and associativity / Meta-rules, syntactical-structure): The
following table defines a unique disambiguation for the syntactic ambiguities of binary-
operations by means of an operator precedence and associativity for sequences of operators
with equivalent precedence:

Operator classes (highest precedence to
lowest)

Associativity of contained operators

^ right-to-left

*, / left-to-right

+, - left-to-right

<, >, <=, >= left-to-right

==, <> left-to-right

and left-to-right

or left-to-right

Binary-operations must satisfy the defined operator precedence and associativity.

A binary-operation O satisfies operator precedence, if, and only if, it does not contain binary-
operations whose operator has a lower operator precedence than the operator of O and which
themselves are not contained within a precedence-overriding non-terminal part of O. The
precedence-overriding non-terminals are: reference, dimension-query, function-call,
parenthesized-expression, if-expression and multi-dimension-constructor.

Operator associativity is satisfied if, and only if, binary-operations are derived left-most if their
operator’s associativity is left-to-right and right-most otherwise.

L-1 (strict evaluation order of expressions / Runtime-semantic): Operator precedence
and associativity, together with syntactic rules G-3.5 to G-3.10 imply a well-defined order
for the evaluation of operation sequences — an evaluation order. For example,
production code generated for a sequence of additions a + b + c must evaluate it
from left-to-right, i.e., first add a and b followed by adding the respective result and c.
Thus, the evaluation order must not be changed by Production Code generators even for
expressions that are associative in mathematics. Doing so acknowledges, that
computational arithmetic is limited considering value overflows or floating point
imprecision and that typically only GALEC code generators have the physics-model-
specific numerical knowledge to select an appropriate evaluation order (for which reason
Production Code generators should not change it). Enforcing an exact evaluation order
also improves computational consistency between different Production Code
generators.

E-1: The following examples illustrate the disambiguation enforced by S-3.3. They
leverage on the fact that, using parentheses, every syntax-wise ambiguous expression
can be explicitly disambiguated such that S-3.3 is not required.

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 83 (251)

Each example consists of a mathematical notation of the expression, followed by three
semantically equivalent expressions, each on a separate line. The first line shows a
valid — with minimal parenthesizing — GALEC version of the expression requiring S-3.3
for disambiguation. The second line shows a version with minimal usage of parenthesis
that does not requiring S-3.3. The third line discloses the actual evaluation order of the
expression by parenthesizing even expression parts whose evaluation order is already
well-defined by syntactic rules only.

Expression 1:

a + b + c

1 a + b + c
2 (a + b) + c
3 (a + b) + c

Expression 2:

a + b*c/d/e*f + g

1 a + (b * c / d / e * f) + g
2 (a + ((((b * c) / d) / e) * f)) + g
3 (a + ((((b * c) / d) / e) * f)) + g

Expression 3:

-a(-b2) * c

1 (-a ^ -b ^2) * c
2 (-a ^(-b ^2)) * c
3 ((-a)^((-b)^2)) * c

Expression 4:

3 - a(-b2)

1 3 - (a^ -b^2)
2 3 - (a^(-b^2))
3 3 - (a^((-b)^2))

Expression 5:

3 - -a(-b2)

1 3 - (-a ^ -b ^2)
2 3 - (-a ^(-b ^2))
3 3 - ((-a)^((-b)^2))

84 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Expression 6:

(a < b) <> (c < d) == e < f and (g == h) <> i or j + k < l - m and n or o

1 ((a < b) <> (c < d) == (e < f)) and ((g == h <> i) or ((j + k) < (l - m)))
 and (n or -o)
2 ((((a < b) <> (c < d)) == (e < f)) and (((g == h) <> i) or ((j + k) < (l - m))))
 and (n or -o)
3 ((((a < b) <> (c < d)) == (e < f)) and (((g == h) <> i) or ((j + k) < (l - m))))
 and (n or (-o))

E-2: The parenthesis of a^(2*b) cannot be omitted because a^2*b is an invalid
expression and (a^2)*b is not equivalent. For example, a^(2*b) yields 64 if a is 2 and b
is 3 whereas (a^2)*b yields 12.

The parenthesis of (a^b)^c cannot be omitted because a^b^c is equivalent to a^(b^c).
For example, (a^b)^c yields 1 if a is -1, b is 3 and c is 2 whereas a^(b^c) yields -1.

The parenthesis of (a or b) and c cannot be omitted because or and and have
different operator precedences and S-3.3 prohibits mixing of different operator
precedences without explicit parenthesizing by using precedence-overriding non-
terminals (like parenthesized-expressions).

The value assigned to a in a := -b^2; always will be positive whereas for a := 0 -
(b^2); and a := -1*(b^2); it always will be negative. Note that a := -(b^2); is an
invalid expression since the unary --operation is only supported for references.

The strict left-to-right associativity of a <> b <> c is important for the expression to
have a well-defined — i.e., unique — type. For example, if a and b are of type Integer and
c of type Boolean, (a <> b) <> c is type-correct whereas a <> (b <> c) is illegal.

S-3.4 (type of operations / Type-analysis): Except for ^-operations, the arguments of an
operation must be equally typed. The arguments of arithmetic-operators and relational-
operators, except == and <>-operators, must be of type Integer or Real. The arguments of /
-operations must be of type Real. The arguments of logical-operators must be of type Boolean.
The argument of unary --operations must be of type Real or Integer; the argument of unary
not-operations must be of type Boolean.

Except for ^-operations and operations with an operator that is a relational-operator, the type
of an operation is the type of its arguments. The type of ^-operations is Real; the type of
operations with an operator that is a relational-operator is Boolean.

R-1 (Real-type restriction of /-operation; absence of %-operator / Type-analysis):
Division of Integer values via the /-operator is prohibited since there exists no common
mathematical or formal language interpretation of such. Often, integer division is target-

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 85 (251)

specific. For example in C89, integer division with a negative operand has an
implementation-defined behavior, whereas in C99 it corresponds to
divisionTowardsZero. Programming languages differ on their interpretation of
integer division and remainder; particularly regarding the latter a plethora of mod
-function and %-operator interpretations exist. The problem is related to the implicitly
applied rounding of integer divisions; GALEC is explicit however and provides a
systematic scheme of rounding-related builtin functions (cf. S-2.9), like roundUp,
divisionUp and remainderUp or roundTowardsZero, divisionTowardsZero and
remainderTowardsZero for the rounding strategies to round plus and minus half up or
towards zero respectively. Instead of some implicit-rounding / and %-operator on
Integer values, the desired builtin function and explicit type casts via real and integer
can be used.

R-2 (equality-tests of Real-typed variables / Coding recommendation): The support
of Real arguments for == and <>-operations is mostly intended for tests against magic
literal numbers like 0.0 or 1.0, for example to enable if-statements protecting against
division by zero. Since tests for exact equality of Real variables are otherwise error-
prone, tools are advised to warn about such although they are not prohibited. Equality
tests of Real-typed variables cannot be prohibited easily anyway, since such can be
encoded in a plethora of different schemes using negation, other relational-operators
and temporary variables, like:

1 b1 := r1 > r2;
2 b2 := r1 < r2;
3 if not(b1 or b2) /* r1 == r2 */ then

L-1 (target-specific ^-operation implementation / Runtime-semantic): The ^-operator
provides all kind of type-combinations for its base and exponent arguments. It is not
restricted to just Real arguments, because specialized — and therefore more
efficient — implementations for different base and exponent type combinations exist,
often provided as target-specific hardware operations. By enabling, for example, both,
Real and Integer-typed exponents, Production Code tools can choose the most efficient
implementation available on a target platform. The return type is always Real however,
since overflows in case of only Integer arguments are likely if the result would be
implicitly forced to fit into the Integer representation of a target platform.

S-3.TODO (type and dimensionality of constant-scalar-integer-expressions / Type-
analysis, dimensionality-analysis): The type and dimensionality of constant-scalar-integer-
expressions are the type and dimensionality of their first child; they must be Integer and scalar
respectively.

86 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

S-3.TODO (well-defined stateful function calls / Side-effect-analysis): Expressions
containing a function-call C referring to a stateful function must not contain function-calls or
state-references that are siblings of C. If-expressions must not contain function-calls referring
to a stateful function.

R-1 (isolated side-effects of stateful function calls and parallel computing /
Runtime-semantic): The restrictions on expressions regarding the combination of
stateful function-calls with other function-calls and state variable references promote the
isolation of side-effects into separate statements, such that complex expressions can be
understood without consideration of control-state changes triggered throughout their
evaluation. Moreover, the evaluation order of function-call arguments is undefined, such
that the runtime-semantic of multiple argument-expressions with side-effects would
become undefined without S-3.TODO; likewise, the runtime-semantic of multi-
dimension-constructors containing multiple stateful function-calls would become
ambiguous. And although the evaluation order of binary-operations is strict (cf. S-3.3),
limiting side-effects in such highly improves clarity.

S-3.TODO also enables the generation of Production Code that computes different parts
of a single expression in parallel, without requiring mutual exclusion or memory
copying. For example, multiple function-calls and the evaluation of function-call
arguments can be parallelized without the risk of race conditions.

The even more stringent restrictions on if-expressions are required to ensure their
branches can be executed in parallel and afterwards the actual result selected (assuming
evaluating the condition or other siblings of the if-expression requires significant time
such that the early execution of branches in parallel is worthwhile); special care to only
set the error signals of the actually succeeding branch is required however (cf. Section
Section 3.2.5). The main motivation is however, that side-effects of expressions, if any at
all, are defined regardless of actual control-flow. If an expression calls a stateful function,
that very function will always be executed, regardless which branches of contained if-
expressions are actually executed (because, although stateful function-calls can be part
of expressions, they never will be part of if-expressions due to S-3.TODO). Conditional
evaluation of stateful function-calls must be isolated in if-statements instead.

Note, that calling stateful functions cannot be completely prohibited within expressions;
otherwise return values of such could not be used like in (a, b) := m();, v := -
m();, self.A := 2 * m(f(B), f(C)); or self.A := m(m(self.A)); where m and
f refer to a stateful and stateless function respectively. All of these statements are valid
and their runtime-semantic is well-defined.

E-1: The following expression examples illustrate the restrictions on stateful function-
calls within expressions. Illegal applications are marked by a respective comment; for
valid expressions the parts that can be evaluated in parallel are marked. All m_α are
stateful functions whereas f_α are stateless functions for any α∈ℕ+.

Expression 1:

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 87 (251)

1 f_1(
2 f_2(m_1()), /* Illegal: Sibling state variable reference. */
3 f_3(self.v))

Expression 1:

1 f_1(
2 f_2(m_1()), /* Illegal: Sibling stateful function-call. */
3 f_3(m_2())) /* Illegal: Sibling stateful function-call. */

Expression 1:

1 (2 * self.v) + m_1() /* Illegal: Sibling state variable reference. */

Expression 1:

1 m_1() /* Illegal: Sibling stateful function-call. */
2 +
3 m_2() /* Illegal: Sibling stateful function-call. */

Expression 2:

1 (if 0 < m_1() /* Illegal: Stateful function-call within if-expression. */
2 then f_1(self.v_1)
3 else 1.0)

Expression 3:

1 (if f_1(self.v_1)
2 then m_1() /* Illegal: Stateful function-call within if-expression. */
3 else self.v_1)

Expression 3:

 1 (
 2 if
 3 /* Parallelizable: Part of separately-evaluable sub-expression-set α: */
 4 f_1(A)
 5 then
 6 /* Parallelizable: Part of separately-evaluable sub-expression-set α: */
 7 f_2(A * B) * C
 8 else
 9 /* Parallelizable: Part of separately-evaluable sub-expression-set α: */
10 f_2(A - B) * C
11)
12

88 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

13 + /* NOT parallelizable (cf. S-3.3:L-1). */
14
15 /* Parallelizable: Part of separately-evaluable sub-expression-set α: */
16 f_3(
17 D / (E - F), /* Parallelizable: Part of separately-evaluable sub-expression-
 set β. */
18 E * F, /* Parallelizable: Part of separately-evaluable sub-expression-
 set β. */
19 (
20 f_2(E) /* Parallelizable: Part of separately-evaluable sub-expression-set
 γ. */
21 * /* Parallelizable: Part of separately-evaluable sub-expression-
 set β. */
22 f_2(F) /* Parallelizable: Part of separately-evaluable sub-expression-set
 γ. */
23)
24)
25
26 + /* NOT parallelizable (cf. S-3.3:L-1). */
27
28 /* Parallelizable: Part of separately-evaluable sub-expression-set α: */
29 (
30 A^3
31)

To understand why expressions marked to be illegal are prohibited, consider that each
of the following three can depend on control-state changes performed by previous
stateful function-calls:

1. the value a reference, that refers to a state variable, will yield

2. the values a function-call (stateful or stateless) will return

3. the control-state changes a stateful function-call will perform

For example, given

 1 function f_1
 2 input Real x_1;
 3 input Real x_2;
 4 input Real x_3;
 5 output Real y;
 6 algorithm
 7 y := x_3 * (x_1 * self.a + x_2 * self.b);
 8 end f_1;
 9
10 method m_1
11 output Real y;
12 algorithm
13 self.a := self.a + 1;
14 self.b := self.a;
15 y := self.a;
16 end m_1;
17
18 method m_2
19 output Real y;

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 89 (251)

20 algorithm
21 self.b := 2 * self.b;
22 self.a := self.b;
23 y := self.b;
24 end m_2;

all three cases are demonstrated by the illegal expression f_1(self.a, f_1(m_1(),
self.b, m_1()), m_2()). The argument values passed to each f_1 call depend on
when the m_1 and m_2 calls are executed, i.e., the order of argument evaluation. There
exist 3! * 3! = 36 results if self.a and self.b are of type Integer and the evaluation of
inner f_1 call arguments is not mixed with outer call argument evaluation; if both can be
mixed, 5! = 120 results exist (note, that mixing the evaluation of inner and outer
arguments is not prohibited by S-3.TODO (eager evaluation and pass-by-value)
although usually — except for result caching — inefficient).

S-3.TODO (function lookup / Name-analysis): Let fc be a function-call. There must exist a
function fd named like the first child of fc; according to S-2.5, fd must be unique. We say fc refers
to fd.

S-3.TODO (type of function calls used in expressions / Type-analysis): Function-calls part of
expressions must refer to functions of output-arity 1; their type is the type of the first output of
the function they refer to.

R-1: According to S-3.1, the right-hand of multi-assignments (their function-call child) is
not an expression; likewise, function-calls whose parent is a statement are not
expressions. The rationale for either is, that expressions have a unique type and
dimensionality characterising their potential values. The function-call child of a multi-
assignment can refer to a function with several outputs however, each with an individual
type and dimensionality; and for function-calls not part of an assignment outputs don’t
matter.

E-1: Let p_1 and p_2 be procedures of input-arities 1 and 2 respectively and let f_1 and f_2
be functions of input-arity 0 and output-arities 1 and 2 respectively. The statements
p_1(f_1());, p_2(f_1(), f_1());, f_1();, f_2();, (v) := f_1(); and (v_1,
v_2) := f_2(); are valid, whereas p_1(p_1(f_1())); and p_2(f_2()); are illegal.

Statements: State changes (intra-functional flowchart)

G-TODO.TODO — G-TODO.TODO (TODO)

90 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

 1 (* references *)
 2 reference = local-reference | state-reference ;
 3
 4 local-reference = name, [computed-dimensions] ;
 5
 6 state-reference =
 7 "self",
 8 ".",
 9 name,
10 [computed-dimensions],
11 { ".", name, [computed-dimensions] } ;
12
13 computed-dimensions =
14 "[",
15 constant-scalar-integer-expression,
16 { ",", constant-scalar-integer-expression },
17 "]" ;
18
19 (* statements *)
20 statement =
21 (
22 limit-statement
23 | function-call
24 | single-assignment
25 | multi-assignment
26 | if-statement
27 | for-loop
28),
29 ";" ;
30
31 limit-statement =
32 "limit",
33 ("self" | reference),
34 { ",", ("self" | reference) } ;
35
36 single-assignment = reference, ":=", expression ;
37
38 multi-assignment =
39 "(",
40 [reference, { ",", reference }],
41 ")",
42 ":=",
43 function-call ;
44
45 if-statement =
46 "if",
47 (expression | error-signal-check),
48 "then",
49 { statement },
50 { "elseif", (expression | error-signal-check), "then", { statement } },
51 ["else", { statement }],
52 "end",
53 "if" ;
54
55 error-signal-check =
56 "signal",
57 [identifier],

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 91 (251)

58 [
59 ["not"],
60 "in",
61 identifier,
62 { ",", identifier }
63],
64 ["or", expression] ;
65
66 for-loop = "for", bounded-iteration, "loop", { statement }, "end", "for" ;
67
68 bounded-iteration =
69 [loop-iterator-declaration, "in"],
70 start-bound,
71 [":", iteration-step-size],
72 ":",
73 termination-bound ;
74
75 loop-iterator-declaration = name ;
76
77 start-bound = constant-scalar-integer-expression ;
78
79 iteration-step-size = constant-scalar-integer-expression ;
80
81 termination-bound = constant-scalar-integer-expression ;

S-TODO.TODO (type of references / Type-analysis): The type of a reference is the type of the
entity it refers to.

References referring to a state component must be the third child of a dimension-query or part
of a limit-statement.

L-1 (limited application of state components / Runtime-semantic): The semantic rule
indirectly prohibits any runtime interaction with state components — like passing them
as function or operation arguments or assignment of such — except to query their
dimensionality by means of dimension-queries or limiting all their variables by means of
limit-statements. In opposite to variables, state components as such do not exist at
runtime; they have no runtime values — they are valueless. Only variables have a value
that can be used in expressions or changed via assignment. As a consequence,
Production Code generators do not have to preserve state components and are free to
choose whichever runtime representation they consider most suitable for their nested
entities; they can, for example, map the nested constants of a state-component to read-
only memory or constant fold them or pack nested state variables together with other
non-nested variables. This is a significant difference to for example C89 struct variables,
which have a value that must be stored within a locally coherent piece of memory, a
requirement necessary to enable efficient struct value assignment or referencing via
pointers (neither exists in GALEC).

92 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

S-TODO.TODO (left- and right-hand of assignments / Side-effect-analysis, terminology):
Single-assignments and multi-assignments are called assignment. The first child of an
assignment is called its left-hand; the third child its right-hand.

S-TODO.TODO (non-writeable control-inputs, input parameters and loop iterators; side-
effect-freeness of stateless functions / Side-effect-analysis): State-references contained in
the left-hand of an assignment must not refer to control-inputs. Local-references contained in
the left-hand of an assignment must not refer to input parameters or loop-iterator-
declarations.

Stateless functions must not contain an assignment whose left-hand contains a state-
reference; and they must not transitively call stateful functions.

3.2.5. Error handling

GALEC incorporates dedicated language means for systematic, reliable and guaranteed error
handling. Three integrated concepts can be distinguished: (1) error signals with enforced signal
handling seamlessly incorporated into normal program control-flow, (2) well-defined floating point
operations with guaranteed quiet Not-a-Number propagation and (3) variable ranges for guaranteed
block saturation. Together, these concepts enable delayed, but ensured error handling avoiding any
need to immediately check each and every possible failing operation by means of a plethora of
exceptions.

The following sections present these three concepts.

§1: Error Signals

§1.1: Error-signal-declaration semantic

An error-signal-declaration D of the from

1 error-signal-declaration = "signal", identifier, ";" ;

is called an error signal. The name of an error signal is the name of its contained identifier; its name
must be unique within the block D is part of.

Let Predefined be the following sequence of characters

1 signal INVALID_ARGUMENT;
2 signal OVERFLOW;
3 signal NAN;
4 signal SOLVE_LINEAR_EQUATIONS_FAILED;
5 signal NO_SOLUTION_FOUND;
6 signal UNSPECIFIED_ERROR;

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 93 (251)

Predefined implicitly follows the characters matched by the 6th child of block; its error signals are
called predefined. Any other error signals are called user-defined.

R-1 (purpose of pre-defined error signals / Runtime-semantic): Above specification implies
that pre- and user-defined error signals are error signals and can therefore be explicitly
signaled and checked by user-code.

The typical application of pre-defined error signals is however not block function internal error
handling, but to expose block-interface method errors to the runtime environment (cf. §1.3
and §1.6). The intended meaning of each pre-defined error signal is:

• INVALID_ARGUMENT: Unspecified error in one or more input arguments.

• OVERFLOW: Some computed floating point value is -∞ or +∞.

• NAN: Some computed floating point value is qNaN.

• SOLVE_LINEAR_EQUATIONS_FAILED: Solving a linear equation system via the
solveLinearEquations builtin function failed.

• NO_SOLUTION_FOUND: Not used for solveLinearEquations, but for example if an
optimizer, special nonlinear solver etc. does not find a solution.

• UNSPECIFIED_ERROR: Error that is not further specified.

§1.2: Error-signal-statement semantic

A error-signal statement S of the form

1 error-signal-statement =
2 "signal",
3 identifier, (* Set of signals set, at least one AND/OR signal-closure propagation
 *)
4 { ",", identifier } ; (* Set of signals set, at least one AND/OR signal-closure propagation
 *)

has the following semantic:

1. Each identifier s of S referring to a signal-closure variable s in scope sets all the signals of s
whenever S is executed (cf. §1.4 for the definition of signal-closure variables).

2. Any other identifier s of S must refer to an error signal e. Whenever S is executed, e is set.

3. The union of all error signals set by S is called the signal-set of S.

§1.3: Functional error interface and exposed error signals

A function-declaration F of the form

 1 function-declaration =
 2 ("function" | "method"),
 3 name,

94 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

 4 [signal-interface], (* 3rd child defining the signal-set -- i.e, exposed error signals --
 of the function *)
 5 { parameter-declaration },
 6 ["protected", { local-variable-declaration }],
 7 "algorithm",
 8 { statement },
 9 "end",
10 name,
11 ";" ;

has the following semantic w.r.t. error handling:

1. Let all identifiers contained in the 3rd child of F form the signal-set S of F. Each element s of S
must refer to an error signal e; each such e is called an exposed error signal of F and F is said to
expose e.

2. Block-interface functions must not expose user-defined error signals.

3. The signal-set of F must be identical to the out-reachable-signals-set an imaginary final statement
following the last statement of F would have (cf. §1.5 for the definition of out-reachable-signals-
set).

§1.4: Error-signal-check semantic

An error-signal-check of the form

 1 error-signal-check =
 2 "signal",
 3 [identifier], (* Optional signal-closure *)
 4 [
 5 ["not"], (* Optional signal-test-negation *)
 6 "in",
 7 identifier, (* Set of signals tested, at least one *)
 8 { ",", identifier }, (* Set of signals tested, at least one *)
 9],
10 ["or", expression] ; (* Optional fallback-condition *)

has the following semantic:

1. A signal-closure is a scoped variable that captures the current error-state (i.e., all the currently set
error signals). Its scope is, similar to loop-iterators, the branch-body of the error-signal-
check — called error-signal-check-body. A signal-closure must never be assigned to.

2. We define the signal-test-set of an error-signal-check as follows (cf. §1.5 for the definition of in-
reachable-signals-set):

◦ At least one signal tested is given: If, and only if, no signal-test-negation is given, the signal-
test-set comprises all signals tested; otherwise, it comprises the signals of the in-reachable-
signals-set of the error-signal-check minus the set of all signals tested.

◦ No signal tested is given: The signal-test-set is the in-reachable-signals-set; the error-signal-
check is called unrestricted.

The signal-test-set must be non-empty and a subset of the in-reachable-signals-set of the error-

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 95 (251)

signal-check.

1. An error-signal-check is signal-satisfied, if, and only if, any of the signals of its signal-test-set is set
when it is executed.

2. An error-signal-check is conditional-satisfied, if, and only if, it is not signal-satisfied and has an
optional fallback-condition that is satisfied when the error-signal-check is executed.

3. An error-signal-check is satisfied if it is signal-satisfied or conditional-satisfied.

4. The error-signal-check-body B of an error-signal-check C is the executed branch-body of its if-
statement, if, and only if, C is satisfied. In this case, all signals of the signal-test-set of C are unset
immediately before the execution of B but after initializing the signal-closure if any.

§1.5: Error signal propagation semantic: static signal propagation analysis and reachable-signals-set

§1.3 and §1.4 require that (1) functions only expose error signals that can be signaled within their
body but are not checked thereafter for any of their possible control-flows and (2) error-checks only
check for error signals that can be set according to their preceding control-flow. To enforce these
restrictions, a static analysis deciding which error signals could be set at any point of execution is
required.

To that end, we define for expressions and statements which additional error signals they can
set — their signal-set — and for statements and the branches of if-statements, particularly error-
signal-check branches, which error signals can be set right before their execution and right
after — their in-reachable-signals-set and out-reachable-signals-set.

The signal-sets of expressions and statements are:

1. The signal-set of a function-call is the referred function’s signal-set. The signal-set of any other
expression is the union of the signal-sets of its contained function-calls.

2. The signal-set of single-assignments and multi-assignments is the signal-set of their right-hand
sides.

3. The signal-set of a for-loop is the out-reachable-signals-set of its last statement.

4. The signal-set of an if-statement is the union of the out-reachable-signals-sets of the last
statements of its branch-bodies.

The in-reachable-signals-sets and out-reachable-signals-sets of statements and the branches of if-
statements are:

1. The in-reachable-signals-set of the first statement S of a function-body is the empty set.

2. The in-reachable-signals-set of the first branch-condition of an if-statement S is the in-reachable-
signals-set of S; for any further branch-condition of S it is the out-reachable-signals-set of its
preceding branch-condition (important: preceding branch-condition, not branch-body of
preceding branch).

3. The in-reachable-signals-set of the branch-body of a branch B of an if-statement is the out-
reachable-signals-set of the branch-condition of B.

4. The in-reachable-signals-set of any other statement S is the union of the out-reachable-signals-
sets of all its preceding statements (according to control-flow).

96 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

5. The out-reachable-signals-set of an error-signal-check branch-condition is its in-reachable-
signals-set minus its signal-test-set, finally unified with the signal-set of its fallback-condition if
any. The out-reachable-signals-set for a non error-signal-check branch-condition is its in-
reachable-signals-set unified with the signal-set of its condition.

6. The out-reachable-signals-set of an if-statement is the out-reachable-signals-set of its last branch-
condition unified with its signal-set.

7. The out-reachable-signals-set of any other statement is its in-reachable-signals-set unified with its
signal-set.

§1.6: Production Code and exposing error signals to the runtime environment

Since block-interface methods can only expose the 6 pre-defined error signals (cf. §1.3), a definition
of signal-communication with the runtime environment is only required for such. To that end a
unique mapping of each pre-defined error signal to a unique bit position within a 32 bit integer value
is defined. These mappings are bidirectional, such that all exposed error signals can be returned to
the runtime environment encoded in a single 32 bit integer value. The bit positions of the pre-
defined error signals are:

• Bit 0: INVALID_ARGUMENT

• Bit 1: OVERFLOW

• Bit 2: NAN

• Bit 3: SOLVE_LINEAR_EQUATIONS_FAILED

• Bit 4: NO_SOLUTION_FOUND

• Bit 5: UNSPECIFIED_ERROR

Bit positions 6 to 15 of the returned error value are reserved for the future if there is need to add
further pre-defined error signals in later specification versions; for now these bits must be never set
by error values returned to the runtime environment.

To enable easy Production Code generator implementation by encoding all error signals — i.e., pre-
and user-defined — in single, uniquely laid out (i.e., uniform bit position accessible) 32 bit integer
values, GALEC programs must contain at most 16 user-defined error signals (i.e., 32 - 6 pre-defined -
10 reserved).

R-1 (need for bit-wise pre-defined error signals for Behavioral Model representation
based testing): It is important to enable reference testing of the exposed error signals of
block-interface methods. Besides the common case to ensure no errors are encounted, also
testing for expected errors — if for example a block is misused outside its required operational
range — are deliberately supported by eFMI Behavioral Model representations (cf. §1.1 and §4
of Section 4.2). Such tests require a reference trajectory for the expected error signals, whose
values are in turn compared to the actual error signal values exposed by tested production or
binary code. Hence, a well-defined encoding of exposed error signal values is required. To that
end, exposed error signal values are restricted to pre-defined error signals encoded according
to §1.6 (cf. also §1.1:R-1).

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 97 (251)

Examples

E-1: The following example sketches a typical mixed-mode coding style, where some error
cases are avoided in the first place by special operation modes of the controller and others are
treated after something failed by testing for respective error signals:

 1 /*
 2 Safe common control-code, potentially selecting or deselecting special
 3 modes of operation:
 4 */
 5 ...
 6 v := f(A); /* Assume f may signal the error f_ERROR. */
 7 ...
 8 if signal in f_ERROR or not(check(v)) then
 9 /*
10 Error-handling path if f(A) signaled an f_ERROR or
11 returned a v not satisfying some check:
12 */
13 ...
14 elseif self.operation_mode == 1 then
15 /*
16 Safe control-code for some special operation mode:
17 */
18 ...
19 elseif self.operation_mode == 2 then
20 /*
21 Safe control-code for some special operation mode:
22 */
23 ...
24 else
25 /*
26 Control-code for normal mode of operations:
27 */
28 ...
29 x := solveLinearEquations(A, b * v);
30 ...
31 if signal in SOLVE_LINEAR_EQUATIONS_FAILED then
32 /*
33 Handle the special case that the system of linear equations
34 has no solution:
35 */
36 ...
37 elseif signal then
38 /*
39 Handle any other unexpected error of the NORMAL operation mode:
40 */
41 ...
42 end if;
43 end if;
44
45 if signal s then
46 /*
47 The common control-code or the special modes of operation that are
48 supposed to be safe missed some error case or introduced
49 errors themselves. We now can set the control-outputs and state
50 variables to some reasonable default values, e.g., reinitialize

98 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

51 the controller, and propagate the unexpected error signals to the runtime
 environment:
52 */
53 ...
54 signal s;
55 end if;

E-2: The following example summarises all possible combinations of error signaling and
checking:

 1 method MyMethod
 2 /*
 3 (1) Signal interface of functions (signals exposed to callees):
 4 */
 5 signals invalid_gear_switch, to_high_velocity;
 6 protected
 7 algorithm
 8 ...
 9 /*
10 (2) Universal signal checks, catching and un-setting all signals set:
11 */
12 if signal then
13 ...
14 end if;
15 ...
16 /*
17 (3) Specialized signal checks, catching and un-setting
18 all signals within a specific set:
19 */
20 if signal in error1, error2 then
21 ...
22 end if;
23 ...
24 /*
25 (4) Restricted universal signal checks, catching any signal that is
26 not within a certain set:
27 */
28 if signal not in invalid_gear_switch, to_high_velocity then
29 ...
30 end if;
31 ...
32 /*
33 (3) Checks with signal variables capturing all signals
34 set at the check point:
35 */
36 if signal s then
37 ...
38 /*
39 (4) Propagation of signal variable, i.e., reset all
40 captured signals (they have been unset by the previous check):
41 */
42 signal s;
43 ...
44 else

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 99 (251)

45 ...
46 end if;
47 ...
48 if ... then
49 ...
50 /*
51 Explicit setting of signals, i.e., signaling of errors:
52 */
53 signal invalid_gear_switch, to_high_velocity;
54 ...
55 end if;
56 ...
57 /*
58 (*) And all kind of combinations of the above
59 (signals to check with signal variables, signal
60 propagation and explicit signaling):
61 */
62 if signal s in f1_error, f2_error or condition1 then
63 ...
64 signal s, invalid_gear_switch;
65 ...
66 elseif signal s not in invalid_gear_switch, to_high_velocity or condition2 then
67 ...
68 signal s;
69 ...
70 end if;
71 ...
72 /*
73 Catch all signals not exposed according to the function's interface:
74 */
75 if signal not in invalid_gear_switch, to_high_velocity then
76 end if;
77 end MyMethod;

E-3: The following example shows typical violations of error signal propagation, demonstrating
the advantages of a strict static signal-propagation analysis for code hardening:

 1 function f
 2 /*
 3 Invalid: Exposed error signal can never be signaled.
 4
 5 Error1 is always handled on all possible control-flow
 6 paths within the function.
 7
 8 Invalid: Uncatched error signal not exposed.
 9
 10 There exists a control-flow path within the function
 11 on which Error2 is signaled, but never handled.
 12 */
 13 signals UNSPECIFIED_ERROR;
 14 input Real i;
 15 output Real o;
 16 protected
 17 algorithm

100 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

 18 if i > 100.0 then
 19 signal Error1;
 20 elseif i > 200.0 then
 21 signal Error2;
 22 end if;
 23 o := 2.0 * i;
 24 if signal in Error1 or o > 350.0 then
 25 o := 350.0;
 26 end if;
 27 end f;
 28
 29 method DoStep
 30 /*
 31 Invalid: Uncatched error signal not exposed.
 32
 33 There exists a control-flow path within the function
 34 on which UNSPECIFIED_ERROR is signaled, but never handled.
 35
 36 Invalid: Block-interface method exposes not
 37 pre-defined error signal.
 38
 39 Error1 is not a pre-defined error signal.
 40 */
 41 signals Error1;
 42 protected
 43 algorithm
 44 ...
 45 f(1.0);
 46 ...
 47 if signal s then
 48 ...
 49 s := Error1; /* Invalid: Signal-closures must not be assigned to. */
 50 elseif signal in Error1 then
 51 /*
 52 Invalid: Signal-test-sets must be non-empty.
 53
 54 The preceding branch already handles all error signals since it
 55 is an unrestricted error-signal-check.
 56 */
 57 end if;
 58
 59 signal Error1;
 60
 61 if signal in Error1, UNSPECIFIED_ERROR then
 62 /*
 63 Invalid: The signal-test-set is not a subset of the
 64 in-reachable-signals-set.
 65
 66 UNSPECIFIED_ERROR can never be set at this point.
 67 */
 68 ...
 69 signal UNSPECIFIED_ERROR;
 70 elseif signal in UNSPECIFIED_ERROR then
 71 /*
 72 Invalid: The signal test-set is not a subset of the
 73 in-reachable-signals-set.
 74
 75 UNSPECIFIED_ERROR can never be set at this point.

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 101 (251)

 76 The signal-set of the error-signal-check-body of the
 77 preceding branch cannot be handled by this branch;
 78 it requires handling in a completely separate if-statement.
 79 */
 80 end if;
 81
 82 signal Error1;
 83 if signal in Error1 then
 84 end if;
 85 if signal in Error1 then
 86 /*
 87 Invalid: Signal-test-sets must be non-empty.
 88
 89 The preceding if-statement already implicitly unsets
 90 Error1 when its single error-signal-check is satisfied.
 91 */
 92 end if;
 93
 94 signal Error1;
 95 end DoStep;
 96
 97 method Startup
 98 protected
 99 algorithm
100 /* signal in E; */
101 /*
102 The following if-statement is invalid even if the
103 previous line is uncommented.
104 */
105 if signal not in E then /* Invalid: Signal-test-sets must be non-empty. */
106 end if;
107 end Startup;

Example 4: The following function fragment investigates interesting corner-cases of error signal
propagation. It is well-suited to exercise the formal definitions of signal-set, in-reachable-signals-set
and out-reachable-signals-set of if-statements. The left-out code hooks denoted by … are assumed to
be arbitrary code not setting or checking error signals.

 1 function f
 2 signals f_Error;
 3 output Boolean b;
 4 protected
 5 algorithm
 6 b := true;
 7 signal f_Error;
 8 end f;
 9
10 method DoStep
11 ...
12 algorithm
13 ...
14 if signal then /* Unset all error signals. */
15 end if;
16 signal in TestDefinitions1, TestDefinitions2;

102 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

17 if signal in TestDefinitions1 then
18 ...
19 signal TestDefinitions3;
20 ...
21 elseif signal in TestDefinitions2 then
22 ...
23 if signal TestDefinitions3 then
24 ...
25 end if;
26 ...
27 elseif signal in TestDefinitions3 then
28 ...
29 end if;
30 /*
31 At this point still TestDefinitions2 and TestDefinitions3 WILL be
32 set because only the first branch was tested, its test signal-satisfied,
33 the tested signal TestDefinitions1 unset and its body executed.
34 */
35 ...
36 if signal then /* Unset all error signals. */
37 end if;
38 signal TestDefinitions1, TestDefinitions2;
39 if signal in TestDefinitions1 then
40 ...
41 if signal in TestDefinitions2 then
42 ...
43 end if;
44 ...
45 end if;
46 /* At this point no error signals WILL be set. */
47 ...
48 /*
49 Assume for the following code an execution where NotSetSignal
50 is not set:
51 */
52 if signal not in NotSetSignal then /* Unset all error signals except NotSetSignal. */
53 end if;
54 i := 2;
55 if signal in NotSetSignal or f() /* Cf. definition of f above! */ then
56 i := 2 * i;
57 elseif signal in f_Error then
58 i := 2 * i;
59 signal f_Error;
60 /*
61 The following branch would be invalid, because f_Error can never be set when it is tested:
62 elseif signal in f_Error then
63 i := 2 * i;
64 */
65 end if;
66 /* At this point i WILL be 8 and f_Error set. */
67 end DoStep;

§2: -∞, +∞ and quiet Not-a-Number propagation

GALEC assumes that the target system of the generated production code is compliant to IEEE
Standard 754-2008. Even if GALEC code is as much as possible target independent, there are corner

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 103 (251)

cases in which the properties of the target system need to be taken into account in GALEC. If a target
system is not fully compliant to IEEE 754-2019, it should still be possible to map GALEC code to such a
target, since only a small subset of IEEE 754-2019 is used and/or potential deviations in corner cases
might still be acceptable [(for example, if a processor does not support -∞ or +∞ handling, but
saturates automatically to the largest/smallest representable floating point number)]. Note, in the
following, IEEE 754 shall always mean IEEE 754-2019. Deviations to this standard are explicitly
marked.

The language assumes, following IEEE 754 section 6, that exception handling of the processor is
configured so that an overflow of Real numbers is handled automatically by the processor for all
language operators without generating exceptions by mapping negative and positive overflows to -∞
and +∞ respectively (e.g. 2.0 < 1.0 / 0.0 is true). With built-in function isInfinite(r) it can be
inquired whether a Real variable r is -∞ or +∞ (e.g. isInfinite(1.0 / 0.0) returns true).

The language also assumes that IEEE 754 exception handling of the processor is always configured
to never generate an exception in case of underflow of Real numbers (so deviating from the default
exception handling of IEEE 754, section 7.5).

If the result of a mathematical operation on Real numbers is mathematically undefined (for example
lg(-1.0) or 0.0 / 0.0), then the standard operators of the language return quiet Not-a-Number
(qNaN) as defined by IEEE 754, section 7.5. It is assumed that the processor is configured so that qNaN
values are automatically propagated through all operations without generating exceptions (hence
quiet Not-a-Number). With built-in function isNaN(r) it can be inquired whether a Real variable r
has qNaN as value or not.

All relational operators (<, >, <=, >=, ==, <>) trigger error signal NAN if one of their operands is
qNaN. In such a case the operator returns false. Conceptually, every relational operator a ⊕ b is
mapped to a built-in function call f_⊕(a, b) with f_⊕ defined as:

 1 function f_⊕
 2 signals NAN;
 3 input Real a;
 4 input Real b;
 5 output Boolean y;
 6 algorithm
 7 if isNaN(a) or isNaN(b) then
 8 signal NAN;
 9 y := false;
10 else
11 y := a ⊕ b;
12 end if;
13 end f_⊕;

[In C this function can be implemented efficiently for example as the expression (isNaN(a) ||
isNaN(b) ? (error_signal |= Bitmask setting NAN, 0) : a ⊕ b).]

All built-in functions (see section Section 3.2.6) that can have qNaN input arguments and are not able
to propagate qNaN because the output argument(s) are not of type Real trigger the NAN error signal.

[Note, potential issues as sketched in Agner 2019 [https://www.agner.org/optimize/nan_propagation.pdf] are

104 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

https://www.agner.org/optimize/nan_propagation.pdf

not critical because relational operators and builtin functions trigger the NAN error signal if a qNaN
value cannot be propagated.]

For some built-in functions that can return qNaN, also companion built-in functions are provided, that
do not return qNaN, provided none of the input arguments is qNaN. These functions start with the
prefix safe_ and achieve this behavior (conceptually) by automatic limitation of their input
argument(s).

§3: Variable Ranges, explicit and implicit limitation and block saturation

All variables can be declared with range attributes min and/or max; variables with range attributes
are called ranged.

Ranged variables are limited to their defined range at a particular point of execution by means of
limit-statements. If a variable v is ranged with lower bound ⊥ and upper bound ⊤, then the
statement limit v; is equivalent to v := (if v < ⊥ then ⊥ elseif v > ⊤ then ⊤
else v);. If v has only a lower bound ⊥, limit v is equivalent to v := (if v < ⊥ then ⊥
else v);. If v has only an upper bound ⊤, limit v; is equivalent to v := (if v > ⊤ then ⊤
else v);. Limiting a non-ranged entity has no effect.

[Above definition implies that limitation on qNaN values has no effect (the variable’s value remains
qNaN).]

limit can also be used to limit all state variables according to their ranges (using keyword self), or
all nested state variables of a certain state component (by referring to that very state component):

1 limit self; /* Limits all ranged state variables. */
2 limit c; /* Assume c refers to a state component: limits all nested state variables of c. */

A single limit statement can limit a set of entities. For example,

1 limit self.c.d.vc, self.v, self.c, l;

limits the variable self.c.d.vc (assuming self.c.d refers to a state component and d is one of its
variables), the state variable self.v (assuming self.v refers to a state variable), all nested variables
of the state component self.c (assuming self.c refers to a state component) and the local
variable l.

Every block-interface method implicitly limits all state entities whenever the method is entered and
when it returns, except Startup(), which only limits on returning. The implicit semantic is:

 1 method Startup
 2 protected
 3 ...
 4 algorithm
 5 ...
 6 /* initialize stuff */
 7 ...
 8 limit self; /* Implicit by semantic of language. */

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 105 (251)

 9 end Startup;
10
11 method DoStep
12 protected
13 ...
14 algorithm
15 limit self; /* Implicit by semantic of language. */
16 ...
17 /* compute stuff */
18 ...
19 limit self; /* Implicit by semantic of language. */
20 end DoStep;
21
22 method Recalibrate
23 protected
24 ...
25 algorithm
26 limit self; /* Implicit by semantic of language. */
27 ...
28 /* compute stuff */
29 ...
30 limit self; /* Implicit by semantic of language. */
31 end Recalibrate;

Every function implicitly limits its inputs whenever the function is entered and its outputs when it
returns.

[Implicit limitation at the very beginning and end of block-interface methods means, that from the
perspective of the runtime environment ranged state variables are effectively saturated at their
defined ranges; the block as such is saturated and guarantees operation within its limits (except for
state variables with qNaN values that need special error handling).

Production Code generators are free to optimize and minimize limitation of variables. For example,
limitation of constants, tunable parameters and dependent parameters will never be required in
DoStep(), since such cannot be assigned new values and their limitation is already performed in
Startup() and Recalibrate() respectively. Limitation of inputs is only needed at the very
beginning of DoStep() code, because inputs are not changed afterwards. Limitation of outputs is
only needed at the end of the DoStep() code. Limitation of states needs to be performed only at the
end of Startup() and the end of DoStep(), because the states are just passed between DoStep()
calls and then it is guaranteed that a state that is limited at the end of the previous DoStep() call
remains limited at the very beginning of the next DoStep() call. Furthermore, interval arithmetic
analyses can be used to conclude that a variable will never be outside of its valid range, such that
limitation code for it can be avoided.

The rationale why limitation is not implicitly performed on every assignment to a ranged variable
(i.e., why GALEC has no strict saturation arithmetic) is, that numerical algorithms and particularly
integration typically fail if values are not continuous over time. For example, an integration algorithm
such as a Runge-Kutta method of order 4 may not work as expected, if states are limited during one
step because the smoothness requirements of the integration method are violated. Furthermore,
limitations in the middle of computations often inadvertently break algebraic characteristics like
distributivity and commutativity that are essential for symbolic processing and optimization. These
pitfalls of limitation are however not violated by the implicit limitations at the very start and end of

106 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

block-interface methods; the block as such — its interface — is saturated from the perspective of the
runtime environment. Throughout the execution of a block-interface method however, variables may
very-well get values assigned outside of their defined ranges.]

§4: Error Handling Recommendations

In practice it is typically required that all control-outputs are guaranteed to never be qNaN and always
be within their defined ranges. To that end, the following actions are recommended:

• Provide min/max values for state variables, particularly control-inputs, -outputs and tunable
parameters. Implicit limitation will guarantee, that the state variables are in their defined ranges
when a block-interface method returns, or the variable values are qNaN.

• Before leaving DoStep(), check that none of the control-outputs is qNaN and that the error
signal is not NAN. If one of these conditions does not hold, take appropriate actions, for example
restore the state from the previous sample instant, compute the control-outputs with a backup
algorithm (e.g. P-controller) that does not produce qNaN values, or provide a default control-
output, e.g. zero. In any case, the returned outputs should never be qNaN.

• Use the safe_⊕ builtin functions (see below) if this is possible, in order that qNaN values are not
generated.

• Often problematic is the /-operator. A general approach to handle division in a meaningful way
for all possible circumstances seems impossible. However, in many cases the time-varying
denominator is guaranteed to not change sign; examples are: dividing by density, mass fraction,
gear efficiency or slip. In such cases, the built-in operator safe_posdiv(num, den, eps)
should be used that provides a meaningful approximation of num / den without generating
qNaN values, if it is guaranteed that den >= 0.

3.2.6. Built-in Functions

In this section the built-in functions are defined. If the built-in function is also defined in IEEE 754-
2019, the semantic of the built-in function is according to this standard.

Any function that has Real input and Real output arguments can usually return qNaN, because an
input argument might be qNaN that is typically propagated to one or more outputs. Whenever a
function can return qNaN (either because it is generated inside the function or a qNaN input can be
propagated to an output), this is explicitly mentioned and also in which situation this occurs. For
many built-in functions ⊕ that can generate qNaN, there is also a function safe_⊕ that
approximates ⊕ so that no qNaN is generated, in case this approximation is useful (but of course
such a function can still return qNaN if the input is qNaN).

A built-in function only returns an error signal if explicitly mentioned in its definition below; most
builtin functions do not signal any errors and instead rely on qNaN propagation.

Overview

In the following table, an overview of the built-in functions is given (the follow-up sub-section
contains the precise definition of the built-in functions):

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 107 (251)

Function-Name Description

Properties of Integer

minInteger() Target-specific smallest Integer.

maxInteger() Target-specific largest Integer.

Properties of Real

minReal() Target-specific smallest Real r <> minusInfinite().

maxReal() Target-specific largest Real r <> plusInfinite().

r := posMinReal() Target-specific smallest Real r > 0.0.

r := epsReal() Target-specific largest Real r > 0.0 such that 1.0 + r == 1.0.

nan() Target-specific quiet not-a-number representation (qNaN).

isNaN(x) true if x is the target-specific qNaN representation; otherwise false.

minusInfinite() Target-specific -∞ representation.

plusInfinite() Target-specific +∞ representation.

isInfinite(x) true if x is -∞ or +∞; otherwise false.

isFinite(x) true if x is finite (neither -∞ nor +∞ nor qNaN); otherwise false.

Multi-dimensional properties of Real

hasNaN1D(x) true if at least one element of vector x is qNaN; otherwise false.

hasNaN2D(x) true if at least one element of matrix x is qNaN; otherwise false.

Numeric type conversions

real(i) Convert Integer i to Real.

integer(r) Convert Real r to Integer by truncation (roundTowardsZero(r)).
Signals NAN if r is qNaN in which case 0 is returned.
Signals OVERFLOW if r can not be represented as Integer, in which case
0 is returned.

Direct Real rounding

roundDown(r) Round r towards -∞ (also known as floor).
Returns qNaN if r is qNaN.

roundUp(r) Round r towards +∞ (also known as ceil).
Returns qNaN if r is qNaN.

Nearest Real rounding (using a tie-breaking rule)

roundHalfToEven(r) Also known as convergent rounding, statistician’s rounding, Dutch
rounding.
Returns qNaN if r is qNaN.

Division of Integers using rounding

divisionTowardsZero(i
1, i2)

Divide i1 by i2, rounding the result towards zero. Same as div(i1,
i2) in C99.

108 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Function-Name Description

Remainder of Integers using rounding

remainderTowardsZero(
i1, i2)

i1 divided by i2 and the quotient rounded towards zero. Same as
rem(i1, i2) in C99.

Remainder of Reals using rounding

realRemainderTowardsZ
ero(r1, r2)

Real remainder with rounding towards zero (r1 - r2 *
roundTowardsZero(r1 / r2)).
Returns qNaN if r1 or r2 are qNaN.

Relational Integer functions

imin(i1, i2) Minimum of i1 and i2.

imax(i1, i2) Maximum of i1 and i2.

Relational Real functions

min(r1, r2) Minimum of Real variables r1 and r2.
Returns qNaN if r1 or r2 are qNaN.

max(r1, r2) Maximum of Real variables r1 and r2.
Returns qNaN if r1 or r2 are qNaN.

Mathematical Real constants and functions

euler() Target-specific, most-precise representation of Euler’s number ℯ (=
2.71828…).

y := sign(x) Sign of x (if x is positive: y == 1.0, negative: y == -1.0, zero: y ==
0.0).
Returns qNaN if x is qNaN.

absolute(x) Absolute value of Real variable x.
Returns qNaN if x is qNaN.

fractional(x) Fractional part of Real variable x.
Returns qNaN if x is qNaN.

sqrt(x) Square root of x.
Returns qNaN if x is qNaN or x < 0.0.

exp(x) Natural base exponential of x.

ln(x) Natural logarithm of x.
Returns qNaN if x is qNaN or x < 0.0.

lg(x) Logarithm of x to base 10.
Returns qNaN if x is qNaN or x < 0.0.

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 109 (251)

Function-Name Description

safe_posdiv(xn, xd,
eps)

qNaN-free division of xn by xd: xn / (if xd >= eps then xd else
eps).
Saturates eps(min = posMinReal()).
Returns qNaN if xn, xd or eps are qNaN.

safe_sqrt(x) qNaN-free square root of x: sqrt(if x >= 0.0 then x else 0.0).
Returns qNaN if x is qNaN.

safe_ln(x) qNaN-free natural logarithm of x: log(if x >= 0.0 then x else
0.0).
Returns qNaN if x is qNaN.

110 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Function-Name Description

safe_lg(x) qNaN-free logarithm to base 10 of x: lg(if x >= 0.0 then x else
0.0).
Returns qNaN if x is qNaN.

Trigonometric Real constants and functions

pi() Target-specific, most-precise representation of π (= 3.14159…),
the ratio of a circle’s circumference to its diameter.

sin(x) Sine of x.
Returns qNaN if x is qNaN, -∞ or +∞.

cos(x) Cosine of x.
Returns qNaN if x is qNaN, -∞ or +∞.

tan(x) Tangent of x.
Returns qNaN if x is qNaN, -∞, +∞ or isInfinite(sin(x) / cos(x))
(x is an odd multitude of π/2).

y := asin(x) Inverse of sin(x) in the range -π/2 ≤ y ≤ π/2.
Returns qNaN if x is qNaN, x < -1.0 or x > 1.0.

y := acos(x) Inverse of cos(x) in the range 0 ≤ y ≤ π.
Returns qNaN if x is qNaN, x < -1.0 or x > 1.0.

y := atan(x) Inverse of tan(x) in the range -π/2 < y < π/2.
Returns qNaN if x is qNaN; -π/2 if x is -∞; π/2 if x is +∞.

z := atan2(y, x) Inverse two-argument tangent in the range -π < z ≤ π (angle in the
Euclidean plane, given in radians, between the positive x axis and the
ray to the point (x, y)).
Returns qNaN if y or x are qNaN or y == 0.0 and x == 0.0.

sinh(x) Hyperbolic sine of x.
Returns qNaN if x is qNaN.

cosh(x) Hyperbolic cosine of x.
Returns qNaN if x is qNaN.

tanh(x) Hyperbolic tangent of x.
Returns qNaN if x is qNaN.

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 111 (251)

Function-Name Description

safe_tan(x) qNaN-free tangent of x: if x ≥ π/2 then ∞ elseif x ≤ -π/2
then -∞ else tan(x).
Returns qNaN if x is qNaN.

safe_asin(x) qNaN-free inverse sine of x: asin(if x > 1.0 then 1.0 elseif x
< -1.0 then -1.0 else x).
Returns qNaN if x is qNaN.

safe_acos(x) qNaN-free inverse cosine of x: acos(if x > 1.0 then 1.0 elseif
x < -1.0 then -1.0 else x).
Returns qNaN if x is qNaN.

Systems of linear equations

x :=
solveLinearEquations(
A, b)

Solution x for linear equations system A*x=b.
Signals SOLVE_LINEAR_EQUATIONS_FAILED if no unique solution
exists or hasNaN2D(A) == true or hasNaN1D(b) == true, in
which case allNaN1D(x) == true.

112 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Function-Name Description

(LU, pivots) :=
luFactorize(A)

LU decomposition with partial pivoting of square matrix A.
Signals SOLVE_LINEAR_EQUATIONS_FAILED if no unique solution
exists or hasNaN2D(A) == true, in which case allNaN2D(LU) ==
true.

x := luSolve(LU,
pivots, b)

Solution x for LU-factorized linear equations system L*U*x =
b[pivots], with LU == L*U.
Signals SOLVE_LINEAR_EQUATIONS_FAILED if no unique solution
exists or hasNaN2D(LU) == true or hasNaN1D(pivots) == true
or hasNaN1D(b) == true, in which case allNaN1D(x) == true.

Interpolation in 1D/2D/3D

interpolation1D(x1,
x1_data, nx1, y_data,
ipo, expo)

Constant/linear interpolation in 1D with extrapolation.
Saturates nx1(min = 2, max = size(x1_data, 1)),
interpolation(min = 1, max = 2), extrapolation(min = 1,
max = 2).

interpolation2D(x1,
x2, x1_data, nx1,
nx2_data, nx2,
y_data, ipo, expo)

Constant/linear interpolation in 2D with extrapolation.
Saturates nx1(min = 2, max = size(x1_data, 1)), nx2(min =
2, max = size(x2_data, 1)), interpolation(min = 1, max =
2), extrapolation(min = 1, max = 2).

interpolation3D(x1,
x2, x3, x1_data, nx1,
nx2_data, nx2,
nx3_data, nx3,
y_data, ipo, expo)

Constant/linear interpolation in 3D with extrapolation.

Precise Definitions

S-2.9 (builtin functions / Syntactical-structure, terminology): Let Cbuiltin = Cbuiltin1 ∘ Cbuiltin2 ∘
Cbuiltin3 ∘ Cbuiltin4 where each Cbuiltinn with n∈{1,2,…,4} is a sequence of characters defined in the
following and ∘ is the left-to-right concatenation of sequences of characters. Cbuiltin is implicitly
appended to each program; its functions are called builtin. Functions that are not builtin are
called user-defined.

In Appendix TODO further built-in functions are defined that are not yet part of the eFMI
standard but likely will be added in the future. Therefore, the names and functionality of these
functions are reserved. The following definition of built-in functions may refer to functions
defined in the appendix.

Cbuiltin1 is the following sequence of characters:

 1 /*
 2 Note: We distinguish integer and Integer. Integer with uppercase first letter is the
 type
 3 Integer -- a target-specific data-type -- whereas integer with lowercase first
 4 letter is the mathematic term for numbers without fractional component.

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 113 (251)

 Likewise,
 5 we distinguish real and Real.
 6 */
 7
 8 /**

 9 Properties of Integer:
 10 ***
 ****/
 11
 12 function minInteger
 13 output Integer i;
 14 algorithm /*
 15 i := target-specific smallest Integer;
 16 */ end minInteger;
 17
 18 function maxInteger
 19 output Integer i;
 20 algorithm /*
 21 i := target-specific largest Integer;
 22 */ end maxInteger;
 23
 24 /**

 25 Properties of Real:
 26 ***
 ****/
 27
 28 function minReal
 29 outputs Real r;
 30 algorithm /*
 31 r := target-specific smallest, not -∞ representing, Real;
 32 */ end minReal;
 33
 34 function maxReal
 35 outputs Real r;
 36 algorithm /*
 37 r := target-specific largest, not +∞ representing, Real;
 38 */ end maxReal;
 39
 40 function posMinReal
 41 output Real r;
 42 algorithm /*
 43 r := target-specific smallest Real > 0.0;
 44 */ end posMinReal;
 45
 46 function epsReal
 47 output Real r;
 48 algorithm /*
 49 r := target-specific largest Real r > 0.0 such that 1.0 + r == 1.0;
 50 */ end epsReal;
 51
 52 function nan
 53 output Real r;
 54 algorithm /*
 55 r := target-specific not-a-number representation;
 56 */ end nan;
 57

114 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

 58 function isNaN
 59 input Real r;
 60 output Boolean b;
 61 algorithm /*
 62 b := true if r is target-specific not-a-number representation, false otherwise (if
 IEEE 754-2019 is satisfied: 'b := r <> r;');
 63 */ end isNaN;
 64
 65 function minusInfinite
 66 output Real r;
 67 algorithm /*
 68 r := target-specific -∞ representation;
 69 */ end minusInfinite;
 70
 71 function plusInfinite
 72 output Real r;
 73 algorithm /*
 74 r := target-specific +∞ representation;
 75 */ end minusInfinite;
 76
 77 function isInfinite
 78 input Real r;
 79 output Boolean b;
 80 algorithm /*
 81 b := r == minusInfinite() or r == plusInfinite();
 82 if signal in NAN then
 83 b := false;
 84 end if;
 85 */ end isInfinite;
 86
 87 function isFinite
 88 input Real r;
 89 output Boolean b;
 90 algorithm /*
 91 b := not(isNaN(r)) and not(isInfinite(r));
 92 */ end isFinite;
 93
 94 /**

 95 Multi-dimensional properties of Real:
 96 ***
 ****/
 97
 98 function hasNaN1D
 99 input Real r[:];
100 output Boolean b;
101 algorithm /*
102 b := false;
103 for i in 1:size(r, 1)
104 if isNaN(r[i])
105 b := true;
106 end if;
107 end for;
108 */ end hasNaN1D;
109
110 function hasNaN2D
111 input Real r[:, :];
112 output Boolean b;

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 115 (251)

113 algorithm /*
114 b := false;
115 for i in 1:size(r, 1)
116 for j in 1:size(r, 2)
117 if isNaN(r[i, j])
118 b := true;
119 end if;
120 end for;
121 end for;
122 */ end hasNaN2D;
123
124 /**

125 Numeric type conversions:
126 ***
 ****/
127
128 function real
129 input Integer i;
130 output Real r;
131 algorithm /*
132 r := target-specific Real representation of i;
133 */ end real;
134
135 function integer
136 signals NAN, OVERFLOW;
137 input Real r;
138 output Integer i;
139 protected
140 Real tmp;
141 algorithm /*
142 i := 0;
143 tmp := roundTowardsZero(r); /* Returns qNaN if r is qNaN. */
144 if tmp < real(minInteger()) or tmp > real(maxInteger()) then
145 signal OVERFLOW;
146 elseif signal in NAN then
147 signal NAN; /* tmp was qNaN. */
148 else
149 i := target-specific Integer representation of tmp;
150 end if;
151 */ end integer;
152
153 /**

154 Direct Real rounding:
155 ***
 ****/
156
157 function roundDown
158 input Real r;
159 output Real i;
160 algorithm /*
161 /* Also known as: flooring, round towards -∞. */
162 if isNaN(r) then
163 i := nan();
164 else
165 i := target-specific greatest integer ≤ r;
166 end if;

116 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

167 */ end roundDown;
168
169 function roundUp
170 input Real r;
171 output Real i;
172 algorithm /*
173 /* Also known as: ceiling, round towards +∞. */
174 if isNaN(r) then
175 i := nan();
176 else
177 i := target-specific least integer >= r;
178 end if;
179 */ end roundUp;
180
181 /**

182 Nearest Real rounding (using a tie-breaking rule):
183 ***
 ****/
184
185 function roundHalfToEven
186 input Real r;
187 output Real i;
188 algorithm /*
189 /* Also known as: convergent rounding, statistician's rounding, Dutch rounding,
190 Gaussian rounding, odd–even rounding, bankers' rounding. */
191 i := (if roundHalfDown(r) < roundHalfUp(r)
192 then (if (r + 0.5 is even) then r + 0.5 else r - 0.5)
193 else roundHalfDown(r));
194 if signal in NAN or isNaN(r) then
195 i := nan();
196 end if;
197 */ end roundHalfToEven;
198
199 /**

200 Relational Integer functions:
201 ***
 ****/
202
203 function imin
204 input Integer u1;
205 input Integer u2;
206 output Integer y;
207 algorithm /*
208 y := (if u1 < u2 then u1 else u2);
209 */ end imin;
210
211 function imax
212 input Integer u1;
213 input Integer u2;
214 output Integer y;
215 algorithm /*
216 y := (if u1 > u2 then u1 else u2);
217 */ end imax;
218
219 /**

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 117 (251)

220 Relational Real functions:
221 ***
 ****/
222
223 function min
224 input Real u1;
225 input Real u2;
226 output Real y;
227 algorithm /*
228 y := (if u1 < u2 then u1 else u2);
229 if signal in NAN then
230 y := nan();
231 end if;
232 */ end min;
233
234 function max
235 input Real u1;
236 input Real u2;
237 output Real y;
238 algorithm /*
239 y := (if u1 > u2 then u1 else u2);
240 if signal in NAN then
241 y := nan();
242 end if;
243 */ end max;
244
245 /**

246 Mathematical Real constants and functions:
247 ***
 ****/
248
249 function euler
250 output Real r;
251 algorithm /*
252 r := target-specific, most-precise representation of ℯ;
253 */ end euler;
254
255 function sign
256 input Real r;
257 output Real i;
258 algorithm /*
259 i := (if r > 0.0 then 1.0 elseif r < 0.0 then -1.0 else 0.0);
260 if signal in NAN then
261 i := nan();
262 end if;
263 */ end sign;
264
265 function fractional
266 input Real x;
267 output Real y;
268 algorithm /*
269 y := x - roundTowardsZero(x);
270 */ end fractional;
271
272 function absolute
273 input Real x;
274 output Real y;

118 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

275 algorithm /*
276 y := sign(x) * x;
277 */ end absolute;
278
279 function sqrt
280 input Real x;
281 output Real y;
282 algorithm /*
283 if x < 0.0 then
284 y := nan();
285 elseif signal in NAN then
286 y := nan();
287 else
288 y := x^0.5;
289 end if;
290 */ end sqrt;
291
292 function exp
293 input Real x;
294 output Real y;
295 algorithm /*
296 y := euler()^x;
297 */ end exp;
298
299 function ln
300 input Real x;
301 output Real y;
302 algorithm /*
303 if x < 0.0 then
304 y := nan();
305 elseif signal in NAN then
306 y := nan();
307 else
308 y := natural logarithm of x;
309 end if;
310 */ end ln;
311
312 function lg
313 input Real x;
314 output Real y;
315 algorithm /*
316 if x < 0.0 then
317 y := nan();
318 elseif signal in NAN then
319 y := nan();
320 else
321 y := logarithm to base 10 of x;
322 end if;
323 */ end lg;
324
325 function safe_posdiv
326 input Real xn;
327 input Real xd;
328 input Real eps
329 (min = posMinReal());
330 output Real y;
331 algorithm /*
332 y := xn / (if xd >= eps then xd else eps);

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 119 (251)

333 if signal in NAN then
334 y := nan();
335 end if;
336 */ end safe_posdiv;
337
338 function safe_sqrt
339 input Real x;
340 output Real y;
341 algorithm /*
342 y := sqrt(if x < 0.0 then 0.0 else x);
343 if signal in NAN then
344 y := nan();
345 end if;
346 */ end safe_sqrt;
347
348 function safe_ln
349 input Real x;
350 output Real y;
351 algorithm /*
352 y := ln(if x < 0.0 then 0.0 else x);
353 if signal in NAN then
354 y := nan();
355 end if;
356 */ end safe_ln;
357
358 function safe_lg
359 input Real x;
360 output Real y;
361 algorithm /*
362 y := lg(if x < 0.0 then 0.0 else x);
363 if signal in NAN then
364 y := nan();
365 end if;
366 */ end safe_lg;
367
368 /**

369 Trigonometric Real constants and functions:
370 ***
 ****/
371
372 function pi
373 output Real r;
374 algorithm /*
375 r := target-specific, most-precise representation of π;
376 */ end pi;
377
378 function sin
379 input Real x;
380 output Real y;
381 algorithm /*
382 if not(isFinite(x)) then
383 y := nan();
384 else
385 y := sine of x;
386 end if;
387 */ end sin;
388

120 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

389 function cos
390 input Real x;
391 output Real y;
392 algorithm /*
393 if not(isFinite(x)) then
394 y := nan();
395 else
396 y := cosine of x;
397 end if;
398 */ end cos;
399
400 function tan
401 input Real x;
402 output Real y;
403 algorithm /*
404 if not(isFinite(x)) then
405 y := nan();
406 else
407 y := sin(x) / cos(x);
408 end if;
409 if isInfinite(y) then
410 y := nan();
411 end if;
412 */ end tan;
413
414 function asin
415 input Real x;
416 output Real y;
417 algorithm /*
418 if -1.0 <= x and x <= 1.0 then
419 y := inverse of sin(x) in the range -π/2 ≤ y ≤ π/2;
420 elseif signal in NAN or true then
421 y := nan();
422 end if;
423 */ end asin;
424
425 function acos
426 input Real x;
427 output Real y;
428 algorithm /*
429 if -1.0 <= x and x <= 1.0 then
430 y := inverse of cos(x) in the range 0 ≤ y ≤ π;
431 elseif signal in NAN or true then
432 y := nan();
433 end if;
434 */ end asin;
435
436 function atan
437 input Real x;
438 output Real y;
439 algorithm /*
440 if isNaN(x)) then
441 y := nan();
442 elseif isInfinite(x) then
443 y := sign(x) * pi() / 2.0;
444 else
445 y := inverse of tan(x) in the range -π/2 < y < π/2;
446 end if;

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 121 (251)

447 */ end atan;
448
449 function atan2
450 input Real y;
451 input Real x;
452 output Real z;
453 algorithm /*
454 z := (if x > 0.0 then atan(y / x)
455 elseif x < 0.0 and y >= 0.0 then atan(y / x) + pi()
456 elseif x < 0.0 and y < 0.0 then atan(y / x) - pi()
457 elseif y > 0.0 then pi() / 2.0
458 elseif y < 0.0 then -pi() / 2.0
459 else nan());
460 if signal in NAN then
461 z := nan();
462 end if;
463 */ end atan2;
464
465 function sinh
466 input Real x;
467 output Real y;
468 algorithm /*
469 y := (euler()^x - euler()^-x) / 2.0;
470 */ end sinh;
471
472 function cosh
473 input Real x;
474 output Real y;
475 algorithm /*
476 y := (euler()^x + euler()^-x) / 2.0;
477 */ end cosh;
478
479 function tanh
480 input Real x;
481 output Real y;
482 algorithm /*
483 y := sinh(x) / cosh(x);
484 */ end tanh;
485
486 function safe_tan
487 input Real x;
488 output Real y;
489 algorithm /*
490 y := (if x >= pi() / 2.0 then plusInfinite()
491 elseif x <= -pi() / 2.0 then minusInfinite()
492 else tan(x));
493 if signal in NAN then
494 y := nan();
495 end if;
496 */ end safe_tan;
497
498 function safe_asin
499 input Real x;
500 output Real y;
501 algorithm /*
502 y := asin(if x > 1.0 then 1.0 elseif x < -1.0 then -1.0 else x);
503 if signal in NAN then
504 y := nan();

122 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

505 end if;
506 */ end safe_asin;
507
508 function safe_acos
509 input Real x;
510 output Real y;
511 algorithm /*
512 y := acos(if x > 1.0 then 1.0 elseif x < -1.0 then -1.0 else x);
513 if signal in NAN then
514 y := nan();
515 end if;
516 */ end safe_acos;
517
518 /**

519 Systems of linear equations:
520 ***
 ****/
521
522 function solveLinearEquations
523 signals SOLVE_LINEAR_EQUATIONS_FAILED;
524 input Real A[:, size(A,1)];
525 input Real b[size(A,1)];
526 output Real x[size(A,1)];
527 algorithm /*
528 Solve system of linear equations A*x = b for x. Hereby it is assumed that matrix A is
529 regular. Typically, the function implements a direct Gaussian elimination with
 partial
530 pivoting. If A is singular, SOLVE_LINEAR_EQUATIONS_FAILED is signaled
531 and at least on element of x is set to qNaN.
532 */ end solveLinearEquations;
533
534 function luFactorize
535 signals SOLVE_LINEAR_EQUATIONS_FAILED;
536 input Real A[:, size(A, 1)];
537 output Real LU[:, size(A, 1)];
538 output Integer pivots[size(A, 1)];
539 /*
540 The function returns the LU decomposition with partial pivoting of the square,
541 matrix A: P*L*U = A where P is the permutation matrix (implicitely defined by vector
542 pivots), L is a lower triangular matrix with unit diagonal elements and U is an upper
543 triangular matrix. Matrices L and U are stored in matrix LU on return (the diagonal
 of
544 L is not stored). With the companion function luSolve, the factorization is used to
545 solve the linear system L*U*x = b[pivots] with different right hand side vectors b.
546
547 If A is singular, SOLVE_LINEAR_EQUATIONS_FAILED is signaled.
548
549 The algorithm below is "conceptual". A more efficient implementation uses
550 BLAS functions, see, e.g., LAPACK function DGETRF.
551 */
552 protected
553 Integer n;
554 Integer p; /* Pivot index. */
555 Integer pk;
556 Real temp;
557 Real eta;
558 Real d;

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 123 (251)

559 Real d_max;
560 Real di;
561 Real di_abs;
562 algorithm
563 n := size(A,1);
564 LU := A;
565 p := 1:n;
566 if n < 1 then
567 return;
568 end if;
569
570 for k in 1:n-1 loop
571 /* Find pivot */
572 p :=k;
573 d := LU[k,k];
574 d_max :=absolute(d);
575 for i in k+1:n loop
576 di := LU[i,k];
577 di_abs := abs(di);
578 if di_abs > d_max then
579 p := i;
580 d := di;
581 d_max := di_abs;
582 end if;
583 end for;
584
585 /* Test pivot for singularity */
586 if d == 0 then
587 signals SOLVE_LINEAR_EQUATIONS_FAILED;
588 else
589 /* Swap LU[k,j] and LU[p,j], for j = 1,....,n
590 as well as pivots[k] and pivots[p] */
591 if k <> p then
592 for j in 1:n loop
593 temp :=LU[k, j];
594 LU[k,j] :=LU[p, j];
595 LU[p,j] :=temp;
596 end for;
597 pk :=pivots[k];
598 pivots[k] :=pivots[p];
599 pivots[p] :=pk;
600 end if;
601
602 /* LU factors */
603 for i in k+1:n loop
604 eta :=LU[i,k]/d;
605 LU[i,k] :=eta;
606
607 for j in k+1:n loop
608 LU[i,j] :=LU[i,j] - eta*LU[k,j];
609 end for;
610 end for;
611 end if;
612 end for;
613 end luFactorize;
614
615 function luSolve
616 signals SOLVE_LINEAR_EQUATIONS_FAILED;

124 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

617 input Real LU[:, size(LU, 1)]; /* Returned from luFactorize. */
618 input Integer pivots[size(LU, 1)]; /* Returned from luFactorize. */
619 input Real b[size(LU, 1)];
620 output Real x[size(LU, 1)];
621 /*
622 The function returns the solution x of the linear system of equations:
623 L*U*x = b[pivots]
624 where L*U and pivots are computed by the companion function luFactorize.
625 If a unique solution cannot be computed (i.e., U is singular),
626 SOLVE_LINEAR_EQUATIONS_FAILED is signaled and at least one element of x is qNaN.
627
628 The algorithm below is "conceptual". A more efficient implementation uses
629 BLAS functions, see, e.g., LAPACK function DGETRS.
630 */
631 protected
632 Integer n=size(LU,1);
633 Real y[size(LU,1)];
634 algorithm
635 if n < 1 then
636 return;
637 end if;
638
639 /* Forward elimination */
640 for i in 1:n loop
641 y[i] := b[pivots[i]];
642 for j in 1:i-1 loop
643 y[i] :=y[i] - LU[i, j]*y[j];
644 end for;
645 end for;
646
647 /* Backward substitution */
648 for i in n:-1:1 loop
649 x[i] :=y[i];
650 for j in i+1:n loop
651 x[i] := x[i] - LU[i,j]*x[j];
652 end for;
653 x[i] := x[i]/LU[i,i];
654 if isNaN(x[i])
655 signals SOLVE_LINEAR_EQUATIONS_FAILED;
656 end
657 end for;
658 end luSolve;
659
660
661 /**

662 Interpolation in 1D/2D/3D:
663
664 In all functions the following options are used:
665 - interpolation = 1: constant bottom interpolation
666 = 2: linear interpolation
667 - extrapolation = 1: hold last value
668 = 2: linear extrapolation through last two boundary points
669
670 A production code generator would typically trigger an error, if the folloing
671 conditions are not fulfilled when calling one of the interpolation functions:
672 - The values in x1_data[1:nx1], x2_data[1:nx2], x3_data[1:nx3] are
673 strict monotonically increasing.

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 125 (251)

674 - The data arguments (x1_data, x2_data, x3_data, nx1, nxs2, nx3) are parameters.
675 - The option arguments (interpolation, extrapolation) are literal constants.
676
677 The production code generator decides which "search" method to use to find the
678 respective interval, or whether it can be directly found because there is an
679 equidistant grid.
680 ***
 ****/
681
682 function interpolation1D
683 input Real x1;
684 input Real x1_data[:]; /* Must be strict monotonically increasing values. */
685 input Integer nx1
686 (min = 2, max = size(x1_data, 1));
687 input Real y_data[size(x1_data, 1)];
688 input Integer interpolation
689 (min = 1, max = 2);
690 input Integer extrapolation
691 (min = 1, max = 2);
692 output Real y;
693 algorithm /*
694 Constant or linear interpolation in [x1_data[1:nx1], y_data[1:nx1]]
695 given the abszissa value x1.
696 */ end interpolation1D;
697
698 function interpolation2D
699 input Real x1;
700 input Real x2;
701 input Real x1_data[:]; /* Must be strict monotonically increasing values. */
702 input Integer nx1
703 (min = 2, max = size(x1_data, 1));
704 input Real x2_data[:]; /* Must be strict monotonically increasing values. */
705 input Integer nx2
706 (min = 2, max = size(x2_data, 1));
707 input Real y_data[size(x1_data, 1), size(x2_data, 1)];
708 input Integer interpolation
709 (min = 1, max = 2);
710 input Integer extrapolation
711 (min = 1, max = 2);
712 output Real y;
713 algorithm /*
714 Constant or linear interpolation with x1_data[1:nx1], x2_data[1:nx2]
715 abszissa values and y_data[1:nx1, 1:nx2] ordinate values, given the abszissa value
 x1, x2.
716 */ end interpolation2D;
717
718 function interpolation3D
719 input Real x1;
720 input Real x2;
721 input Real x3;
722 input Real x1_data[:]; /* strict monotonically increasing values */
723 input Integer nx1; /* 2 ≤ nx1 ≤ size(x1_data, 1) */
724 input Real x2_data[:]; /* strict monotonically increasing values */
725 input Integer nx2; /* 2 ≤ nx2 ≤ size(x2_data, 1) */
726 input Real x3_data[:]; /* strict monotonically increasing values */
727 input Integer nx3; /* 2 ≤ nx3 ≤ size(x3_data, 1) */
728 input Real y_data[size(x1_data, 1), size(x2_data, 1), size(x3_data, 1)];
729 input Integer interpolation;

126 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

730 input Integer extrapolation;
731 output Real y;
732 algorithm /*
733 Constant or linear interpolation with x1_data[1:nx1], x2_data[1:nx2], x3_data[1:nx3]
734 abszissa values and y_data[1:nx1, 1:nx2, 1:nx3] ordinate values,
735 given the abszissa value x1, x2, x3.
736 */ end interpolation3D;

Cbuiltin2 defines builtin functions for Integer division:

 1 function divisionTowardsZero
 2 input Integer dividend;
 3 input Integer divisor;
 4 output Integer quotient;
 5 algorithm /*
 6 quotient := integer(roundTowardsZero(real(dividend) / real(divisor)));
 7 */ end divisionTowardsZero;
 8
 9 function remainderTowardsZero
10 input Integer dividend;
11 input Integer divisor;
12 output Integer remainder;
13 algorithm /*
14 remainder := dividend - divisor * divisionTowardsZero(dividend, divisor);
15 */ end remainderTowardsZero;

Cbuiltin3 defines builtin functions for Real division, where the quotient is forced to be an integer
according to a rounding strategy:

1 function realRemainderTowardsZero
2 input Real dividend;
3 input Real divisor;
4 output Real remainder;
5 algorithm /*
6 remainder := dividend - divisor * roundTowardsZero(dividend / divisor);
7 */ end realRemainderTowardsZero;

Cbuiltin4 lifts builtin functions with scalar in- and output parameters for usage with multi-
dimensions. For every function named α of Cbuiltin1,…,Cbuiltin3 with a scalar input parameter β and
a scalar output parameter δ of types T1,T3∈{Boolean, Integer, Real} respectively, Cbuiltin4

contains the character sequence:

 1 function α1D
 2 input T1 β[:];
 3 output T3 δ[size(β, 1)];
 4 algorithm /*
 5 for i in 1:size(β, 1) loop
 6 δ[i] := α(β[i]);
 7 end for;
 8 */ end α1D;
 9
10 function α2D

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 127 (251)

11 input T1 β[:, :];
12 output T3 δ[size(β, 1), size(β, 2)];
13 algorithm /*
14 for i in 1:size(β, 1) loop
15 for j in 1:size(β, 2) loop
16 δ[i, j] := α(β[i, j]);
17 end for;
18 end for;
19 */ end α2D;

For every function named α of Cbuiltin1,…,Cbuiltin3 with two scalar input parameters β and γ and a
scalar output parameter δ of types T1,T2,T3∈{Boolean, Integer, Real} respectively, Cbuiltin4

contains the character sequence:

 1 function α1D
 2 input T1 β[:];
 3 input T2 γ[size(β, 1)];
 4 output T3 δ[size(β, 1)];
 5 algorithm /*
 6 for i in 1:size(β, 1) loop
 7 δ[i] := α(β[i], γ[i]);
 8 end for;
 9 */ end α1D;
10
11 function α2D
12 input T1 β[:, :];
13 input T2 γ[size(β, 1), size(β, 2)];
14 output T3 δ[size(β, 1), size(β, 2)];
15 algorithm /*
16 for i in 1:size(β, 1) loop
17 for j in 1:size(β, 2) loop
18 δ[i, j] := α(β[i, j], γ(i, j));
19 end for;
20 end for;
21 */ end α2D;

Above functions are in lexical order w.r.t. their names; they constitute Cbuiltin4 in its entirety.

L-1 (semantic of builtin functions / Runtime-semantic): Cbuiltin defines the semantic of
each builtin function in prose via the comment part of it; the actual implementation is up
to Production Code generators however (cf. L-2).

The builtin functions divisionDown, divisionUp and divisionTowardsZero are also
known as floored division, ceiled division and truncated division respectively.

According to their definition, the remainder returned by remainderDown,
remainderTowardsZero and remainderEuclidean is signed like the divisor,
dividend or always positive respectively.

R-1: Builtin functions are derived by the { function-declaration } factor of G-2.1 in

128 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

the order of their definition in Cbuiltin and — because Cbuiltin is appended — follow user-
defined functions.

R-2: Builtin functions are without 6’th child, i.e., without statements and therefore
implementation body. The motivation to implicitly append their signatures and thereby
making them part of blocks as described in R-1 is to cover builtin functions under the
umbrella of functions, such that the common syntactic and semantic rules for such apply
for builtin as well as user-defined functions; only exceptional cases for either have to be
additionally defined. In fact, S-2.9 already encapsulates all differences between builtin
and user-defined functions. For example, according to S-2.5, functions must have unique
names, implying that user-defined functions must not be named like a builtin function.
And considering Cbuiltin and S-2.3, all builtin functions are stateless. Likewise, according to
S-2.10, builtin functions do not locally — and therefore neither transitively — call
functions.

L-2 (target-specific builtin function implementation; statically-evaluated builtin
functions / Runtime-semantic): The actual implementation of builtin functions is up to
Production Code generators, which are supposed to optimize such for the targeted
runtime environment. The only restrictions are, that the execution of builtin functions
must always terminate and be side-effect-free — i.e., not change or depend on the
control-state.

Optimizations include, for example, the implementation of builtin functions in terms of
inlined code or even the replacement of builtin function calls and sequences thereof by
target-specific — but semantic-wise equivalent — hardware operations. The
roundHalfToEven builtin function for example is the default rounding mode used in the
IEEE 754-2019 standard for floating-point arithmetic and therefore likely hardware
supported. Also integer is often provided as single CPU-instruction like CVTTSS2SI or
CVTTSD2SI of Streaming SIMD Extensions 2 (SSE2); and roundDown, roundUp,
roundTowardsZero and roundHalfToEven are provided by ROUNDSS and ROUNDSD of
SSE4. Particularly the multi-dimensions support of Cbuiltin4 likely can be much more
efficient than the given naïve iterative solution; SSE4 for example provides for most
single data instructions corresponding multiple data instructions (SIMD hardware
operations: single instruction, multiple data).

Builtin functions that are part of statically-evaluated expressions must be applied already
for Production Code generation since they define dimensional-sizes, multi-dimension
queries or loop iteration bounds which are subject to well-formedness constraints. The
well-formedness and results of such statically-evaluated builtin function calls depend on
the targeted runtime environment. For example, in a 32-bit environment
integer(roundUp(2.0^31 - 1.0)) likely is an error due to an integer overflow, which
in turn would result in integer signaling OVERFLOW which is not permitted within
statically-evaluated expressions (cf. S-X:TODO:error-signal-freeness-of-statically-
evaluated-expressions).

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 129 (251)

E-1: The following block uses the builtin function solveLinearEquations to compute a
control-output vector based on a single control-input:

 1 block TestSolveLinearEquations
 2 input Real u;
 3 output Real y[2];
 4
 5 protected
 6
 7 public
 8 method Startup
 9 protected
10 algorithm
11 self.y := {0.0, 0.0};
12 end Startup;
13
14 method DoStep
15 protected
16 algorithm
17 self.y := solveLinearEquations(
18 {
19 {1.0 , 2.0*self.u},
20 {4.0*self.u, 5.0}
21 },
22 {-2.0 , 4.0*self.u});
23 /* Rudimentary error handling */
24 if signal or hasNaN(self.y) then
25 self.y = {0.0, 0.0}
26 end;
27 end DoStep
28 end TestSolveLinearEquations;

E-2: The following block uses luFactorize and luSolve to solve two systems of linear
equations A*x = b for the same regular matrix A but varying b:

 1 block TestLuSolve
 2 input Real u;
 3 output Real y[2];
 4
 5 protected
 6
 7 public
 8 method Startup
 9 protected
10 algorithm
11 self.y := {0.0, 0.0};
12 end Startup;
13
14 method DoStep
15 protected
16 Real LU[2,2];
17 Real pivots[2];

130 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

18 algorithm
19 (LU, pivots) := luFactorize(
20 {
21 {1.0, 2.0*self.u},
22 {4.0*self.u, 5.0}
23 });
24 self.y := luSolve(
25 LU,
26 pivots,
27 luSolve(
28 LU,
29 pivots,
30 {-2.0, 4.0*self.u})
31 + {-3.0, 6.0*self.u});
32 /* Rudimentary error handling */
33 if signal or isNaN(self.y) then
34 self.y = {0.0, 0.0}
35 end;
36 end DoStep;
37 end TestLuSolve;

LU decomposition typically is more efficient than naïvely using several
solveLinearEquations calls, at least when A has more realistic sizes than the tiny 2x2
in above example which has been selected for demonstration purposes only.

E-3: The following block interpolates in a vector of data points:

 1 block TestInterpolation
 2 input Real x;
 3 output Real y;
 4
 5 parameter Real x_data[7]; /* Define x-axis data points as tuneable parameter
 vector. */
 6 parameter Real y_data[7]; /* Define y-axis data as tuneable parameter vector.
 */
 7 parameter Integer nx; /* Number of elements to interpolate (1 ≤ nx ≤ 7).
 */
 8
 9 protected
10
11 public
12 method Startup
13 protected
14 Real x;
15 algorithm
16 x := 0.0;
17 self.nx := 4;
18 self.x_data := {1.0, 2.0, 3.0, 4.0 , 0.0, 0.0, 0.0};
19 self.y_data := {1.0, 4.0, 9.0, 16.0, 0.0, 0.0, 0.0};
20 self.y := interpolation1D(x, self.x_data, self.nx, self.y_data, 2, 2);
21 end Startup;
22
23 method DoStep
24 protected

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 131 (251)

25 algorithm
26 self.y := interpolation1D(2*self.x, self.x_data, self.nx, self.y_data, 2,
 2);
27 end DoStep;
28 end TestInterpolation;

3.2.7. Example Application Scenarios

Modelica-modeled PID-controller

The following example has its origin in a Modelica model for a speed controller — a PID controller
with output limitations — of a DC motor. The block diagram of the Modelica model has two input
signals wLoadRef and wMotor. The input signal wLoadRef is the desired value of the speed of the
motor load whereas wMotor is the current speed of the motor. The output of the controller is
vMotor — the voltage to be applied to the DC motor.

It follows one possible transformation of this Modelica model into an eFMI GALEC program. The
discretization of the dynamic parts of the PID controller is realized by the Explicit Euler method. The
respective eFMI GALEC program is:

 1 block PID_Controller
 2 input Real wLoadRef(min = -1.0e5, max = 1.0e5);
 3 input Real wMotor (min = -1.0e5, max = 1.0e5);
 4 output Real vMotor (min = -1.0e7, max = 1.0e7);
 5
 6 // Tunable parameters (can be changed via recalibration):
 7 parameter Real 'limiter.uMax'(min = 1.0, max = 1.0e5);
 8 parameter Real gearRatio(min = 10.0, max = 500.0);
 9 parameter Real Ti(min = 1.0e-7, max = 100.0);
10 parameter Real Td(min = 1.0e-7, max = 100.0);
11 parameter Real kd(min = 0.0, max = 1000.0);
12 parameter Real k(min = 0.0, max = 1000.0);
13 parameter Real stepSize // Can be local constant (if recalibration is not supported).
14 (min = 1.0e-10, max = 0.01 /* in physics-simulation tested sampling-range */);
15
16 protected
17 // Dependent parameters:
18 parameter Real 'limiter.uMin'(min = -1.0e5, max = -1.0);
19
20 // Discrete states:

132 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

21 Real 'PID.I.x';
22 Real 'PID.D.x';
23 Real 'previous(feedback.y)';
24 Boolean firstTick;
25
26 public
27 method Startup
28 algorithm
29 // Initialize tunable parameters:
30 self.'limiter.uMax' := 400.0;
31 self.gearRatio := 105.0;
32 self.Ti := 0.1;
33 self.Td := 0.1;
34 self.kd := 0.1;
35 self.k := 10.0;
36 self.stepSize := 1e-3;
37
38 // Initialize dependent parameters:
39 self.'limiter.uMin' := -self.'limiter.uMax';
40
41 // Initialize discrete states:
42 self.'PID.I.x' := 0.0;
43 self.'PID.D.x' := 0.0;
44 self.'previous(feedback.y)' := 0.0;
45 self.firstTick := true;
46
47 // Initialize outputs:
48 self.vMotor := 0.0;
49 end Startup;
50
51
52 method Recalibrate
53 algorithm
54 // Update dependent parameters:
55 self.'limiter.uMin' := -self.'limiter.uMax';
56 end Recalibrate;
57
58
59 /*
60 Control-cycle function: Called at every clock tick.
61 */
62 method DoStep
63 protected
64 Real 'gain.y';
65 Real 'feedback.y';
66 Real 'derivative(PID.I.x)';
67 Real 'derivative(PID.D.x)';
68 Real 'PID.D.y';
69 Real 'PID.y';
70 algorithm
71
72 if self.firstTick then
73 self.firstTick := false;
74 else
75 'derivative(PID.I.x)' := self.'previous(feedback.y)' / self.Ti;
76 'derivative(PID.D.x)' := (self.'previous(feedback.y)' - self.'PID.D.x') / self.Td;
77
78 self.'PID.I.x' := self.'PID.I.x' + self.stepSize * 'derivative(PID.I.x)';

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 133 (251)

79 self.'PID.D.x' := self.'PID.D.x' + self.stepSize * 'derivative(PID.D.x)';
80 end if;
81
82 'gain.y' := self.gearRatio * self.wLoadRef;
83 'feedback.y' := 'gain.y' - self.wMotor;
84
85 'PID.D.y' := self.kd * ('feedback.y' - self.'PID.D.x') / self.Td;
86 'PID.y' := self.k * ('PID.D.y' + self.'PID.I.x' + 'feedback.y');
87
88 self.vMotor := (
89 if 'PID.y' > self.'limiter.uMax' then
90 self.'limiter.uMax'
91 elseif 'PID.y' < self.'limiter.uMin' then
92 self.'limiter.uMin'
93 else
94 'PID.y'
95);
96
97 self.'previous(feedback.y)' := 'feedback.y';
98 end DoStep;
99 end PID_Controller;

The manifest for the controller, just describing its interface, is:

 1 <?xml version="1.0" encoding="UTF-8"?>
 2 <Manifest
 3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 4 xsi:noNamespaceSchemaLocation="../schemas/AlgorithmCode/efmiAlgorithmCodeManifest.xsd"
 5 xsdVersion="0.14.0"
 6 kind="AlgorithmCode"
 7 efmiVersion="1.0.0"
 8 id="{1e111db5-90e6-4e17-b2e5-4e215dbbdd49}"
 9 name="PID controller discretized by Explicit Euler method"
 10 version="0.1"
 11 generationDateAndTime="2020-11-10T12:33:22Z"
 12 generationTool="Manual"
 13 license="MIT">
 14
 15 <Files>
 16 <File
 17 name="Controller.alg"
 18 id="FileID_1"
 19 path="./"
 20 needsChecksum="false"
 21 role="Code"/>
 22 </Files>
 23
 24 <Clock id="ID_Clock" variableRefId="ID_7"/>
 25
 26 <BlockMethods fileRefId="FileID_1">
 27 <BlockMethod id="ID_Startup" kind="Startup"/>
 28 <BlockMethod id="ID_Recalibrate" kind="Recalibrate"/>
 29 <BlockMethod id="ID_DoStep" kind="DoStep"/>
 30 </BlockMethods>
 31
 32 <ErrorSignalStatus id="ID_ErrorSignalStatus"/>

134 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

 33
 34 <Variables>
 35 <RealVariable
 36 name="'limiter.uMin'"
 37 id="ID_1"
 38 blockCausality="dependentParameter"
 39 start="-400.0"
 40 min="-1.0e5"
 41 max="-1.0"/>
 42 <RealVariable
 43 name="'limiter.uMax'"
 44 id="ID_2"
 45 blockCausality="tunableParameter"
 46 start="400.0"
 47 min="1.0"
 48 max="1.0e5"/>
 49 <RealVariable
 50 name="Ti"
 51 id="ID_3"
 52 blockCausality="tunableParameter"
 53 start="0.1"
 54 min="1.0e-7"
 55 max="100.0"/>
 56 <RealVariable
 57 name="Td"
 58 id="ID_4"
 59 blockCausality="tunableParameter"
 60 start="0.1"
 61 min="1.0e-7"
 62 max="100.0"/>
 63 <RealVariable
 64 name="kd"
 65 id="ID_5"
 66 blockCausality="tunableParameter"
 67 start="0.1"
 68 min="0.0"
 69 max="1000.0"/>
 70 <RealVariable
 71 name="k"
 72 id="ID_6"
 73 blockCausality="tunableParameter"
 74 start="10.0"
 75 min="0.0"
 76 max="1000.0"/>
 77 <RealVariable
 78 name="stepSize"
 79 id="ID_7"
 80 blockCausality="tunableParameter"
 81 start="1e-3"
 82 min="1.0e-10"
 83 max="0.01"/>
 84 <RealVariable
 85 name="gearRatio"
 86 id="ID_8"
 87 blockCausality="tunableParameter"
 88 start="105.0"
 89 min="10.0"
 90 max="500.0"/>

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 135 (251)

 91 <RealVariable
 92 name="wLoadRef"
 93 id="ID_9"
 94 blockCausality="input"
 95 start="0.0"
 96 min="-1.0e5"
 97 max="1.0e5">
 98 </RealVariable>
 99 <RealVariable
100 name="wMotor"
101 id="ID_10"
102 blockCausality="input"
103 start="0.0"
104 min="-1.0e5"
105 max="1.0e5">
106 </RealVariable>
107 <RealVariable
108 name="vMotor"
109 id="ID_11"
110 blockCausality="output"
111 start="0.0"
112 min="-1.0e7"
113 max="1.0e7">
114 </RealVariable>
115 <RealVariable
116 name="'PID.I.x'"
117 id="ID_12"
118 blockCausality="state"
119 start="0.0"/>
120 <RealVariable
121 name="'PID.D.x'"
122 id="ID_13"
123 blockCausality="state"
124 start="0.0"/>
125 <RealVariable
126 name="'previous(feedback.y)'"
127 id="ID_14"
128 blockCausality="state"
129 start="0.0"/>
130 <BooleanVariable
131 name="firstTick"
132 id="ID_15"
133 blockCausality="state"
134 start="true"/>
135 </Variables>
136
137 </Manifest>

Mathematical Example using builtin Functions

The following example implements a linearly implicit second order differential equation system of
the form M(x)*x'' = F(x,u), y = g(x) with an invertible matrix M(x) for a state vector x, inputs u and
outputs y. The vector functions F and g describe the right hand sides of the dynamical system and
the output equation respectively.

The following implementation in eFMI GALEC code is based on a discretization by the Explicit Euler

136 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

method. Further, there are several expressions in M and F that use builtin functions like sin, cos and
exp. Additionally, the builtin function solveLinearEquations is used to solve the linear system of
equations. The respective eFMI GALEC program is:

 1 block LinearEquationSystem
 2 input Real u[4] (min=-1.0e7, max=1.0e7);
 3 output Real y[4];
 4
 5 protected
 6 // Constants:
 7 constant Real pi;
 8 constant Real stepSize;
 9
 10 // Discrete states:
 11 Real x[4];
 12 Real v[4];
 13 Real 'derivative(x)'[4];
 14 Real 'derivative(v)'[4];
 15
 16
 17 public
 18 /*
 19 Startup function: Called once at startup to initialize the
 20 internal memory of the block and return initial outputs.
 21 */
 22 method Startup
 23 algorithm
 24 // Initialize constants
 25 self.pi := 3.141592653589793;
 26 self.stepSize := 1.0e-2;
 27
 28 // Initialize discrete states:
 29 self.x := {-3.0, 7.0, 19.0, 1.0};
 30 self.v := {0.0, 0.0, 0.0, 0.0};
 31
 32 // Initial values for derivatives:
 33 self.'derivative(x)' := {0.0, 0.0, 0.0, 0.0};
 34 self.'derivative(v)' := {0.0, 0.0, 0.0, 0.0};
 35
 36 // Return initial control-outputs:
 37 self.y := {0.0, 0.0, 0.0, 0.0};
 38 end Startup;
 39
 40
 41 method Recalibrate
 42 algorithm
 43 end Recalibrate;
 44
 45
 46 /*
 47 Control-cycle function: Called at every clock tick.
 48 */
 49 method DoStep
 50 protected
 51 Real M[4,4];
 52 Real F[4];

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 137 (251)

 53
 54 algorithm
 55 self.x := self.x + self.stepSize * self.'derivative(x)';
 56 self.v := self.v + self.stepSize * self.'derivative(v)';
 57
 58 self.y := {
 59 sin(self.x[1]) + self.x[3],
 60 -self.x[2],
 61 self.pi * 2.0 * cos(self.x[4] - self.x[2]),
 62 self.x[3] + self.x[1] / self.x[4]
 63 };
 64
 65 // Check for NaN, e.g. if there was no solution of the linear system in the previous
 call
 66 if isNaN(self.y[1]) or isNaN(self.y[2]) or isNaN(self.y[3]) or isNaN(self.y[4]) then
 67 // Re-initialize the whole system to its start state
 68 self.x := {-3.0, 7.0, 19.0, 1.0};
 69 self.v := {0.0, 0.0, 0.0, 0.0};
 70 self.y := {0.0, 0.0, 0.0, 0.0};
 71 end if;
 72
 73 M := {
 74 {
 75 -sin(self.x[3] + self.x[4]),
 76 self.x[4]^2 - self.x[2]^3,
 77 -4.0 * exp(self.x[3] * self.x[1]),
 78 cos(-self.x[2]) * self.x[3]
 79 },
 80 {
 81 (self.x[2] + 2.0 * self.x[4]) / self.x[1],
 82 -self.x[1],
 83 self.x[1] * self.x[2],
 84 sin(self.x[1] * self.x[2] * self.x[3])
 85 },
 86 {
 87 -self.x[4] + self.x[2] * self.x[1],
 88 6.0 * self.pi * cos(self.x[2]),
 89 -self.x[2],
 90 2.0 * (self.x[1] + sin(self.x[3] * self.pi))
 91 },
 92 {
 93 self.x[1]+cos(self.x[3]),
 94 -2.0*self.x[3]*self.x[4],
 95 -4.0 * self.x[3] * cos(self.x[2]),
 96 self.x[4] - self.x[1] * self.x[2]
 97 }
 98 };
 99 F := {
100 self.u[1] - self.x[3]^2,
101 -self.u[4] + self.x[2] * cos(self.x[1]),
102 -self.u[4] + self.u[2] * self.x[4],
103 self.u[2] + self.u[3]
104 };
105
106 self.'derivative(v)' := solveLinearEquations(M, F);
107 self.'derivative(x)' := self.v;
108
109 end DoStep;

138 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

110 end LinearEquationSystem;

The manifest summarising the controller’s interface is:

 1 <?xml version="1.0" encoding="UTF-8"?>
 2 <Manifest
 3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 4 xsi:noNamespaceSchemaLocation="../schemas/AlgorithmCode/efmiAlgorithmCodeManifest.xsd"
 5 efmiVersion="1.0.0"
 6 xsdVersion="0.14.0"
 7 id="{351131cd-1e50-46d0-913a-240451d247c7}"
 8 kind="AlgorithmCode"
 9 name="Dynamic system discretized by Explicit Euler method"
 10 generationDateAndTime="2020-10-15T16:49:20Z"
 11 version="0.4.0"
 12 generationTool="Manual"
 13 license="MIT">
 14
 15 <Files>
 16 <File
 17 name="Controller.alg"
 18 id="FileID_1"
 19 path="./"
 20 needsChecksum="false"
 21 role="Code"/>
 22 </Files>
 23
 24 <Clock id="ID_Clock" variableRefId="ID_2"/>
 25
 26 <BlockMethods fileRefId="FileID_1">
 27 <BlockMethod id="ID_Startup" kind="Startup"/>
 28 <BlockMethod id="ID_Recalibrate" kind="Recalibrate"/>
 29 <BlockMethod id="ID_DoStep" kind="DoStep"/>
 30 </BlockMethods>
 31
 32 <ErrorSignalStatus id="ID_ErrorSignal"/>
 33
 34 <Variables>
 35 <RealVariable
 36 name="pi"
 37 id="ID_1"
 38 blockCausality="constant"
 39 start="3.141592653589793"/>
 40 <RealVariable
 41 name="stepSize"
 42 id="ID_2"
 43 blockCausality="constant"
 44 start="1e-2"/>
 45 <RealVariable
 46 name="u"
 47 id="ID_3"
 48 blockCausality="input"
 49 start="0.0 0.0 0.0 0.0"
 50 min="-1.0e7"
 51 max="1.0e7">
 52 <Dimensions>

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 139 (251)

 53 <Dimension number="1" size="4"/>
 54 </Dimensions>
 55 </RealVariable>
 56 <RealVariable
 57 name="y"
 58 id="ID_4"
 59 blockCausality="output"
 60 start="0.0 0.0 0.0 0.0">
 61 <Dimensions>
 62 <Dimension number="1" size="4"/>
 63 </Dimensions>
 64 </RealVariable>
 65 <RealVariable
 66 name="v"
 67 id="ID_5"
 68 blockCausality="state"
 69 start="0.0 0.0 0.0 0.0">
 70 <Dimensions>
 71 <Dimension number="1" size="4"/>
 72 </Dimensions>
 73 </RealVariable>
 74 <RealVariable
 75 name="x"
 76 id="ID_6"
 77 blockCausality="state"
 78 start="-3.0 7.0 19.0 1.0">
 79 <Dimensions>
 80 <Dimension number="1" size="4"/>
 81 </Dimensions>
 82 </RealVariable>
 83 <RealVariable
 84 name="'derivative(x)'"
 85 id="ID_7"
 86 blockCausality="state"
 87 start="0.0 0.0 0.0 0.0">
 88 <Dimensions>
 89 <Dimension number="1" size="4"/>
 90 </Dimensions>
 91 </RealVariable>
 92 <RealVariable
 93 name="'derivative(v)'"
 94 id="ID_8"
 95 blockCausality="state"
 96 start="0.0 0.0 0.0 0.0">
 97 <Dimensions>
 98 <Dimension number="1" size="4"/>
 99 </Dimensions>
100 </RealVariable>
101 </Variables>
102
103 </Manifest>

Vehicle model with implicit integration method

The following example presents a discretized vehicle model. The model equations and parameters
are according to Section 6.8 Rollover Avoidance of the book J. Ackermann et al.: Robust Control,

140 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Springer 2002 with some further assumptions. The vehicle model is a single track model with roll
augmentation. The discretization is realized by a linear implicit Runge-Kutta method of order 1
(Rosenbrock method, linear implicit Euler method) suited for stiff systems. For such methods the
input signals have to be differentiated, therefore the derivatives of the original input variables are
added as inputs of the discretized model.

The example demonstrates the use of for-loops, vectors and matrices as well as several builtin
functions, particularly for solving linear equation systems. The eFMI GALEC program is:

 1 block VehicleModel
 2 input Real u[2](min=-1.0e7, max=1.0e7);
 3 input Real 'derivative(u)'[2](min=-1.0e7, max=1.0e7);
 4 output Real x[8];
 5
 6 // Tunable parameters (can be changed via recalibration):
 7 parameter Real FdF;
 8 parameter Real m;
 9 parameter Real m2;
 10 parameter Real h;
 11 parameter Real lF;
 12 parameter Real lR;
 13 parameter Real g;
 14 parameter Real Jx2;
 15 parameter Real mu;
 16 parameter Real cF;
 17 parameter Real cR;
 18 parameter Real Jz1;
 19 parameter Real Jz2;
 20 parameter Real Jy2;
 21 parameter Real cphi;
 22 parameter Real dphidot;
 23 parameter Real b1;
 24 parameter Real b2;
 25 parameter Real stepSize;
 26
 27 protected
 28 // Dependent parameters:
 29 parameter Real FlV;
 30 parameter Real FzR;
 31 parameter Real FzF;
 32
 33 // Discrete states:
 34 Real q[4];
 35 Real dx[8];
 36
 37 public
 38 /*
 39 Startup function: Called once at startup to initialize the
 40 internal memory of the block and return initial outputs.
 41 */
 42 method Startup
 43 algorithm
 44 // Initialize tunable parameters
 45 self.FdF := 15.0;
 46 self.m := 14300.0;
 47 self.m2 := 12487.0;

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 141 (251)

 48 self.h := 1.15;
 49 self.lF := 1.95;
 50 self.lR := 1.54;
 51 self.g := 9.81;
 52 self.Jx2 := 24201.0;
 53 self.mu := 1.0;
 54 self.cF := 582.0e+3;
 55 self.cR := 783.0e3;
 56 self.Jz1 := 3654.0;
 57 self.Jz2 := 34917.0;
 58 self.Jy2 := 3491.7;
 59 self.cphi := 457.0e+3;
 60 self.dphidot := 100.0e3;
 61 self.b1 := 0.2;
 62 self.b2 := 0.1;
 63 self.stepSize := 1.0e-2;
 64
 65 // Initialize dependent parameters
 66 self.FlV := self.FdF;
 67 self.FzR := self.m*self.g*self.lF/(self.lR + self.lF);
 68 self.FzF := self.m*self.g - self.FzR;
 69
 70 // Initialize inputs
 71 // u = {0.0, 0.0};
 72 // 'derivative(u)' = {0.0, 0.0};
 73
 74 // Initialize states and outputs
 75 self.q := {0.0, 0.0, 0.0, 0.0};
 76 self.dx := {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
 77 self.x := {0.0, 0.0, 0.0, 0.0, 10.0, 0.0, 0.0, 0.0};
 78 end Startup;
 79
 80 /*
 81 Recalibration function: Called to change tunable parameters
 82 during operation.
 83 */
 84 method Recalibrate
 85 algorithm
 86 // Update dependent parameters:
 87 self.FlV := self.FdF;
 88 self.FzR := self.m*self.g*self.lF/(self.lR + self.lF);
 89 self.FzF := self.m*self.g - self.FzR;
 90 end Recalibrate;
 91
 92 /*
 93 Control-cycle function: Called at every clock tick.
 94 */
 95 method DoStep
 96 protected
 97 Real sx;
 98 Real sy;
 99 Real psi;
100 Real phi;
101 Real vx;
102 Real vy;
103 Real r;
104 Real phidot;
105 Real delta;

142 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

106 Real FyD;
107 Real q1;
108 Real q2;
109 Real q3;
110 Real q4;
111 Real deltadot;
112 Real FyDdot;
113
114 Real FdF;
115 Real FlV;
116 Real m;
117 Real m2;
118 Real h;
119 Real lF;
120 Real lR;
121 Real g;
122 Real Jx2;
123 Real mu;
124 Real cF;
125 Real cR;
126 Real Jz1;
127 Real Jz2;
128 Real Jy2;
129 Real FzR;
130 Real FzF;
131 Real cphi;
132 Real dphidot;
133 Real b1;
134 Real b2;
135
136 Real G[4,4];
137
138 Real rs2[4];
139 Real dx1[4];
140
141 Real help1;
142 Real help2;
143 Real help3;
144
145 algorithm
146
147 for i in 1:8 loop
148 self.x[i] := self.x[i] + self.dx[i];
149 end for;
150
151 for i in 1:4 loop
152 self.q[i] := self.dx[4+i]/self.stepSize;
153 end for;
154
155 sx := self.x[1];
156 sy := self.x[2];
157 psi := self.x[3];
158 phi := self.x[4];
159 vx := self.x[5];
160 vy := self.x[6];
161 r := self.x[7];
162 phidot := self.x[8];
163

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 143 (251)

164 delta := self.u[1];
165 FyD := self.u[2];
166
167 q1 := self.q[1];
168 q2 := self.q[2];
169 q3 := self.q[3];
170 q4 := self.q[4];
171
172 deltadot := self.'derivative(u)'[1];
173 FyDdot := self.'derivative(u)'[2];
174
175 FdF := self.FdF;
176 FlV := self.FlV;
177
178 m := self.m;
179 m2 := self.m2;
180 h := self.h;
181 lF := self.lF;
182 lR := self.lR;
183 g := self.g;
184 Jx2 := self.Jx2;
185
186 mu := self.mu;
187 cF := self.cF;
188 cR := self.cR;
189
190 Jz1 := self.Jz1;
191 Jz2 := self.Jz2;
192 Jy2 := self.Jy2;
193 FzR := self.FzR;
194 FzF := self.FzF;
195 cphi := self.cphi;
196 dphidot := self.dphidot;
197
198 b1 := self.b1;
199 b2 := self.b2;
200
201 help1 := sqrt(vx^2 + vy^2);
202 help2 := (vx^2 + vy^2)^1.5;
203 help3 := h^2*m2 + Jy2 - Jz2;
204
205 G[1,1] :=
206 (
207 mu*(lF*r*vx + help1*vy)*self.stepSize*cF*sin(delta)
208 + help2*m
209)
210 / (help2*self.stepSize);
211 G[1,2] :=
212 -(
213 mu*(-lF*r*vy + help1*vx)*cF*sin(delta)
214 + help2*r*m
215)
216 / help2;
217 G[1,3] :=
218 (
219 2.0*h*m2*phidot*cos(phi)*self.stepSize*help1
220 - mu*cF*lF*sin(delta)*self.stepSize
221 + h*m2*sin(phi)*help1

144 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

222 - m*vy*self.stepSize*help1
223)
224 / (self.stepSize*help1);
225 G[1,4] :=
226 h*m2*(
227 -2.0*sin(phi)*phidot*r*self.stepSize
228 + cos(phi)*q3*self.stepSize
229 + 2.0*r*cos(phi)
230);
231 G[2,1] :=
232 (
233 (-cos(delta)*cF*mu*vy - cR*mu*vy + m*r*(vx^2+vy^2))*help1
234 - r*mu*vx*(cos(delta)*cF*lF - cR*lR)
235)
236 / help2;
237 G[2,2] :=
238 (
239 (cos(delta)*cF*mu*vx*self.stepSize + cR*mu*vx*self.stepSize + m*(vx^2 +
 vy^2))*help1
240 - self.stepSize*r*mu*vy*(cos(delta)*cF*lF - cR*lR)
241)
242 / (help2*self.stepSize);
243 G[2,3] :=
244 (
245 2.0*h*m2*r*sin(phi)*help1
246 + mu*cF*lF*cos(delta)
247 + m*vx*help1
248 - mu*cR*lR
249)
250 / help1;
251 G[2,4] :=
252 m2*(
253 (-1.0 + (phidot^2 + r^2)*self.stepSize^2)*cos(phi)
254 + self.stepSize*sin(phi)*(q4*self.stepSize + 2.0*phidot)
255)
256 * (h/self.stepSize);
257 G[3,1] :=
258 (
259 (
260 -cos(delta)*cF*lF*mu*vy*self.stepSize
261 + h*m2*(vx^2 + vy^2)*sin(phi)
262 + cR*lR*mu*vy*self.stepSize
263) * help1
264 - self.stepSize*r*mu*vx*(lF^2*cF*cos(delta) + lR^2*cR)
265)
266 / (help2*self.stepSize);
267 G[3,2] :=
268 -(
269 (-cos(delta)*cF*lF*mu*vx + h*r*m2*(vx^2 + vy^2)*sin(phi) + cR*lR*mu*vx)*help1
270 + vy*r*mu*(lF^2*cF*cos(delta) + lR^2*cR)
271)
272 / help2;
273 G[3,3] :=
274 2.0*(
275 (
276 (-0.5*h^2*m2 - 0.5*Jy2 + 0.5*Jz2)*cos(phi)^2
277 + phidot*self.stepSize*sin(phi)*help3*cos(phi)
278 - 0.5*sin(phi)*h*m2*vy*self.stepSize

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 145 (251)

279 + 0.5*h^2*m2
280 + 0.5*Jy2
281 + 0.5*Jz1
282) * help1
283 + 0.5*mu*self.stepSize*(lF^2*cF*cos(delta) + lR^2*cR)
284)
285 / (help1*self.stepSize);
286 G[3,4] :=
287 4.0*phidot*self.stepSize*r*help3*cos(phi)^2
288 + (2.0*help3*(q3*self.stepSize + r)*sin(phi) - h*self.stepSize*m2*(r*vy -
 q1))*cos(phi)
289 - 2.0*phidot*self.stepSize*r*help3;
290 G[4,1] := -h*m2*r*cos(phi);
291 G[4,2] := -h*m2*cos(phi) / self.stepSize;
292 G[4,3] := -2.0*(help3*r*sin(phi) + 0.5*h*m2*vx)*cos(phi);
293 G[4,4] :=
294 (
295 -2.0*self.stepSize^2*r^2*help3*cos(phi)^2
296 - cos(phi)*g*h*m2*self.stepSize^2
297 + self.stepSize^2*h*m2*(r*vx + q2)*sin(phi)
298 + (help3*r^2 + cphi)*self.stepSize^2
299 + dphidot*self.stepSize
300 + h^2*m2
301 + Jx2
302)
303 / self.stepSize;
304
305 rs2[1] :=
306 2.0*(
307 (
308 -0.5*self.stepSize*(cF*mu*(delta - atan2(vy, vx))*cos(delta) +
 sin(delta)*(cF*mu + FlV))*deltadot
309 + 0.5*atan2(vy, vx)*sin(delta)*cF*mu
310 - 0.5*sin(delta)*cF*delta*mu
311 - 0.5*h*m2*phidot*(q3*self.stepSize + 2.0*r)*cos(phi)
312 + 0.5*FlV*cos(delta)
313 + r*(sin(phi)*h*m2*phidot^2*self.stepSize + 0.5*m*vy)
314) * help1
315 + 0.5*cF*lF*mu*r*(deltadot*cos(delta)*self.stepSize + sin(delta))
316)
317 / help1;
318 rs2[2] :=
319 -(
320 (
321 (
322 mu*cF*(delta - atan2(vy, vx))*sin(delta)
323 - cos(delta)*(cF*mu + FlV)
324) * (self.stepSize*deltadot)
325 - FyDdot*self.stepSize
326 + mu*(cos(delta)*cF + cR)*atan2(vy, vx)
327 - cos(delta)*cF*delta*mu
328 + h*m2*(phidot*q4*self.stepSize + phidot^2+r^2)*sin(phi)
329 + h*phidot*self.stepSize*m2*(phidot^2 + r^2)*cos(phi)
330 + m*r*vx
331 - FlV*sin(delta)
332 - FyD
333) * help1
334 - mu*r*(self.stepSize*sin(delta)*deltadot*cF*lF - cos(delta)*cF*lF + cR*lR)

146 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

335)
336 / help1;
337 rs2[3] :=
338 -2.0*(
339 (
340 0.5*lF*(mu*cF*(delta - atan2(vy, vx))*sin(delta) - cos(delta)*(cF*mu +
 FlV))*self.stepSize*deltadot
341 - 0.5*FyDdot*b1*self.stepSize
342 + 0.5*mu*(cos(delta)*cF*lF - cR*lR)*atan2(vy, vx)
343 + 2.0*r*phidot^2*self.stepSize*help3*cos(phi)^2
344 + phidot*(help3*(q3*self.stepSize + r)*sin(phi) + 0.5*h*self.stepSize*m2*(-
 r*vy + q1))*cos(phi)
345 - 0.5*sin(phi)*h*m2*r*vy
346 - 0.5*cos(delta)*cF*delta*lF*mu
347 - 0.5*FlV*sin(delta)*lF
348 - r*phidot^2*self.stepSize*help3
349 - 0.5*b1*FyD
350) * help1
351 - 0.5*r*mu*(deltadot*sin(delta)*cF*lF^2*self.stepSize - lF^2*cF*cos(delta) -
 lR^2*cR)
352)
353 / help1;
354 rs2[4] :=
355 self.stepSize*b2*FyDdot
356 + 2.0*phidot*self.stepSize*r^2*help3*cos(phi)^2
357 + (r^2*help3*sin(phi) + h*m2*(g*phidot*self.stepSize + r*vx))*cos(phi)
358 + (-phidot*(r*vx+q2)*self.stepSize + g)*h*m2*sin(phi)
359 - phidot*(help3*r^2 + cphi)*self.stepSize
360 - cphi*phi
361 - dphidot*phidot
362 + b2*FyD;
363
364 dx1 := solveLinearEquations(G, rs2);
365 for i in 1:4 loop
366 self.dx[4+i] := dx1[i];
367 self.dx[i] := self.stepSize*(self.x[4+i]+dx1[i]);
368 end for;
369
370 // Check for NaN, caused by e.g. a failed solution of the linear system
371 if isNaN(self.x[1]) or isNaN(self.x[2]) or isNaN(self.x[3]) or isNaN(self.x[4]) or
372 isNaN(self.x[5]) or isNaN(self.x[6]) or isNaN(self.x[7]) or isNaN(self.x[8]) then
373 self.q := {0.0, 0.0, 0.0, 0.0};
374 self.dx := {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
375 self.x := {0.0, 0.0, 0.0, 0.0, 10.0, 0.0, 0.0, 0.0};
376 end if;
377
378 end DoStep;
379 end VehicleModel;

The resulting manifest is:

 1 <?xml version="1.0" encoding="UTF-8"?>
 2 <Manifest efmiVersion="1.0.0"
 3 generationDateAndTime="2020-10-15T16:52:13Z"
 4 generationTool="Manual"
 5 id="{e3eae104-6417-4783-8c05-7c14e6fab8a6}"

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 147 (251)

 6 kind="AlgorithmCode"
 7 license="MIT"
 8 name="Vehicle model discretized by Linearly implicit Euler method"
 9 version="0.2"
 10 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 11 xsdVersion="0.14.0"
 12
 xsi:noNamespaceSchemaLocation="../schemas/AlgorithmCode/efmiAlgorithmCodeManifest.xsd">
 13 <Files>
 14 <File
 15 id="FileID_1"
 16 name="Controller.alg"
 17 needsChecksum="false"
 18 path="./"
 19 role="Code" />
 20 </Files>
 21 <Clock id="ID_Clock" variableRefId="ID_1" />
 22 <BlockMethods fileRefId="FileID_1">
 23 <BlockMethod id="ID_Startup" kind="Startup" />
 24 <BlockMethod id="ID_DoStep" kind="DoStep" />
 25 <BlockMethod id="ID_Recalibrate" kind="Recalibrate" />
 26 </BlockMethods>
 27 <ErrorSignalStatus id="ID_ErrorSignal"/>
 28 <Variables>
 29 <RealVariable blockCausality="tunableParameter"
 30 id="ID_1"
 31 name="stepSize"
 32 start="1e-2" />
 33 <RealVariable blockCausality="tunableParameter"
 34 id="ID_2"
 35 name="FdF"
 36 start="15.0" />
 37 <RealVariable blockCausality="dependentParameter"
 38 id="ID_3"
 39 name="FlV"
 40 start="15.0" />
 41 <RealVariable blockCausality="tunableParameter"
 42 id="ID_4"
 43 name="m"
 44 start="14300.0" />
 45 <RealVariable blockCausality="tunableParameter"
 46 id="ID_5"
 47 name="m2"
 48 start="12487.0" />
 49 <RealVariable blockCausality="tunableParameter"
 50 id="ID_6"
 51 name="h"
 52 start="1.15" />
 53 <RealVariable blockCausality="tunableParameter"
 54 id="ID_7"
 55 name="lF"
 56 start="1.95" />
 57 <RealVariable blockCausality="tunableParameter"
 58 id="ID_8"
 59 name="lR"
 60 start="1.54" />
 61 <RealVariable blockCausality="tunableParameter"
 62 id="ID_9"

148 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

 63 name="g"
 64 start="9.81" />
 65 <RealVariable blockCausality="tunableParameter"
 66 id="ID_10"
 67 name="Jx2"
 68 start="24201.0" />
 69 <RealVariable blockCausality="tunableParameter"
 70 id="ID_11"
 71 name="mu"
 72 start="1.0" />
 73 <RealVariable blockCausality="tunableParameter"
 74 id="ID_12"
 75 name="cF"
 76 start="582e3" />
 77 <RealVariable blockCausality="tunableParameter"
 78 id="ID_13"
 79 name="cR"
 80 start="783e3" />
 81 <RealVariable blockCausality="tunableParameter"
 82 id="ID_14"
 83 name="Jz1"
 84 start="3654.0" />
 85 <RealVariable blockCausality="tunableParameter"
 86 id="ID_15"
 87 name="Jz2"
 88 start="34917.0" />
 89 <RealVariable blockCausality="tunableParameter"
 90 id="ID_16"
 91 name="Jy2"
 92 start="3491.7" />
 93 <RealVariable blockCausality="dependentParameter"
 94 id="ID_17"
 95 name="FzR"
 96 start="0.0" />
 97 <RealVariable blockCausality="dependentParameter"
 98 id="ID_18"
 99 name="FzF"
100 start="0.0" />
101 <RealVariable blockCausality="tunableParameter"
102 id="ID_19"
103 name="cphi"
104 start="457.0e+3" />
105 <RealVariable blockCausality="tunableParameter"
106 id="ID_20"
107 name="dphidot"
108 start="100.0e3" />
109 <RealVariable blockCausality="tunableParameter"
110 id="ID_21"
111 name="b1"
112 start="0.2" />
113 <RealVariable blockCausality="tunableParameter"
114 id="ID_22"
115 name="b2"
116 start="0.1" />
117 <RealVariable blockCausality="input"
118 id="ID_23"
119 name="u"
120 start="0.0 0.0"

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 149 (251)

121 min="-1.0e7"
122 max="1.0e7">
123 <Dimensions>
124 <Dimension number="1"
125 size="2" />
126 </Dimensions>
127 </RealVariable>
128 <RealVariable blockCausality="input"
129 id="ID_24"
130 name="'derivative(u)'"
131 start="0.0 0.0"
132 min="-1.0e7"
133 max="1.0e7">
134 <Dimensions>
135 <Dimension number="1"
136 size="2" />
137 </Dimensions>
138 </RealVariable>
139 <RealVariable blockCausality="output"
140 id="ID_25"
141 name="x"
142 start="0.0 0.0 0.0 0.0 10.0 0.0 0.0 0.0">
143 <Dimensions>
144 <Dimension number="1"
145 size="8" />
146 </Dimensions>
147 </RealVariable>
148 <RealVariable blockCausality="state"
149 id="ID_26"
150 name="q"
151 start="0.0 0.0 0.0 0.0">
152 <Dimensions>
153 <Dimension number="1"
154 size="4" />
155 </Dimensions>
156 </RealVariable>
157 <RealVariable blockCausality="state"
158 id="ID_27"
159 name="dx"
160 start="0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0">
161 <Dimensions>
162 <Dimension number="1"
163 size="8" />
164 </Dimensions>
165 </RealVariable>
166 </Variables>
167 </Manifest>

[1] I.e., after detecting an error, normal program execution is suspended until the error is handled and the current control-cycle
terminated with the error signaled

[2] Only the bounded-iteration rule has loop-iterator-declaration within its definition-list.

150 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Chapter 4. Behavioral Model Representation
The optional Behavioral Model representation defines test scenarios with reference trajectories to
allow automatic verification of other model representations like Algorithm, Production or Binary
Code representations. Reference trajectories are stored within a Behavioral Model container in
comma-separated values (CSV) files — so called reference trajectories files. A single Behavioral Model
container can have several reference trajectories files, used for varying test scenarios described in its
manifest. Besides the test scenarios backed by the container’s reference trajectories files, the
manifest defines acceptable tolerances (absolute and relative), type and dimensionality (any GALEC
type of any dimensionality, i.e., boolean, integer or real scalar, vector, matrix or an even higher
dimensionality), causality (any GALEC block-interface causality, i.e., input, output, tunable parameter
or dependent parameter) and unit of each reference trajectory. Each test scenario thereby defines an
open loop test for the GALEC block — and any model representations derived from it — of an
Algorithm Code container of the eFMU.

To that end, reference trajectories in Behavioral Model manifests are linked to the GALEC block
variables of an Algorithm Code manifest for which they define reference values. Other containers
derived from the same algorithmic solution — like Production or Binary Code containers — can in
turn be tested by matching their own tracelinks to GALEC block variables with the ones of the
Behavioral Model manifest. This indirect linking of reference tests with tested components via an
Algorithm Code manifest provides an universal test framework where different, independently
designed Behavioral Models can be used to test independently developed executable model
representations.

Two types of test scenarios are distinguished, such with variable and such with equidistant time grid.
Variable time grid scenarios do not restrict by any means the time trajectory of reference trajectories;
the time distance between two values of a reference trajectory (two reference points) is variable. As a
consequence, application of such scenarios for testing sampled data systems (like production code)
requires interpolation if reference points are not exactly at sampling points. Equidistant time grid
scenarios on the other hand define reference points in equidistant intervals; interpolation is not
required. Variable time grids are more common in the continuous physics simulation world, and
offer higher flexibility at the potential cost of precision due to interpolation, whereas equidistant
time grids are the norm for hardware-in-the-loop (HiL) tests in the embedded domain. Although free
of any interpolation issues, equidistant time grid scenarios are not as flexible when it comes to actual
sampling trajectories used throughout testing; late stage sampling period changes, causing the
actual sampling trajectory to misalign with the equidistant time trajectory of the reference results,
are not supported.

Note that, reference trajectories themselves are not causalized. The actual sampling and
causalization (i.e., are reference trajectories block inputs, outputs, tunable parameters, or dependent
parameters) used for testing a GALEC block are from the linked Algorithm Code manifest, whereas
the reference trajectories of a reference trajectories file can stem from varying modeling and
simulation scenarios. Trajectories could be derived from whole system models where the tested
block is coupled to plant models or simple open loop or table-driven test scenarios, either based on a
continuous, a-causal simulation or a fixed step-size simulation with well-defined input/output
causalities or any combination thereof. The eFMI Standard does not anticipate any specific tooling or
simulation technique used for producing reference trajectories files. In case of variable time grid,

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 151 (251)

tooling used to generate Behavioral Model containers and their reference trajectories files should
take care however, that the simulated behavior and respectively derived reference trajectories are of
appropriate detail regarding tolerances and reference point density to replay the designed test
scenario using a fixed step-size sampled algorithm (i.e., GALEC program and derived production and
binary codes). To that end, it is recommended that originating models are numerical stable, including
stability of used integration methods, the discontinuities of discrete or piecewise continuous
trajectories are properly reflected and sufficient reference points for reasonable interpolation of
continuous trajectories are provided.

Tolerances defined in the Behavioral Model manifest can help to overcome acceptable imprecisions.
Supported are relative and absolute error tolerances for individual reference trajectories. Well-
defined interpolation semantics for variable time grid scenarios ensure unique interpretation
regarding applied values and whether actual results are within tolerance or not. Also the acceptable
time tolerance between the sampling period of the Algorithm Code manifest and equidistant time
grid scenarios is well-defined, as is the acceptable time tolerance between sampling trajectory and
the time trajectory given in reference trajectories files.

The structure and content of the manifest describing an eFMI Behavioral Model container and its test
scenarios are defined in Section 4.1. The final interpretation semantic of a test scenario defined in a
Behavioral Model manifest — i.e., the semantic of reference trajectories files for testing other model
representations — is defined in Section 4.2.

4.1. Behavioral Model manifest
Every eFMI Behavioral Model container is described by its manifest, an Extensible Markup Language
(XML) document satisfying the XML Schema Definition (XSD) and rules given in the following.

§1: Encoding of manifests

Behavioral Model manifests must satisfy the Extensible Markup Language (XML) 1.0 (Fifth Edition)
standard; and be Unicode® Standard conforming documents encoded in UTF-8 without byte-order
mark (ISO/IEC 10646:2020 including ISO/IEC 10646:2020/Amd 1:2023). To denote these encoding
restrictions, Behavioral Model manifests must start with <?xml version="1.0" encoding="utf-
8"?>.

The XSD of eFMI Behavioral Model manifests, described in the following, is according to the W3C XML
Schema Definition Language (XSD) 1.1 Part 1 & 2 standard.

§2: General structure and content of manifests

The following figure summarizes the general structure of Behavioral Model manifests; the individual
XML elements will be described in detail in the subsequent sections:

152 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

The focal point of the root <Manifest> element is the <Scenarios> list defining arbitrary many test
scenarios, each an individual <Scenario> element. Each scenario compiles the assets defining it by
referencing to them (cf. Section 2.3.4.1 about local manifest references); actual asset definitions are
in separate lists such that different scenarios can share parts of their configuration. The assets a
scenario refers to are:

• its reference trajectories file (<File> in <Files> list)

• its mapping configuration (<CsvMapping> in <CsvMappings> list), defining the mapping of the
reference time grid and the element-index-wise reference trajectories of inputs, tunable
parameters, dependent parameters and output variables to column names of the reference
trajectories file

• its tolerances setup (<TolerancesSetup> in <TolerancesSetups> list), with error tolerances
configurations (<TolerancesConfiguration>) for the different floating-point precisions the
scenario supports

Each tolerance configuration defines the error tolerances to be used if tests are conducted with its
floating-point precision. It defines error tolerances for all recalibrated tunable parameters and tested
dependent parameters and outputs, each in an individual tolerances definition

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 153 (251)

(<TolerancesDefinition>). The resulting XML containment structure clearly defines which
configuration a tolerance is defined for (parent <TolerancesConfiguration> of
<TolerancesDefinition>) and which setup the configuration is part of (parent
<TolerancesSetup> of <TolerancesConfiguration>). A tolerances setup therefore can be
understood as the definition of acceptable error tolerances for a set of floating-point precisions,
which define the precisions supported by scenarios referencing it; if it misses a configuration for
some floating-point precision, scenarios referencing it cannot be used for testing eFMU containers
based on that very precision.

Besides listing scenarios, reference trajectories files, mapping configurations and tolerance setups,
Behavioral Model manifests also link variables back to their respective definition in the Algorithm
Code manifest. To that end, all used variables are compiled in the <Variables> list, with each
<Variable> element using a <ForeignVariableReference> to define the link (cf. Section 2.3.4.3
about foreign manifest references). The causality (input, tunable parameter, dependent parameter
or output) of listed variables can be resolved from the Algorithm Code manifest via these backlinks.
Behavioral Model manifests also compile the units (<Units> list) referenced from variables,
tolerances for such, reference time grids and clocks of equidistant time grid scenarios. Since the
mapping configuration of scenarios map variables to the columns of their reference trajectories file,
the causalities and units of reference trajectories are well-defined (cf. §1.1 and §1.3 of Section 4.2).
Likewise, Behavioral Model manifests compile the clocks referenced from equidistant time grid
scenarios (<Clocks> list) to define their presupposed sampling period. All local units and
presupposed sampling periods of a Behavioral Model manifest must be consistent with the
Algorithm Code manifest MA the Behavioral Model manifest refers to; only if so, model
representations derived from MA, like Production Code containers, can be tested (cf. Section 4.2 for
the respective consistency rules).

R-1 (system integration of Behavioral Models and tested model representations in test
environments): The indirect linkage from a Behavioral Model manifest MB via an Algorithm
Code manifest MA to other model representation manifests transitively referencing MA — e.g., a
Production or Binary Code manifest MPB — defines what can be tested (everything indirectly,
transitively and reflexively linked). The consistency rules of Section 4.2 between MB and MA

ensure that MPB (which is derived from MA) can be tested with MB. And the GALEC block-
interface and life-cycle of Section 3.2.3 defines how the test must be instantiated and
conducted (cf. §4 of Section 4.2 for details). The latter is particularly important, since only the
GALEC block-interface of MA is fixed, whereas the interface of derived production or binary
code in MPB is not; but a testing tool can resolve the actual production or binary code interface
of MPB and system integrate it into a test environment for testing MPB with MB by collecting the
required information from the interlinked manifests.

§3: Root of manifest

The root element of a Behavioral Model manifest is the <Manifest> element, defined in
BehavioralModel/efmiBehavioralModelManifest.xsd. It shares the optional <Annotations>
list defined in Section 2.3.4.5 and the attributes defined in Section 2.3.1, which are common for the
manifests of any eFMI model representation; its manifest kind specific attributes are
kind="BehavioralModel".

154 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

The XSD of <Manifest> is:

The Behavioral Model specific elements of <Manifest> are:

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 155 (251)

Name Description

<ManifestRef
erences>

Foreign manifest references as defined in Section 2.3.4.3. In case of Behavioral
Model manifests, a single reference to the manifest of the Algorithm Code for
which this Behavioral Model defines test scenarios. The causalities of the block-
interface variables, exposed error signals of block-interface methods and sampling
period (called actual sampling period in the context of Behavioral Models) of the
referenced Algorithm Code manifest are used to instantiate actual tests — with the
test scenarios defined by this Behavioral Model — for the referenced Algorithm
Code container itself or any Production or Binary Code container whose manifest
transitively (i.e., directly or indirectly via a chain of references) refers to the very
same Algorithm Code manifest.

<Files> List of referenced files of the model representation as defined in Section 2.3.3. In
case of Behavioral Model manifests, only container local files can be referenced
and no <ForeignFile>. The files referenced (contained <File> elements) are the
individual reference trajectories files of the Behavioral Model container; each must
be in turn referenced by at least one test scenario.

<Units> List of units as defined in Section 3.1.5. The defined units are referenced by the
individual mappings of mapping configurations to define the unit of reference time
grids and variable trajectories stored in reference trajectories files (cf. §5),
tolerances definitions to define the unit of absolute tolerances (cf. §6), and the
clock of equidistant time grid scenarios to define the unit of the presupposed
sampling period. The units in between Behavioral Model entities and with their
respective Algorithm Code entities must align according to §1.3 of Section 4.2.

<Clocks> List of clocks referenced by equidistant time grid scenarios to define their
presupposed sampling period and its time unit (samplingPeriod and unitRefId
attributes of contained <Clock> elements). The presupposed sampling periods of
clocks must be GALEC Real values and must align with the actual sampling period
of the Algorithm Code manifest the Behavioral Model manifest refers to according
to §2.2 of Section 4.2. The XSD of <Clocks> and <Clock> is defined in
BehavioralModel/efmiClocks.xsd.

<Variables> List of variables, each variable (contained <Variable> element) linked to an
Algorithm Code manifest variable via a <ForeignVariableReference> (cf.
Section 2.3.4.3 about foreign manifest references) to denote the GALEC variable it
represents. The defined variables are referenced by tolerance definitions to denote
which variable they define a tolerance for (cf. §6) and the individual mappings of
mapping configurations to denote which variable they define a column mapping
for (cf. §5). Variables must be linked to inputs, tunable parameters, dependent
parameters or output variables of the Algorithm Code manifest; and each
Algorithm Code manifest variable must be linked at most once. The XSD of
<Variables> and <Variable> is defined in
BehavioralModel/efmiVariables.xsd.

<Scenarios> List of test scenarios defined by the Behavioral Model container (cf. §4).

156 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Name Description

<CsvMappings
>

List of mapping configurations used by test scenarios to map the individual
element-indexes of variables to column names of reference trajectories files (cf.
§5).

<TolerancesS
etups>

List of tolerance setups used by test scenarios to define error tolerances for
tunable parameter, dependent parameter and output variables for different
floating-point precisions (cf. §6).

§4: Test scenarios of manifest

The test scenarios of a Behavioral Model manifest are defined by its <Scenarios> list; each test
scenario as an individual <Scenario> element.

The XSD of <Scenarios> (complex type efmiScenarios) and <Scenario> — defined in
BehavioralModel/efmiScenarios.xsd — is:

The attributes of <Scenario> are:

Name Description

name Optional scenario name.

description Optional scenario description.

timeGrid Scenario type; either "variable" or "equidistant" denoting that the scenario is
a variable or equidistant time grid scenario respectively.

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 157 (251)

Name Description

clockRefId Optional reference to the clock defining the scenario’s presupposed sampling
period and its time unit. Must be given, if, and only if, the scenario is an equidistant
time grid scenario.

fileRefId Reference to the <File> element defining the scenario’s reference trajectories file.

csvMappingRe
fId

Reference to the scenario’s mapping configuration (cf. §5).

tolerancesSe
tupRefId

Reference to the scenario’s tolerances setup (cf. §6).

R-2 (design rationale for the separate definition of reference trajectories files, variables,
clocks, mapping configurations and tolerances setups): Test scenarios only refer to their
assets; the actual assets like a scenario’s reference trajectories file, mapping configuration,
tolerances setup, clock (in case it is an equidistant time grid scenario) and the variables used by
such are each defined in separate lists. This enables to reuse assets in different scenarios, i.e.,
they can be shared. A typical use-case is, for example, to share a single mapping configuration
among all test scenarios; to use equivalent column names to represent the same reference
trajectories among different scenarios that are created using the same tooling is not unlikely.
Another use-case for shared assets is to have two test scenarios referencing the very same
reference trajectories file: one scenario with variable time grid and one with equidistant. Such
setup provides high flexibility: if the actual sampling period of the model to test fits the
presupposed one of the scenario, the precise equidistant time grid scenario can be used,
otherwise one can fallback to the variable time grid scenario. In such setup, the variable time
grid scenario might use a less strict tolerances setup than the equidistant one to account for
interpolation imprecisions.

The drawback of separately defined assets is, that if such are shared and an update is
supposed to only change a certain of the shared test scenarios, one cannot just update the
existing asset but instead must create a copy that now can be respectively changed. Just
updating the existing asset would change all test scenarios referencing it. Handling correct
update behavior and optimize sharing is a tool support issue however, whereas providing the
means to define comprehensible test scenario narratives — like which scenarios share the
same tolerances setup, finding all tolerances definitions for a variable, representing test
scenarios as a collection of their assets and not vice-versa — is a standardization challenge.

Every alternative design approach has its own issues. Embedding every asset as element, such
that each test scenario contains its whole definition, likely implies many copies of the very
same definitions — like a common mapping configuration — if there are many test scenarios.
And using another dominant composition, like letting variables define tolerances and mapping
configurations and compile the actual test scenarios indirectly via links from each variable to
the test scenario it is part of, destroys the convenient narrative of test scenarios being the
vocal point and introduces many complicated semantic restrictions to ensure consistency and
completeness (e.g., because supporting test scenarios varying in tolerances and mapping
configurations would require several definitions for the very same variable, each linking to its

158 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

"own" test scenario).

§5: Mapping configurations of manifest

The mapping configurations of a Behavioral Model manifest are defined by its <CsvMappings> list;
each configuration as an individual <CsvMapping> element. Besides the id used to reference a
mapping configuration, configurations define in which columns the trajectories for the reference
time grid and individual variables are stored (<TimeData> and <ReferenceData> elements) if a
reference trajectories file is structured according to the configuration. The trajectory values for a
variable can require several columns if the variable is a multi-dimensional; in that case, the individual
trajectories of the element-indexes are scalarized into separate columns defined by respective
<ColumnMapping> elements. Completeness rules ensure that every mapping configuration defines a
mapping for all trajectories of all variables that are required for testing; and consistency rules ensure
that there are no contradictions that might cause misinterpretations (for example due to different
variables mapping to the same column).

The XSD of <CsvMappings> (complex type efmiCsvMappings), <CsvMapping>, <TimeData>,
<ReferenceData> and <ColumnMapping> — defined in
BehavioralModel/efmiCsvMappings.xsd — is:

The attributes of <TimeData> are:

Name Description

columnName Name of the reference time grid column. The column names of a mapping
configuration must be distinguished according to §1.1 of Section 4.2.

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 159 (251)

Name Description

unitRefId Reference to the unit of the reference time grid. All time-related units of a test
scenario (like the units of actual sampling period, presupposed sampling period
and reference time grid) must align according to §1.3 of Section 4.2.

The attributes and elements of <ReferenceData> are:

Name Description

variableRefI
d

Reference to the variable v for which a mapping to the column(s) of reference
trajectories files is defined. The referenced variables of a mapping configuration
must be distinguished according to §1.1 of Section 4.2.

unitRefId Optional reference to the default unit of all trajectories of the variable. Must not be
given if the referenced variable v is scalar. Otherwise (i.e., v is multi-dimensional),
the unit holds for the individual trajectories of each element-index whose unit is
not refined by <ColumnMapping> elements. All units a test scenario compiles for
the same variable and element-index (like the units defined for it in the Algorithm
Code manifest, mapping configuration and tolerance definition) must align
according to §1.3 of Section 4.2.

<ColumnMappi
ng>

List of at least one <ColumnMapping> defining the column(s) of reference
trajectories files onto which the referenced variable v is mapped. If v is scalar,
exactly one <ColumnMapping> element without any elementIndex must be
given; otherwise, all contained <ColumnMapping> elements must have an
distinguished elementIndex.

The attributes of <ColumnMapping> are:

Name Description

elementIndex Optional index of the element for which the <ColumnMapping> defines a column.
Must be given, if, and only if, the variable v the containing <ReferenceData>
refers to is multi-dimensional. Let (s1, s2, …, sn), n∈ℕ1 be the sizes of the dimensions
of v. The value i of elementIndex must be a GALEC Integer and be in range 1 ≤ i
≤ s1 × s2 × … × sn; it refers to the i'th element of v in row-major order.

unitRefId Optional reference to the unit of the trajectory. A given value overrides any default
unit of the containing <ReferenceData> element for the given element-index. All
units a test scenario compiles for the same variable and element-index (like the
units defined for it in the Algorithm Code manifest, mapping configuration and
tolerance definition) must align according to §1.3 of Section 4.2.

columnName Name of the column storing the trajectory for the (element-index of the) variable
the containing <ReferenceData> refers to. The column names of a mapping
configuration must be distinguished according to §1.1 of Section 4.2.

According to §1.1 of Section 4.2, mapping configurations must be complete, i.e., define column links
for (each element-index of) all input variables according to the Algorithm Code manifest the
Behavioral Model manifest refers to; and according to §1.3 of Section 4.2, must always define a unit
for (the element-index of) a variable if the Algorithm Code manifest defines a unit for the respective

160 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

(element-index of the) variable (thus, units are only optional if, and only if, the Algorithm Code
manifest defines none; but mapping configurations can introduce units if the respective (element-
index of the) variable has none in the Algorithm Code manifest).

§6: Tolerances setups of manifest

The tolerances setups of a Behavioral Model manifest are defined by its <TolerancesSetups> list;
each setup as an individual <TolerancesSetup> element. Besides the id used to reference a
tolerances setup, setups define a tolerances configuration (contained
<TolerancesConfiguration> elements) for each floating-point precision they support; and each
tolerances configuration in turn can define absolute and relative tolerances in tolerance definitions
(contained <TolerancesDefinition> elements) for the tunable parameters, dependent
parameters and outputs relevant for testing. Tolerances can be defined for each individual
trajectory — i.e., element-index — of a multi-dimensional variable, either via a default tolerance for all
trajectories or by refined tolerances overriding the default for a certain element-index; the latter can
be defined via individual <ElementTolerances> within a tolerances definition. Completeness rules
ensure that every tolerances configuration defines tolerances for all trajectories of all variables that
are of interest for testing; and consistency rules ensure that there are no contradictions that might
cause misinterpretations (for example due to several, contradicting tolerances definitions for the
very same variable or contradicting units between trajectory values and their absolute tolerance).

The XSD of <TolerancesSetups> (complex type efmiTolerancesSetups), <TolerancesSetup>,
<TolerancesConfiguration>, <TolerancesDefinition> and <ElementTolerances> — defined
in BehavioralModel/efmiTolerances.xsd — is:

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 161 (251)

The attributes and elements of <TolerancesConfiguration> are:

Name Description

floatingPoin
tPrecision

IEEE 754-2019 floating-point precision for which this tolerances configuration
defines acceptable tolerances. One of 16-bit, 32-bit, 64-bit, 128-bit, 256-
bit or any. If any, the configuration is the default configuration to be used for
testing Algorithm Code containers or whenever no other specialized configuration
is given for an actual test setup (i.e., when the tested Production or Binary Code
container uses a floating-point precision for which the used tolerances setup
misses a tolerances configuration). The floating-point precisions between the
different tolerances configurations of a tolerances setup must be distinguished.

<TolerancesD
efinition>

List of tolerances definitions to be used when comparing actual vs. reference
values, each defining the error tolerances applicable for (a certain element-index
of) a certain variable in test scenarios conducted with the floating-point precision
of this tolerances configuration. The referenced variables of the tolerances
definitions of a tolerances configuration must be distinguished.

In case a tolerances configuration does not contain any tolerances definition defining the absolute
tolerance for (the element-index of) a variable suited as variableRefId value, the respective
absolute tolerance is 0; and likewise for relative tolerances.

E-3 (minimal, generic tolerances setup): Thanks to default tolerances in case absolute and
relative tolerances are not defined, and the possibility to denote that a tolerances

162 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

configuration can be used in any floating-point precision test environment
(floatingPointPrecision="any") in case there is no more specific configuration available,
it is possible to define a minimal generic tolerances setup working for any test scenario, block-
interface and test environment:

1 <TolerancesSetups>
2 <TolerancesSetup id="MinimalGenericSetup>
3 <TolerancesConfiguration floatingPointPrecision="any"/>
4 </TolerancesSetup>
5 </TolerancesSetups>

The drawback of such definition is, that, according to §3-4 of Section 4.2, an absolute and
relative tolerance of 0 for (the element-index of) a variable v means, that no deviations
between actual and reference values are tolerated for (the respective element-index of) v, or, in
case v is a tunable parameter, recalibration is conducted for any value changes regardless how
minimal. This means, that above minimal, generic tolerances setup enforces tested code to
match perfectly the expected reference trajectories. Such strict conditions are unlikely to be
intentional and are very hard to satisfy considering that reference trajectories are typically not
generated from the GALEC code of an eFMU’s Algorithm Code container, but instead from
independent offline simulations of the model subject to eFMU generation. Hence, the
simulation and tested eFMU code are likely using completely different numerical approaches
and floating-point arithmetics are prone to minor deviations for even the simplest change in
just the order of floating-point operations.

The attributes and elements of <TolerancesDefinition> are:

Name Description

variableRefI
d

Reference to the variable for which this tolerances definition defines tolerances.
The referenced variable must be a tunable parameter, dependent parameter or
output of type Integer or Real.

unitRefId Optional reference to the unit of the absolute default tolerance for the variable.
Must be given, if, and only if, an absolute default tolerance is defined. All units a
test scenario compiles for the same variable and element-index (like the units
defined for it in the Algorithm Code manifest, mapping configuration and tolerance
definition) must align according to §1.3 of Section 4.2.

absoluteTole
rance

Optional absolute default tolerance for all trajectories of the variable. If given, the
value t must be a GALEC Integer if the referenced variable v is of type Integer;
otherwise it must be a GALEC Real; in any case, it must hold that t ≥ 0. If v is multi-
dimensional, the tolerance holds for the individual trajectories of each element-
index whose absolute tolerance is not refined by <ElementTolerances>
elements.

relativeTole
rance

Optional relative default tolerance for all trajectories of the variable. If given, the
value t must be a GALEC Real with t ≥ 0. If the referenced variable v is multi-
dimensional, t holds for the individual trajectories of each element-index whose
relative tolerance is not refined by <ElementTolerances> elements.

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 163 (251)

Name Description

<ElementTole
rances>

List of refined error tolerances for the individual element-indexes of the variable v
this tolerances definition refers to. Must be empty if v is not a multi-dimensional
(i.e., is a scalar); otherwise, all contained <ElementTolerances> elements must
have an distinguished elementIndex.

A tolerances definition for a scalar variable must define at least one tolerance (i.e., either
absoluteTolerance or relativeTolerance or both are given).

The attributes of <ElementTolerances> are:

Name Description

elementIndex Index of the element for which the <ElementTolerances> defines error
tolerances. Let (s1, s2, …, sn), n∈ℕ1 be the sizes of the dimensions of the variable v
the containing tolerances definition refers to. The value i of elementIndex must
be a GALEC Integer and be in range 1 ≤ i ≤ s1 × s2 × … × sn; it refers to the i'th
element of v in row-major order.

unitRefId Optional reference to the unit of the absolute tolerance. Must be given, if, and only
if, an absolute tolerance is defined. All units a test scenario compiles for the same
variable and element-index (like the units defined for it in the Algorithm Code
manifest, mapping configuration and tolerance definition) must align according to
§1.3 of Section 4.2.

absoluteTole
rance

Optional absolute tolerance for the trajectory. If given, the value t must be a GALEC
Integer if the referenced variable v of the containing tolerances definition is of
type Integer; otherwise it must be a GALEC Real; in any case, it must hold that t ≥
0. t overrides any absolute default tolerance of the containing
<TolerancesDefinition> element for the given element-index.

relativeTole
rance

Optional relative tolerance for the trajectory. If given, the value t must be a GALEC
Real with t ≥ 0. t overrides any relative default tolerance of the containing
<TolerancesDefinition> element for the given element-index.

An <ElementTolerances> element must define at least one tolerance (i.e., either
absoluteTolerance or relativeTolerance or both are given).

4.2. Behavioral Model semantic
Assuming a valid Behavioral Model manifest according to Section 4.1 is given, this section defines the
semantics for testing another Algorithm, Production or Binary Code container of the eFMU according
to one of the test scenarios of the manifest. To that end, we define restrictions on the reference
trajectories file of the scenario (i.e., under which conditions it defines reference trajectories suited for
testing) and how to apply its reference trajectories for testing a GALEC block-interface and life-cycle
(cf. Section 3.2.3) based program.

164 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

§1: Structure and content of reference trajectories files

Reference trajectories files contained in a Behavioral Model representation must satisfy RFC 4180
"Common Format and MIME Type for Comma-Separated Values (CSV) Files" including its errata (cf.
https://www.rfc-editor.org/). Additionally to RFC 4180, the constraints defined in the following apply.

Double quoted fields are only permitted in the header line, whose fields must not contain linefeed or
carriage return characters (hexadecimal 0A and 0D in ANSI X3.4-1986).

L-1 (restriction to printable ANSI X3.4-1986 values for CSV fields): RFC 4180 only permits the
subset of printable characters (hexadecimals 20 to 7E) and double quoted comma, carriage
return, linefeed and quote (hexadecimals 2C, 0D, 0A and 22) of ANSI X3.4-1986 (US-ASCII) as
field values. This restriction is not in conflict with names of GALEC identifiers, multi-
dimensional queries of such and the values of Integer and Real; such are all composed of
printable characters (i.e., within the restricted subset of US-ASCII) and therefore can be used as
CSV field values.

A reference trajectories file must have at least two lines (which, according to §1.1 and §1.2, are a
header line defining columns followed by another line with reference values for the first sampling).

§1.1: CSV header line and column linking

The first line of a reference trajectories file is a CSV header line; it defines the columns and their
names. Each column name must be unique; its value is the respective CSV field’s value without
enclosing double quotes if any, and each escaped double quote (2DQUOTE in RFC 4180) replaced by a
single double quote character (").

The first column must be the reference time grid as defined in the Behavioral Model manifest by
name via the columnName attribute of the <TimeData> element of the scenario’s mapping
configuration (cf. §5 of Section 4.1). Optional Recalibrate() and DoStep() columns define
reference values for the error signals returned by the Recalibrate() and DoStep() block-interface
methods respectively (hence, Recalibrate() and DoStep() are reserved column names with
special meaning). All other column names (i.e., except the reference time grid and error signal
columns) can be used by the scenario’s mapping configuration — as defined in the Behavioral Model
manifest — to bidirectional link columns to individual element-indexes of block variables of the
Algorithm Code manifest.

Each column can be linked to at most one block variable element-index (with scalar block variables
treated as 1-dimensional with size 1), and each block variable

• in case it is scalar, can be linked to at most one column

• in case it is multidimensional, each of its element-indexes can be linked to at most one column

within a single reference trajectories file. Not all columns have to be linked; but whenever the
manifest links a column by name and element-index via the columnName and elementIndex
attributes of a <ColumnMapping> element of a <ReferenceData> element of the scenario’s
mapping configuration (cf. §5 of Section 4.1), the respective column must exist in the reference

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 165 (251)

https://www.rfc-editor.org/

trajectories file.

The reference time grid and error signal columns must not be linked. All block inputs must, for each
element-index, be linked to a column. Columns for the element-indexes of tunable parameters,
dependent parameters and block outputs are optional; if any element-index of such is not linked to a
column, it simply is not tested. Linking block constants or states to columns is forbidden.

R-2 (restriction of reference time grid as first column): In general, mapping configurations
could define any column besides the first to be the reference time grid. In practice, CSV
processing — like plotting curves from a CSV file — is often much more convenient in third
party tooling lacking dedicated eFMI support if the reference time grid is stored in the first
column.

Likewise, the whole reference time grid column could be skipped for equidistant time grid
scenarios. The sampling period of the clock of an equidistant time grid scenario, together with
the knowledge about how many reference points (i.e., lines) the scenario’s reference
trajectories file has, would be sufficient to define the presupposed time grid. Further third
party processing of references trajectories files would become complicated however, since a
reference time grid is typically required and now would have to be constructed on the fly. An
explicit reference time grid also has the advantage that recording errors when constructing
the reference trajectories can be detected by the consistency rules between reference time
grid, actual time grid and presupposed time grid (cf. §2.2). If, for example, a references
trajectories file stems from real-time recordings of hardware-in-the-loop (HiL), any real-time
violations are captured when the actual recording times are stored as reference time grid.

§1.2: CSV non-header lines and reference points

Each line following the CSV header line defines the value of each column at a certain time point; the
respective time point is the value given in the reference time grid column. The tuple (t, v) of the field
value v of a column c for a certain time point t is called a reference point of c.

All column values must be according to the GALEC syntax for Integer and Real constants. Values of
columns linked to GALEC Integer variables must be integers; values of columns linked to GALEC
Real variables must be reals. Values of columns linked to GALEC Boolean variables have to be
represented by the Integer values 0 for false and 1 for true. Values of error signal columns must
be integers (GALEC Integer) representing any valid combination of the error signals exposed by
their respective block-interface method according to the Algorithm Code manifest (cf. the GALEC
specification for details regarding pre-defined and exposed error signals). The values of the
reference time grid column must be reals (GALEC Real).

L-3 (whitespace-free trajectory values): In general, RFC 4180 fields can contain whitespace,
but above definition prohibits whitespace characters — except within header lines — since field
values are GALEC Integer or Real values (i.e., without any whitespace preceding, following or
inbetween).

166 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

§1.3: Unit of column values and tolerances

All values of a column, except error signal columns and the values of the CSV header line, have the
same unit, defined by the scenario’s mapping configuration (cf. §5 of Section 4.1); the unit of a
column is

• in case of the reference time grid column, the unit defined by the <TimeData> element linking to
the column

• otherwise, the unit defined by the <ColumnMapping> (preferred) or <ReferenceData> element
linking to the column if either defines a unit

• ⊤ otherwise (no unit defined, therefore all units are valid w.r.t. any constraints)

Error signal columns have no unit.

The unit of the reference time grid column must be equivalent to the unit of the <Clock> variable of
the Algorithm Code manifest the Behavioral Model manifest links to. For equidistant time grid
scenarios, the units of their <Clock> and reference time grid column must be equivalent. The unit of
an absolute tolerance for a linked column c must be equivalent to the unit of c. Let uB be the unit of a
linked column and uA be the unit

• for the element-index of the variable v (in case v is multi-dimensional)

• the variable v (in case v is scalar)

in the Algorithm Code manifest the column links to; one of the following must hold:

• uB = uA (including the special case that both are ⊤) or

• uA = ⊤ (and uB can be anything, i.e., introduce a unit for the trajectory)

L-4 (unit equivalence between Algorithm Code and Behavioral Model containers): Since
the unit of a linked column of the reference trajectories file, the block variable it is linked to,
and potential tolerances must be equivalent, there is no need for unit conversions. This
restriction eases implementation effort for tools, but likely will be dropped in a future version
of the standard, which then supports, constraints and requires respective automatic value
conversions.

Units are nevertheless explicitly defined in Behavioral Model manifests to enable the detection
of misalignments, when, for example, the reference points of a scenario have been recorded
using different units than a Production Code to test or absolute tolerances have different units
than the trajectory they are defined for. Such errors would be nasty pitfalls if there would be
no explicit units in Behavioral Model manifests, for example, when regenerating GALEC and
production codes with changed units without updating Behavioral Model containers
accordingly.

§2: Time grids and reference values at actual sampling points

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 167 (251)

§2.1: Reference and actual time grids

Values of the reference time grid column must be strictly monotonically increasing from line to line;
their ascending ordered sequence is the reference time grid ST. It must hold that ∀t∈ST: t ≥ 0. We
denote the i'th value of a sequence s via value(i, s); the first and last value of the reference time grid
are therefore value(1, ST) and value(|ST|, ST) respectively.

Let sA∈ℝ be the actual sampling period according to the clock of the Algorithm Code manifest the
Behavioral Model manifest links to; it must hold that sA > 0. The time tolerance ∆t± for time related
deviations is

• in case of equidistant time grid scenarios, ∆t± = 0.05 × sA (i.e., 5% of the actual sampling period sA)

• otherwise, ∆t± = 0

The first actual sampling point tstart∈ℝ is tstart = value(1, ST) (i.e., at the smallest reference time grid
value). The last actual sampling point tend∈ℝ is tend = tstart + iend × sA where iend∈ℤ is the largest number
such that tend ≤ value(|ST|, ST) + ∆t± holds. All other actual sampling points are at time points t∈ℝ, tstart

< t < tend for which holds: ∃i∈ℤ: t = tstart + i × sA. The ascending ordered sequence of all actual sampling
points is the actual time grid SA.

R-5 (difference between reference and actual time grids): Above definition of actual
sampling points has no strict implications or restrictions on the reference time grid as defined
in the reference trajectories file, which — in particular for variable time grid scenarios — is
independently defined from the actual time grid. For variable time grid scenarios, the values of
the reference time grid can be actual sampling points, between actual sampling points or even
after the last actual sampling point (e.g., a reference time grid for a test scenario with 1s
sampling period could have time points at 3.1s, 5.7s and 7.9s, yielding an actual time grid with
5 points at 3.1s, 4.1s, 5.1s, 6.1s and 7.1s). For equidistant time grid scenarios, this freedom is
restricted in §2.2 to ensure that the reference time grid aligns with the actual time grid within
the time tolerance ∆t±.

R-6 (well-defined time span of tests): Above definitions ensure that there are no inept implicit
assumptions about the starting point and time span of simulations used to generate reference
trajectories files, while still ensuring unique interpretation of such:

• Sampling starts with the first reference time grid value, whatever it is.

• There is no need for extrapolation (because for variable time grid scenarios, ∆t± = 0 and
therefore tend ≤ value(|ST|, ST); and for equidistant time grid scenarios, the last actual
sampling point is at most ∆t± after value(|ST|, ST), i.e., within the time tolerance up to which
we want to conduct tests and for which reference values are defined according to §2.3).

Thus, it is possible to do snap-shot recordings of long running simulations — where start and
end time are not necessarily of any specific value — for generating reference trajectories files.

168 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

§2.2: Presupposed time grid and acceptable time deviation of equidistant time grid scenarios

Let sB∈ℝ be the presupposed sampling period according to the clock the Behavioral Model manifest
defines for an equidistant time grid scenario; it must hold that sB > 0. The first presupposed sampling
point tstart∈ℝ is tstart = value(1, ST) (i.e., at the smallest reference time grid value). The last presupposed
sampling point tend∈ℝ is tend = tstart + iend × sB where iend∈ℤ is the largest number such that tend ≤
value(|ST|, ST) + ∆t± holds. All other presupposed sampling points are at time points t∈ℝ, tstart < t < tend

for which holds: ∃i∈ℤ: t = tstart + i × sB. The ascending ordered sequence of all presupposed sampling
points is the presupposed time grid SB.

For equidistant time grid scenarios it must hold that

• |SA| = |SB| = |ST| (all time grids align on the number of samplings conducted for the scenario)

• ∀i∈ℤ, 1 ≤ i ≤ |SA|, b[= value(i, SA) - ∆t±, b] = value(i, SA) + ∆t±: b[≤ value(i, SB) ≤ b] ∧ b[≤ value(i, ST) ≤ b]

(actual and presupposed time grids align for the scenario within the permitted time tolerance,
i.e., for this scenario, the presupposed sampling period of the Behavioral Model manifest is close
enough to the actual sampling period of the Algorithm Code manifest it links to; likewise, each
reference time point of the reference time grid aligns with an unique actual sampling point
within the permitted time tolerance; thanks to the previous constraints, and ∆t± being significantly
smaller than 0.5 × sA by definition, the permitted time tolerance around actual sampling points do
never overlap for which reason the alignments are bidirectional)

R-7 (difference between actual and presupposed time grids): The actual time grid defines
the sampling assumed by the tested code (Algorithm, Production or Binary Code container);
this is the sampling required by that very code to work properly (for example, the code might
use this sampling period internally to compute derivatives). The actual time grid defines the
sampling to use for testing the behavior of that very code, and therefore used to execute any
test scenario. The presupposed time grid on the other hand defines the sampling under which
the reference values of the reference trajectories file of an equidistant time grid scenario have
been recorded.

Both must be close enough to each other (i.e., align) for the equidistant time grid scenario to
be applicable for testing the given code. Otherwise, the tested code might use a wrong
sampling period internally. Note, that alignment is not defined by some tolerance for the
sampling period as such, for which we could always find a scenario where it is to
permissive — given the scenario just runs long enough — due to sampling differences adding
up over time. Instead alignment is defined for the actual scenario by applying the acceptable
time tolerance ∆t± on each individual given actual sampling point.

§2.3: Reference values at actual sampling points

The reference value v of a column c at an actual sampling point ts = value(i, SA), i∈ℤ, 1 ≤ i ≤ |SA| (i.e.,
the i'th sampling) is

• in case of equidistant time grid scenarios, the value of the reference point (t, v) of c for which ts -
∆t± ≤ t ≤ ts + ∆t± (i.e., for which t = value(i, ST), and therefore v is the field value of c given on the i'th
line of the reference trajectories file, excluding the CSV header line from counting)

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 169 (251)

• otherwise (i.e., in case of variable time grid scenarios)

◦ in case ∃t∈ST: t = ts, the value of the reference point of c for t

◦ otherwise, the interpolation result between the two reference points of c closest to ts; the two
closest reference points r0 = (t0, v0) and r1 = (t1, v1) are the reference points of c for which holds:
t0 < ts < t1 ∧ ∄t0,t1∈ST: t0 < t0 < ts ∨ ts < t1 < t1 (i.e., the reference points of c uniquely defined by
the smallest index i for which t0 = value(i, ST), t1 = value(i + 1, ST), t0 < ts < t1)

Two interpolation methods are supported for the last case, constant-segment and linear
interpolation. In case of constant-segment interpolation the reference value v is v0. In case of linear
interpolation, let vlinear = v0 + ((ts - t0) / (t1 - t0)) × (v1 - v0); then v is

• in case c is linked to a GALEC Boolean or Integer variable, the round half to even of vlinear (cf.
GALEC builtin function roundHalfToEven)

• otherwise, vlinear

Which interpolation method is used, depends on c

• in case c is an error signal column or linked to a tunable or dependent parameter, constant-
segment interpolation

• otherwise, linear interpolation

If no error signal column for a block-interface method is defined, the reference value for the
respective method’s error signal is 0 (i.e., a reference value for error signals of block-interface
methods is always defined and tested even if no column for such exists).

R-8 (characteristics of time grids and reference trajectories): All time grids are discrete-
time; their plots are points of unique value and not a curve with a continuous time axis. The
other trajectories (linked block variables and error signals) are continuous-time in case of
variable time grid scenarios and discrete-time in case of equidistant time grid scenarios.

These characteristics are not only of interest for correct plotting (continuous curves vs. points),
but for any further processing by third party tooling. For example, interpolating the values of
reference trajectories files of equidistant time grid scenarios as if they are continuous — i.e.,
using the CSV data like continuous curves — is highly questionable.

R-9 (reference time grids for variable time grid scenarios should follow significant
trajectory changes): Variable time grid scenarios use linear interpolation; although well-
defined compared to the plethora of spline interpolation schemes, linear interpolation is a
rather coarse grained interpolation scheme. Whenever trajectories have significant derivative
changes or discontinuities, it is highly recommended that the reference time grid of reference
trajectories files contains entries close to these points of interest. Otherwise, test results might
not be meaningful; they might miss to test points of interest (undersample) and/or fail because
linear interpolation does not find good reference values for actual sampling points that are far
off from reference time grid points. Oversampling — i.e., to have many more time points — is
not problematic for variable time grid scenarios.

170 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

R-10 (life-time of reference values w.r.t. the GALEC block life-cycle): The reference values
for tunable parameters are right before calling Recalibrate() and are valid at least until
DoStep() finished. The reference values for dependent parameters are right after calling
Recalibrate() and are valid at least until the next Recalibrate() call. The reference values
for block inputs are right before calling DoStep() and are valid at least until DoStep()
finished. The reference values for block outputs are right after calling DoStep() and are valid
at least until the next DoStep() call. The reference values for error signals of block-interface
methods are right after calling their respective method and are valid at least until the next call
of their respective method.

§3: Tolerances and acceptable deviation at actual sampling points

Let c be a linked column for (some element-index of) a tunable parameter, dependent parameter or
output variable V. According to §6 of Section 4.1, an absolute and relative tolerance ∆absolute and ∆relative

will be defined for c if V is of type Integer or Real, either explicitly in the Behavioral Model manifest
by some tolerances definition or implicitly if such is missing. Let vr be the reference value of c at
some actual sampling point. A value v is within tolerance of vr, if, and only if,

• in case V is of type Integer or Real, |vr - v| ≤ ∆± where ∆± is the maximum of ∆absolute and ∆relative ×
|vr|

• otherwise (i.e., V is of type Boolean), v = vr

In case V is of type Integer, above equation is evaluated in real arithmetics by first promoting vr and
∆absolute to Real according to the GALEC builtin function real(); this implies in particular that ∆± can
be a proper real value in case the fractional part of ∆relative is not 0, and ≤ is a real comparison.

§4: Interpretation of test scenarios

The execution of a test scenario within a certain test environment (i.e., the interpretation of a
scenario for testing) follows the GALEC block-interface and life-cycle (cf. Section 3.2.3), with the
sampling — and therefore interactions with block-interface variables and methods — following the
actual time grid SA. Let B be the tested block:

• The Startup() method of B is executed once, before any other block-interface interaction and
never executed thereafter. If the error signal returned by Startup() is not 0, the test fails.

• At each actual sampling point, the linked tunable parameters and block inputs of B are set to
their reference values before calling any block-interface method.

• The Recalibrate() method of B is executed once at the very first actual sampling point if the
default start value, according to the Algorithm Code manifest, of a linked tunable parameter is
either, undefined, or not within tolerance of its reference value. The Recalibrate() method is
also executed at any further actual sampling point ts∈SA where the reference value of the
previous actual sampling point of a linked tunable parameter is not within tolerance of the
reference value at ts.

• The DoStep() method of B is executed once at each actual sampling point, after any
Recalibrate() execution. Afterwards, the values of linked dependent parameters and linked

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 171 (251)

outputs of B (the actual values) are checked if they are within tolerance of their respective
reference values; if any is not, the test fails.

• Whenever a block-interface method of B is executed, its returned error signal is compared to its
respective reference value (according to §2.3, such is always defined); if the returned error signal
and reference value are not equivalent, the test fails.

• There are no further interactions with B than the ones defined above.

A test passes, if, and only if, it doesn’t fail.

R-11 (invalid Behavioral Model containers vs. nonapplicable scenarios vs. failed tests): In
case of any violations of the manifest schema as defined in Section 4.1, the Behavioral Model
container, and all its scenarios, are invalid. Invalid containers and scenarios cannot be used for
testing according to §4.

Otherwise (i.e., if the manifest satisfies all rules of Section 4.1), but in case of any violations of
rules §1-2.1 (i.e., w.r.t. a certain scenario and its reference trajectories file but excluding
alignment rules related to reference time grids of equidistant time grid scenarios), the
respective scenario is invalid. Invalid scenarios cannot be used for testing but other scenarios
of the container might still be valid and usable for testing.

Scenarios violating only rules of §2.2 are nonapplicable (due to a too large reference time grid
deviation compared to the actual sampling period); they too cannot be used for testing, but are
easy to fix by regenerating the reference points of the equidistant time grid scenario with
appropriate resolution (by using a sampling period aligned with the sampling period of the
Algorithm Code container).

Scenarios missing a tolerances configuration for a certain floating-point precision and without
a tolerances configuration with floatingPointPrecision="any" are nonapplicable for
testing other eFMU containers requiring that very precision.

If a scenario is neither invalid nor nonapplicable, it is valid. Only valid scenarios can be used for
testing as described in §4.2, in which case they either pass or fail.

L-1 (optional, production and binary code dependent support for recalibration): A
test tool must reject — i.e., consider to be nonapplicable — scenarios requiring
recalibration for testing Production or Binary Code containers which dropped
recalibration support (i.e., assume all tunable parameters are constants fixed to their
default initialization value and therefor do not provide an implementation of the block’s
Recalibrate() method). A scenario requires recalibration, if a column of a used
reference trajectories file is linked to a tunable or dependent parameter and contains
any value different to the parameter’s default initialization value (considering
tolerances).

L-2 (undecidable applicability of variable time grid scenarios): For equidistant time
grid scenarios applicability for a given Algorithm, Production or Binary Code container is

172 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

decidable. The alignment rules of §2.2 between time grids ensure that the sampled
system can be tested with the given reference trajectories without the risk of
undersampling. In fact, for each sampling exact reference points are defined. This is not
the case for variable time grid scenarios; that is why rationale R-9, that the reference
time grids of variable time grid scenarios should follow significant trajectory changes, is
important. A user of a variable time grid scenario cannot decide if its reference time grid
is suited for the actual sampling period; he must trust that the producer recorded good
enough reference trajectories.

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 173 (251)

174 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Chapter 5. Production Code Model
Representation
A Production Code Model Representation of an eFMU container contains the actual sources that
implement the algorithm expressed in Algorithm Code Model Representation of the same eFMU
container.

As mentioned before an eFMU container can contain any number of Production Code Model
Representations.

Mandatory

OptionalFMU Container

Production Code Model Represention #1

Production Code Model Represention #2

...

...

eFMU Container

FMU Data
...

Production
Code

Simulation
Code

Tool Specific
Code FMU

The following code parts may be present inside each Production Code Model Representation:

• Production Code: This section contains the actual Production Code running on the embedded
device. In later development steps it shall be compiled and linked to be integrated on the target
embedded device.

• [optional] Simulation Code: This code is used to simulate the target environment of the
Production Code. It may provide stub functions for communication with other software functions.

• [optional] Tool Specific Code: Tool Specific Code may help tools to integrate the Production Code

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 175 (251)

in their (execution) environment.

• [optional] FMU container: This FMU container may be extracted and copied to the surrounding
FMU Data to be consumed by FMI compatible tools directly.

The structure of the Model Representation is organized in a folder structure, but not standardized.
Instead, the actual structure of the Model Representations’s content, e.g. code at least as far as
interfaces and externally accessible parts are concerned, is formally described in the manifest file of
the Model Representation. The Model Representation is "registered" in the "__content.xml" registry
of the eFMU container.

 1 +---------------------+
 2 | __content.xml |
 3 +---------------------+
 4 ^ ^
 5 | registers |
 6 | |
 7 +---------------+-+ +-+------------------------------------+
 8 | Algorithm | | Production Code Model Representation |
 9 | Code | references | |
10 | Container | +-----| manifest.xml |
11 | | : | folder |
12 | manifest.xml |<------+ | model.h |
13 +-----------------+ | model.c |
14 +--------------------------------------+

The manifest itself references to a manifest of a Algorithm Code Model Representation for more
detailed information.

For each different target - the combination of compiler and processor - there exist a dedicated
Production Code section inside an eFMU container. A special target is the generic one, where the
included C code doesn’t contain target specific parts, e.g. assember code sections or code assuming
a certain hardware platform. Such a generic C code is therefore portable, i.e. compilable on an ARM
architecture as well as on a i86 architecture. This flexibility allows for including an FMU into the
Production Code Model Representation, that uses the generated Production Code and a FMI
compatible interface.

NOTE
An example use case for the FMU container is an early back-to-back test while already
using the target datatypes: After modelling an controller, developers can easily check
the resulting Production Code using FMI compatible tools.

A generic target allows for testing and simulating the Production Code in an environment other than
the target embedded device, which may require additional software parts to interface with the
environment. These software parts can simulate parts of an operating system of the microcontroller,
create stubs to represent other software functions that interact with the software-under-test or
handle inputs, outputs and the execution.

NOTE
Testing a Production Code Model Representation in a Processor-in-the-Loop scenario,
tools using their own execution frame on the targed board. To support these use-
cases this kind of code can be stored as Tool Specific Code inside the Production

176 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Code Model Representation. The name of the tool and its version have to be specified
in the manifest file referencing the code.

5.1. Production Code Manifest
The Production Code manifest follows the general guidelines as pertaining to all manifests, including
the listing of relevant manifests and files. In addition it describes the content of the "Code Files":

On the top level, the schema consists of the following elements:

Name Description

attributes The attributes of the top-level element are the same for all manifest kinds
and are defined in section Section 2.3.1.
Current kind-specific values: kind = "ProductionCode", xsdVersion
(value is the current xsd version of the schema for the Algorithm Code
model manifest).

ManifestReferences Reference to the manifest of the Algorithm Code on which this Production
Code manifest is based on. This element is the same for all manifest kinds
and is defined in section Section 2.3.4.3.

Files List of files referenced in this model representation. This element is the
same for all manifest kinds and is defined in section Section 2.3.3.

CodeContainer Defines the details of the production code. For details see Section 5.1.2.

Annotations Additional data that a vendor might want to store and that other vendors
might ignore. For details see Section 2.3.4.5.

The Production Code manifest describes the structure of the contained "Production Code".
Languages for the producion code include the "C" language and the "C++" language. The manifest
will give more detailed information on the exact requirements on the Production Code language to
integrate the code into an actual ECU software content.

NOTE
The Production Code manifest focusses on aspect directly tied to the Production
Code itself in particular the technical aspects. Relevant aspect relating to the

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 177 (251)

algorithm or the "logical" concepts are referred to from the Algorithm Code manifest
(e.g. whether an object is a state or calibration parameter, input or output etc.).

The Production Code manifest is an xml file with structured information about the Production Code.
It contains two sections:

• Production code description section: This section contains all information directly pertaining to
the code itself, i.e. the "technical realisation".

• Mapping section: this section contains all information relating to mapping the elements of the
technical realistion (aka. the C-code) to the logical elements of the Algorithm Code.

This distinction into logical (as e.g. described in the Algorithm Code) and technical parts is crucial and
is shown in one example here.

Example: Suppose a (logical) function f that computes outputs y1 and y2 from inputs x1 and x2 and a
state s1 using parameters p1 and p2. This logical function could be implemented in several ways,
e.g.:

• f1 working on global variables only. In this case the (technical) function signature is that of a void
void function and the expressions directly access the elements.

void f1() {
 ...
 s1 = ... /* update of state s1 */
 y1 = ... /* y1 expression */
 y2 = ... /* y2 expression */
}

• f2 that takes the inputs as arguments and returns output y1 as return value and y2 via a pointer.
Access to state and parameters is through global variables

float f2(float x1, float x2, float *y2) {
 ...
 s1 = ... /* update of state s1 */
 y2 = ... / y2 expression */
 return ...; /* y1 expression */
}

• f3 that that works like f2 but takes the states as a struct with two elements

… typedef struct { float s; float t; } states;

…

float f3(float x1, float x2, states myStates, float y2) { … myStates.s = … / update of state s1 / *y2
= … / y2 expression / return …; / y1 expression */ }

• f4: In this example the parameter and the state are coupled in a data structure (e.g. a spring with

178 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

parameter being the rigidity of the spring and the state being the deflection). As both are not in
the same memory (one is in ROM the other in RAM), the one value is referenced per pointer. The
C function itselfs takes as input an array with the two pairs.

 1 ...
 2 typedef struct {
 3 float *deflection;
 4 float rigidity;
 5 } spring;
 6
 7
 8
 9 float f4(float x1, float x2, spring[] springs, float *y2) {
10 ...
11 springs[0].deflection = /* update of state s1 */
12 *y2 = ... /* y2 expression */
13 return ...; /* y1 expression */
14 }

As can be easily seen by these example, there is a big difference between the logical variables on
which a function operates, and the representation of these in code. As the last two examples show,
this can even go so far that the code structure contains elements that do not directly appear in the
Algorithm Code.

Wheras the technical description part of the manifest relates solely to the technical (realisation)
aspects of the C Code, the mapping section is dedicated to bridge the gap between the two levels of
abstraction: the Algorithm Code and the Production Code.

5.1.1. Technical description of Production Code

The technical description part of the Production Code manifest specifies the following aspects of the
code:

• the underlying language including detailed information on the version of the language

◦ any restrictions / specification on the target (e.g. HW) for which the code is intended for

◦ any restrictions / specification on the compilers to be used included specifics on compiler
versions and configuration

• Definition of the type (numeric) type system on the target. This section maps the standardized
(eFMI-) types onto the target types available on that specific target. These may depend on the
compiler (e.g. some compilers use "int" for 32 bit and "long" for 64 bit, others use "long" for 32 bit
and "long long" for 64 bit).

• Definition of the code itself. The code is thereby grouped in "Modules" which contain source files
(for the language "C" normally a module contains a ".c" and a ".h" file).

For each file the content (as far as relevant and accessible) is described. This includes:

• references ("includes") to other files (defined in the Production Code manifest).

• defined types in that file (refering to the defined and standardized target types). Usually these are

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 179 (251)

specifically defined names for the type like e.g. "uint8" that are used in the actual Production
Code. These defined types also contain definitions for structured types

• defined macros (if any)

• defined variables in the file

• defined functions in the file.

For Production Code Model Representations that contain e.g. AUTOSAR Classic or Adaptive code,
there exist additional so-called description files, describing the technical aspects of the code. Those
description files must be listed in the Code Container and are the alternative to the above mentioned
details in the manifest and must be use instead.

5.1.2. Code Container

The code container groups the actual Production Code Model Representaion content, and gives
specification for the following details:

180 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Name Description

language Language to be used. Currently, the following values are possible: "C" or "C++".

standard Relevant language standard to be used.

platform The target platform. Currently, the following values are possible:
"Legacy" (= xxx)
"Classic" (= xxx)
"AUTOSAR" (= xxx)
"Adaptive AUTOSAR" (= xxx)

floatPrecisi
on

Floating point precision of the target platform. Currently, the following values are
possible: "32-bit" or "64-bit".

description Optional description

Target Unique identifier, if the production code uses target-speciic code parts, for
example assembler op codes; otherwise the identifier is the default Generic.

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 181 (251)

Name Description

CompilerOpti
ons

List of Compiler Options for Production or Binary Code. For more details, see
section Section 5.1.2.1.

LinkerOption
s

List of Linker Options for Production or Binary Code. For more details, see section
Section 5.1.2.4.

TargetTypes Defines which kind of data type (kind) in the eFMI specification is mapped to a
certain platform type. Usually all kinds are listed although they are not used in the
production code container. E.g. a kind "Bool" may be mapped to unsigned char in
case of C89; and using C99, the kind shall be mapped to _Bool. For each coded
type, there exists a unique TargetType in order to abstract from the platform types.
For more details, see section Section 5.1.2.7.

CodeFiles List of files in model representation, i.e. source file and/or header file including any
information needed to integrate the code in an environment. For more details, see
section Section 5.1.3.

TechnicalInf
ormationLook
Ups

Facilitates a quick access to information in the manifest and the associated C files.
For more details, see section Section 5.1.4.

LogicalData Defines how the logical elements (variables, functions etc.) are mapped to the
actual data structures and elements of functions and defined variables. For more
details, see section Section 5.1.5.

Compiler Options

Name Description

compileRoot Directory where compilation should be performed.

CompilerSwit
ch

Compiler switch, see Section 5.1.2.2.

Preprocessor
Definition

Preprocessor definition, see Section 5.1.2.2.

182 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Name Description

AdditionalIn
cludeDirecto
ry

Additional include directory, see Section 5.1.2.2.

CompilerOpti
onReference

Reference to option in another manifest file, see Section 5.1.2.3.

Compiler Option Type

Name Description

id Id of option.

name Name of option.

value Value of option.

description Optional description of option.

optional Definition of option is optional. Possible values: "false" (default) or "true".

Compiler Option Reference

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 183 (251)

Name Description

index Index of the option reference in the list of option references.

id Id of option reference.

manifestRefe
renceRefId

If of foreign manifest file.

foreignRefId Id of option in foreign manifest file.

Linker Options

Name Description

LinkerSwitch The linker switches of type [LinkerOptionType].

Library Library of type [LinkerOptionType].

AdditionalLi
braryDirecto
ry

Additional library directory of type [LinkerOptionType].

184 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Name Description

LinkerOption
Reference

A list of option references, see Section 5.1.2.6.

Linker Option Type

Name Description

id Id of option.

name Name of option.

value Value of option.

description Optional description of option.

optional Definition of option is optional. Possible values: "false" (default) or "true".

Linker Option Reference

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 185 (251)

Name Description

index Index of the option reference in the list of option references.

id Id of option reference.

manifestRefe
renceRefId

Id of foreign manifest file.

foreignRefId Id of option in foreign manifest file.

Target Types

Target types define which kind of data type (kind) in the eFMI specification is mapped to a certain
platform type. Usually all kinds are listed although they are not used in the production code
container. E.g. a kind "Bool" may be mapped to unsigned char in case of C89; and using C99, the kind
shall be mapped to _Bool. For each coded type, there exists a unique TargetType in order to abstract
from the platform types.

Name Description

id The unique id of the target type.

186 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Name Description

kind The kind of the target type. The value must be one of the predefined kinds from the
following list: "efmiInteger8", "efmiUnsignedInteger8", … ,
"efmiUnsignedInteger64", "efmiFloat32", "efmiFloat64", "efmiFloat128,
"efmiBoolean", "efmiVoid".

codedTyp
e

The actual Production Code type to be used, e.g. "unsigned char".

Example:

1 <TargetType id="TT_float64" kind="efmiFloat64" codedType="double"/>

5.1.3. Code Files

The code file section describes the actual content of a (production) code file. It refers to one of the
files listed in the "Files" section, so it is clear which file’s content it actually species

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 187 (251)

Name Description

id Unique id.

fileType Type of the file. Allowed values: "ProductionCode", "SimulationCode",
"ToolSpecificCode".

codeType Type of the code. Allowed values: "SourceFile", "HeaderFile".

FileRefere
ce

Reference to a file element in this manifest file, see Section 2.3.4.2.

Includes Definition of include files, see Section 5.1.3.1.

Typedefs Definition of typedefs, see Section 5.1.3.2.

Macros Definition of macros, see Section 5.1.3.2.3.

Variables Definition of variables, see Section 5.1.3.2.4.

Functions Definition of functions, see Section 5.1.3.2.5.

188 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Example:

1 <CodeFile id="C_1" fileType="ProductionCode" codeType="SourceFile">
2 <FileReference fileRefId="F_22" kind="code"/>
3
4 </CodeFile>

Includes

Includes represent include preprocessor statements. Linker dependencies to certain libraries are
part of the linker sections of the BuildInformation.

Name Description

codeFileRefId id of the included file. This attribute might be empty if the include is of a
library.

Example:

1 <Include codeFileRefId="F_1"/>

Typedefs

Typdefs are used to either define structured types, array types or alias types (of predefined types).

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 189 (251)

Name Description

id Unique id of typedef.

name name of the type

Alias Alias means renaming of types, e.g. "typedef unsigned char MyUint8_t;".
Therefore the targetTypeRefId is always set and references the certain
TargetType in the target type list and in cases of cascaded Typedefs, also the
typeDefRefId is set. Usually, a TargetType is referenced by a most one Typedef
statement. If a basetype is renamed (e.g. Int16 → MyInt16) or a user type based on
an existing type is defined, two or more Typedef statements may point to a single
TargetType.

Pointer Declares a type that is a pointer to another type. This type can be any other defined
type.

Components Definition of a struct. Structs in structs are allowed but Dimensions have to be
specified at variable definitions only. For details see Section 5.1.3.2.1.

EnumerationI
tems

Definition of an enum. For details see Section 5.1.3.2.2.

The following is an example of a simple alias declaration

Example:

1 <Typedef name="Float32" id="TD_F32">
2 <Alias targetTypeRefId="TT_float32" />

190 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

3 </Typedef>

The more complex data structure of function spring of the fourth example would be described by
the following snipppet:

1 <Typedef name="spring" id="TD_spring">
2 <Components>
3 <Component id="C_1" name="deflection" typeRefId="TD_F32" pointer="true">
4 <Component id="C_2" name="rigidity" typeRefId="TD_F32">
5 <Components>
6 <Alias targetTypeRefId="TT_float64" />
7 </Typedef>

Components (struct)

Components declare a structure and are a list of Component:

Name Description

id Unique id.

Name Name of the field. Must be unique within one <Components> tag.

typeDefRef
Id

Reference of the type of the field.

pointer Boolean flag on whether the field is a reference or not (optional field).

Each field can be an array. This is indicated with the subelement <Dimensions> that contains a list of
<Dimension> elements, each with the following attributes:

Name Description

number The index of the dimension.

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 191 (251)

Name Description

size The size (number of elements) of that dimension.

valueMac
roRefId

Instead of the size a reference to the value macro defining the size.

Enumeration Items (enum)

<EnumerationItems> declares an enumeration type with the list of enumeration items. Each
<EnumerationItem> has the following fields

Name Description

id Unique id.

name Name of the enumeration literal. This name must be unique within an enumeration
definition (`<EnumerationItems>)

value Encoded value (this field is optional).

Macros

Here all macro definitions in the source and header file of the module are listed that are relevant to
integrate the code. For example system constants used to define integration relevant vector
variables must be part of the list, whereas macros in the code used as guards must not be part of the
list.

There are two kind of macros "ValueMacro" and "ParameterizedMacro". Both are contained as
children in the "Macros" tag.

192 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

A value macros defines a symbol and assigns a value to it. The value must be a number

Name Description

id Unique id.

name Name of the macro variable.

value Concrete value of the macro variable.

Annotations Additional data that a vendor might want to store and that other vendors
might ignore. For details see Section 2.3.4.5.

A parameterized macro defines however only the signature of a macro with parameters. Thereby
each parameter is given as a "Parameter" element with attrubtes for its name and its position (since
xml is not guaranteed to be order-preserving). The positions must be the values 0 … n-1 where n is
the number of parameters.

Name Description

name Name of the macro argument.

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 193 (251)

Name Description

Number Position of the macro argument.

The following example shows the declaration of a value and a parametrized macro

1 <Macros>
2 <ValueMacro id="VM_1" name="num_Cyl" value="4"/>
3 <ParameterizedMacro id="PM_1" name="myMax">
4 <Parameter name="a" number="0">
5 <Parameter name="b" number="1">
6 </ParameterizedMacro>
7 </Macros>

Variables

<Variable> elements are grouped in the <Variables> element.

194 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Each variable has the following attributes:

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 195 (251)

Name Description

id Unique id of the variable.

name Name of the variable.

typedefRef
Id

id of the defined type of the variable.

address Optional address.

value Optional initial value of that variable that must be consistent which the initial value in
Algorithm Code. Value might be different because of a decision to implement the
Algorithm Code variable in a different datatype, for example Algorithm Code variable
is Float64 and Production Code variable is Float32.

min Optional minimum value (see value).

max Optional maximum value (see value).

const Optional Boolean value on whether the variable is constant.

volatile Optional Boolean value on whether the variable is volatile.

pointer Optional Boolean value whether the variable is a pointer of the type or a variable of
that type.

constPoint
er

Optional Boolean value whether the variable is a const pointer.

static Optional Boolean value on whether the variable is static.

Similar like a field in a <Component> a <Variable> can also be multidimensional by adding the
<Dimensions> element. The following example defines a 2x2 array of variables with name "T".

1 <Variable id="V_33" name="T" typeDefRefId="TD_F64" pointer="false" value="0.1" const="false"
 volatile="true" static="false">
2 <Dimensions>
3 <Dimension number="0" size="2">
4 <Dimension number="1" size="2">
5 </Dimensions>
6 </Functions>

Functions

The described functions of (production) code files are grouped in the "Functions" tag. Each function
has an "id" and a "name". In addition it has a subelement for the return parameter (if the function
is void, the subelement is not present) and a list of "formal parameter". The return parameter (if
present) and the formal parameters list.

196 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 197 (251)

Example:

 1 <Functions>
 2 <Function id="Func_1" name="doStep">
 3 <FormalParameters>
 4 <FormalParameter id="V_33" name="T" number="0" typeDefRefId="TD_F64">
 5 </FormalParameters>
 6 <Function/>
 7 <Function id="Func_2" name="doStep2">
 8 <ReturnParameter id="Func_2_ret" typeDefRefId="TD_F64" pointer="false">
 9 <Function/>
10 <Functions/>

198 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

5.1.4. Technical Information Lookups

Facilitates a quick access to information in the manifest and the associated C files.

Name Description

DeclaredTypeDefs List of all typedef statements in C code

GlobalAccessableDat
aElements

List of all global variables and global available access functions

Both lists consist of elements, DeclaredTypedef and GlobalAccessableDataElement
respectively, that only have a reference attribute to a certain kind of element.

Attribute of DeclaredTypedef:

Name Description

typeDefRefId Reference to a TypeDef element in the manifest.

Attribute of GlobalAccessableDataElement:

Name Description

variableRefId Reference to a Variable element in the manifest.

5.1.5. Logical Data

Defines how the logical elements (variables, functions etc.) are mapped to the actual data structures
and elements of functions and defined variables.

The description in the code files basically describes only Production Code parts. As shown in the
beginning of this section the mapping to the Algorithm Code is sometimes not obvious, for example
because variables in the Algorithm Code do only appear as arguments or are may be part of
structures or arrays. Therefore we describe this mapping explicitely.

The mapping is given in the element LogicalData which contains the DataReferences and the
FunctionReferences.

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 199 (251)

A DataReference itself contains the following attributes and elements to identify the variable in the
Production Code and the mapped variable in the Algorithm Code

Name Description

ForeignVariableRefe
rence

Subelement of type ForeignReference to the element in the Algorithm
Code.

GlobalVariable Reference to a declared global accessible variable in the current manifest.
If the referenced variable is of a complex type, the
componentIdentifier gives the "path" within that complex variable. The
"." is used as component separator, brackets are used for array index, e.g.
"a.b[3].c" means that the refered variable has a field "a" that itself contains
a field "b" which is an array of a complex type that contains a field "c".

200 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Name Description

FormalParameter Reference to a formal parameter of a global accessible function by the
formalParameterRefId attribute in the current manifest. If the
referenced parameter is of a complex type, the componentIdentifier
gives the "path" within that complex parameter. The "." is used as
component separator, brackets are used for array index, e.g. "a.b[3].c"
means that the referred parameter has a field "a" that itself contains a
field "b" which is an array of a complex type that contains a field "c".

A FunctionReference is similar to the DataReferences mapping Algorithm Code functions, mainly
the block interface functions, to functions in the Production Code.

Name Description

ForeignFunctionRefe
rence

Subelement of type ForeignReference to the element in the Algorithm
Code.

GlobalFunction Reference to a declared global accessible function in the current manifest
by functionRefId attribute.

5.2. Production Code Language
A Production Code Model Representation includes code files that are modules in terms of the C or
C++ programming language.

The C programming language is described in [KR78] and in a destilled version in [CLangWiki]. A
similar description of the C++ programming language gives [Str13] or as a destilled version
[CPPLangWiki].

For both programming languages, the Motor Industry Software Reliability Association (MISRA) has
published a set of guidelines to facilitate code safety, security, portability and reliability in the context
of embedded software systems, see [MISRA12], [MISRA08]. In cases where the C code is not hand-
coded but generated by a tool different guidelines [MISRA04] shall be fulfilled.

An example is the calling of an algorithm to solve a scalar nonlinear function, where a function

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 201 (251)

pointer and a void pointer for the context is passed. (This is necessary, as the function depends on
the internal state of the model.)

int solveOneNonlinearEquation (Real_t (*f_Nonlinear)(Real_t u, void* data), Real_t u_min, Real_t
u_max,
 Real_t tolerance, Real_t *u, void *data)

This could be called from C Code, e.g., by

err = solveOneNonlinearEquation(my_f_Nonlinear, 1.0, 8.0, tol, &u, &mydata);

where the function 'my_f_Nonlinear' is defined by

 Real_t f_Nonlinear_3(Real_t u, void *data) {
 myDataType *mydata = (myDataType*)data;

 return mydata->p[0] + log(mydata->p[1]*u) - u;
}

This is considered safe for the usage for auto-generated code, where the void pointer is passed
together with a function pointer to the function that uses this void pointer as one of its arguments.

For individual Production Code sections, compliance with Coding Guidelines like MISRA:2012 is
annotated in the manifest xml-File.

Common for both languages is that especially for resource limited embedded systems a number of
language features are limited or at least not available. For example:

• dynamic memory handling

• only compile-time fixed array sizes

• functions typically offered by operating system

• availability of mathematical functions

• no runtime type information

• …

Both languages are standardized by the International Organization for Standardization (ISO) and the
following table lists an excerpt of different standards and their informal name(s):

Reference Name(s)

ISO/IEC 9899:1990 ANSI C, ISO C, C89, C90

ISO/IEC 9899/AMD1:1995 C95

ISO/IEC 9899:1999 C99

ISO/IEC 9899:2011 C11

202 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

ISO/IEC 9899:2018 C18

ISO/IEC 14882:1998 C++98

ISO/IEC 14882:2003 C++03

ISO/IEC 14882:2011 C++11, C++0x

ISO/IEC 14882:2014 C++14, C++1x

ISO/IEC 14882:2017 C++17, C++1z

A Production Code Model Representation must indicate the actually used language and standard of
the modules in the manifest file.

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 203 (251)

204 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Chapter 6. Binary Code Model
Representation
The Binary Code Model Representation is intended to be a container to exchange software artifacts
in binary form. Such binaries can be directly integrated with other embedded software running on an
ECU. The main purpose of this format is the protection of intellectual property. Shareholders can
exchange a software solution without revealing crucial implementation or algorithm details to the
user of a particular solution. Beside the protection of intellectual property, the Binary Code Model
Representation also provides protection of integrity of the solution. The software solution cannot be
altered except for the intended interface such as calibration parameters. Furthermore the binary
representation unitizes separate functionalities into dedicated binary files. These binary files can be
used independently in different contexts.

An eFMU container might consist of multiple Binary Model Representations which may originate
from the same Production Code Model Represention.

FMU Container

Binary Model Represention #1: Win32

Binary Model Represention #2: TriCore

...

...

eFMU Container

FMU Data
...

Object files
Libraries

Measurement,
Calibration or
Diagnostics
Description

Map File Linker File

Mandatory

Optional

Figure 1. Structure of Binary Model Represention

A Binary Code Model Representation consists at least of the following items:

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 205 (251)

• Object files or static libraries in Executable and Linking Format (ELF) for the use for embedded
devices or dynamic linked libraries for co-simulation purposes in Windows environments

• Container manifest

Furthermore, it might include a file containing information necessary for calibration, measurement
and diagnosis purposes and a linker script that contains the necessary information in order to link
the software for a particular target.

6.1. Manifest
Since a binary container is subject to an integration on a particular target ECU, its manifest has to
provide any necessary information about

• the components interface,

• the compiler and its configuration,

• the linker and its configuration,

• the target

Optionally, there might exists

• information about the run time behavior

• meta information regarding the source code (e.g. MISRA Compliance, Code Quality reports, etc.)

• Calibration

The Binary Code manifest is an XML file with structured information about the Binary Model
Representation.

NOTE
Some of the above points are already available in the Production Code Model
Representation. Such information (interface, MISRA Compliance) will be referenced
by the Binary Code manifest from the Production Code manifest.

6.1.1. Structure of the Manifest

The Binary Code manifest:

206 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

consists of the following elements:

On the top level, the schema consists of the following elements:

Name Description

attributes The attributes of the top-level element are the same for all manifest kinds and are
defined in section Section 2.3.1.
Current kind-specific values: kind = "BinaryCode", xsdVersion (value is the
current xsd version of the schema for the Binary Code model manifest).

ManifestRefe
rences

Reference to the manifest of the Production Code on which this Binary Code
manifest is based on. This element is the same for all manifest kinds and is defined
in section Section 2.3.4.3.

Files List of files referenced in this model representation. This element is the same for all
manifest kinds and is defined in section Section 2.3.3.

BinaryContai
ner

Defines the essential content of the actual container. For details see Section 6.1.2.

Annotations Additional data that a vendor might want to store and that other vendors might
ignore. For details see Section 2.3.4.5.

The following subsections focus on the BinaryContainer element which represents the actual
Binary Model Representation.

6.1.2. Binary Container

Element BinaryContainer

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 207 (251)

consists of the following elements:

Name Description

BuildConfigu
ration

The BuildConfiguration describes the actual build environment used to create
the binary objects in the container. For more details see Section 6.1.2.1.

Modules The Modules section describes all relevant binaries and source code references
required or available for the binary model representation container. For more
details see Section 6.1.3.

BinaryContai
nerInfo

The BinaryContainerInfo element contains additional and optional information
relevant to the end user. For more details see Section 6.1.4.

Each of the above listed elements has to exist exactly once in a BinaryContainer. Additionally, the
the BinaryContainer has the following Attributes:

Name Description

toolVersion This attribute is used by the the generating tool to store its Name and
Version.

BuildConfiguration

Element BuildConfiguration consists of all information related to the compilation and linking of
the model representation:

208 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

This element contains exactly one of each of the following elements:

Name Description

Compiler This element unambigously describes the compiler that has been used to create
the binary artifacts. For details see Section 6.1.2.2.

Linker This element unambigously describes the linker that has been used to create the
binary artifacts. For details see Section 6.1.2.3.

CompilerOpti
onSets

This element stores all possible compiler settings used to create any binary
element in the container. For details see Section 6.1.2.4.

DefaultCompi
lerOptions

This element refers to a CompilerOptionSet that has to be used to create the
binary. For details see Section 6.1.2.5.

LinkerOption
Set

This element describes the relevant linker option for the above linker that has been
used to create the binary object. For details see Section 6.1.2.6.

CompileTarge
t

This element describes the target platform, the binary has been compiled for. For
details see Section 6.1.2.7.

NOTE

It is possible that a Binary Code Model Representation needs to be combined with
some source from the Simulation Code, Tool-specific code of the Production Code
model or even from external generators in order to analyze, integrate or test the
model. In such cases additional sources need to be compiled and linked together. To
support such a use case, the BuildConfiguration of a Binary Model
Representation needs to provide all required information to be able to compile and
link additional sources with the binary artifacts.

Compiler

In order to integrate the object code, it is required to have all relevant information about the compile
process of a binary specified. Hence, the compiler is to be specified in the manifest as follows:

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 209 (251)

All attributes are mandatory and are defined as follows:

Name Description

id A unique id that has to be referenced by any corresponding CompilerOptionSet.

vendor The name of the Company/Vendor that has created or issued the compiler.

name A unique, unambiguous name of the compiler or compiler suite.

version The specific version of the above compiler that has been used to create the binary.

executableNa
me

The name of the actual executable of the compiler (suite).

The attributes vendor, name and version must clearly identify a particular compiler. Furthermore, it
should be possible to use the value executableName together with a matching
CompilerOptionSet to automatically compile a source file.

NOTE
The following example depicts a compiler configuration for a target compiler for the
TriCore processor archtecture.

1 <Compiler id="ID_1000001" vendor="Altium"
2 name="TASKING VX-toolset for TriCore: C compiler" version="v4.2r2"
 executableName="ctc"/>

Linker

Similar to the definition of the compiler infrastructure and options, the linker and link options have to
be declared to be known to the integration engineer.

210 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

All attributes are mandatory and defined as follows:

Name Description

vendor The name of the Company/Vendor that have created or issued the linker.

name Unique, unambiguous name of the linker .

version The specific version of the above linker that have been used to create the binary.

executable
Name

The name of the actual executable of the linker (suite).

The attributes vendor, name and version must clearly identify a particular linker. Furthermore, it
should be possible to use the value executableName together with the below defined
LinkerOptionSet to automatically link object files together.

NOTE
The following example depicts an linker configuration for the TriCore processor
architecture.

1 <Linker id="ID_1000002" vendor="Altium" name="TASKING VX-toolset for TriCore: object linker"
 version="v4.2r2" executableName="ltc"/>

CompilerOptionSets

The CompilerOptionSets contains one or more CompilerOptionSet which defines settings and
switches used to create at least one of the contained binary artifacts.

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 211 (251)

Name Description

id The unique identifier of the the CompilerOptionSet within the manifest.

compilerRe
fId

A reference to a configured compiler for the Compilers Section.

CompilerOp
tions

List of compiler options for Production or Binary Code, see [CompilerOptions]

The CompilerOptions list is defined as:

Name Description

compileRoo
t

Directory where compilation should be performed.

CompilerSw
itch

The compiler switches of type [CompilerOptionType].

Preprocess
orDefiniti
on

Preprocessor definitions of type [CompilerOptionType].

Additional
IncludeDir
ectory

Additional include directory of type [CompilerOptionType].

CompilerOp
tionRefere
nce

A list of option references, see [CompilerOptionReference].

The CompilerOptionType attributes are defined as:

212 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Name Description

index Index of the compiler option in the list of options (first compiler option = 1, second
compiler option = 2, etc). The indices of the choice elements of each
'CompilerOptions' must be consecutive, unique and one element must have index 1.

id Unique id of compiler option.

name Name of option.

value Optional value of option.

descriptio
n

Optional description of option.

optional Optional Boolean with default false, defining whether the option is optional.

The CompilerOptionReference list is defined as:

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 213 (251)

Name Description

index Index of the compiler option in the list of options (first compiler option = 1, second
compiler option = 2, etc). The indices of the choice elements of each
'CompilerOptions' must be consecutive, unique and one element must have index 1.

id Unique id of option reference.

ForeignOpt
ionReferen
ce

Reference to another manifest file of type ForeignReference. For details see Section
2.3.4.3.

NOTE
The following example depicts some of the options that have to be provided in order
to compile code for the Infineon Tricore TC27x family. Most options are special to this
compiler family.

 1 <CompilerOptionSets>
 2 <CompilerOptionSet id="ID_1001" compilerRefId="ID_1000001">
 3 <CompilerOptions>
 4 <CompilerSwitch>
 5 <id>ID_100010</id>
 6 <name>--iso</name>
 7 <value>90</value>
 8 </CompilerSwitch>
 9 <CompilerSwitch>
10 <id>ID_100011</id>
11 <name>--align</name>
12 <value>4</value>
13 </CompilerSwitch>
14 <CompilerSwitch>
15 <id>ID_100012</id>
16 <name>--optimize</name>
17 <value>3</value>

214 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

18 </CompilerSwitch>
19 <CompilerSwitch>
20 <id>ID_100013</id>
21 <name>--tradeoff</name>
22 <value>4</value>
23 </CompilerSwitch>
24 <CompilerSwitch>
25 <id>ID_100014</id>
26 <name>--source</name>
27 </CompilerSwitch>
28 <CompilerSwitch>
29 <id>ID_100015</id>
30 <name>--error-file</name>
31 </CompilerSwitch>
32 <CompilerSwitch>
33 <id>ID_100016</id>
34 <name>--rename-sections=sect</name>
35 </CompilerSwitch>
36 <CompilerSwitch>
37 <id>ID_100017</id>
38 <name>--core</name>
39 <value>tc1.6.x>
40 </CompilerSwitch>
41 <CompilerSwitch>
42 <id>ID_100018</id>
43 <name>-Hsfr/regtc27x.sfr</name>
44 </CompilerSwitch>
45 <CompilerSwitch>
46 <id>ID_100019</id>
47 <name>--default-near-size</name>
48 <value>0</value>
49 </CompilerSwitch>
50 <CompilerOptionSets>

Default Compiler Options

While each module might have its own compiler options referenced from the
CompilerOptionsSets of the BinaryContainer, a default option set for the container can be
defined. The default compiler options are used in any case where no other CompilerOptionsSet is
provided.

The DefaultCompilerOptions are specified as follows:

Name Description

compilerOpti
onsRefId

Reference to a previously defined CompilerOptionSet to be used as default.

NOTE The following example depicts an default option set that refers to the

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 215 (251)

CompilerOptionSet defined in the parent BinaryContainer element.

1 <DefaultCompilerOptions compilerOptionsRefId="ID_1001" />

LinkerOptionSet

The LinkerOptionSet contains one LinkerOptions which defines linker settings and switches.

Name Description

LinkerOpti
ons

List of linker options for Production or Binary Code, see [LinkerOptions]

FileRefere
nce

The linker script is referenced with a FileReference element.

The LinkerOptions list is defined as:

216 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Name Description

LinkerSwit
ch

The linker switches of type [LinkerOptionType].

Library Library of type [LinkerOptionType].

Additional
LibraryDir
ectory

Additional library directory of type [LinkerOptionType].

LinkerOpti
onReferenc
e

A list of option references, see [LinkerOptionReference].

The LinkerOptionType attributes are defined as:

Name Description

index Index of the option in the linker command line.

id Unique id of linker option.

name Name of option.

value Optional value of option.

descriptio
n

Optional description of option.

optional Optional Boolean with default false, defining whether the option is optional.

The LinkerOptionReference list is defined as:

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 217 (251)

Name Description

index Index of the option in the linker command line.

id Unique id of option reference.

ForeignOpt
ionReferen
ce

Reference to another manifest file of type ForeignReference. For details see Section
2.3.4.3.

NOTE
The following example depicts some of the options that have to be provided in order
to compile code for the Infineon Tricore TC27x family. Most options are special to this
linker family.

 1 <LinkerOptionSet>
 2 <LinkerOptions>
 3 <LinkerSwitch>
 4 <id>ID_100010</id>
 5 <name>output</name>
 6 <value>dummy.elf:ELF</value>
 7 </LinkerSwitch>
 8 <LinkerSwitch>
 9 <id>ID_100011</id>
10 <name>no-warnings</name>
11 </LinkerSwitch>
12 <LinkerSwitch>
13 <id>ID_100012</id>
14 <name>incremental</name>
15 </LinkerSwitch>
16 <LinkerSwitch>
17 <id>ID_100013</id>
18 <name>lsl-file</name>
19 <value>TC277.lsl</value>
20 </LinkerSwitch>

218 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

21 <LinkerSwitch>
22 <id>ID_100014</id>
23 <name>map-file</name>
24 <value>mapfile.map</value>
25 </LinkerSwitch>
26 <LinkerOptions>
27 <FileReference fileRefId="ID_999915" kind="LinkerScript" />
28 </LinkerOptionSet>

Target

In order to decide whether a target ECU is (technically) suitable for a particular binary with respect to
target optimization and assumptions done during Production Code generation regarding hardware,
the manifest has to specify the following items:

To define the target ECU the binary representation is compiled for, this section defines the following
attributes:

Name Description

vendor The manufacturer of the the target platform/processor.

targetName The name of the architecture.

chipVersion The exact version of processor used in the architecture.

instructionSetArchi
tecture

A unique identifier for the instruction set used by the chip.

endianess Describes whether the target uses Big-Endian or Little-Endian byte order.

registerWidth Declares the bit width of the registers of the chip.

addressWidth Declares the bit width of a memory address in the target.

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 219 (251)

NOTE
The following example depicts the target information needed for a TC277 Processor
within a TriCore embedded target.

1 <CompileTarget id="ID_100001" vendor="Infineon" targetName="TriCore" chipVersion="TC277 C-Step"
 instructionSetArchitecture="TC1.6E" endianess="LITTLE" registerWidth="32" addressWidth="32"/>

6.1.3. Modules

The Modules section lists and describes all relevant binaries contained in the Binary Model
Representation. Furthermore, it lists all source code references to the Production Code container
that are provided with the binary files.

The Modules section consist of a list of one or more BinaryModule items.

220 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

A BinaryModule describes a binary object in the Binary Code Model Representation. It has the
following attributes:

Name Description

id A unique identifier for further referencing.

creator The creating tool or person.

creationDate The date, the particular binary moduel has been created.

compilerOpti
onSetRefId

A reference to the CompilerOptionSet used for generation of the object file.

A BinaryModule contains one ObjectFile element and zero or more SourceFileReference:

Name Description

ObjectFile The actual binary object in the container. There can be only one object file per
Binary module.

SourceFileRe
ference

Each element refers to a code file in production Code manifest.

NOTE
SourceFileReference elements refer to possibly required CodeFile elements
from the Production Code Model. Those files are not part of the object file but might
be necessary for further processing steps, e.g., a PiL simulation of th object file.

The SourceFileReference element has the following attributes:

Name Description

id A unique identifier for further referencing.

fileRefId Reference to the code Files in the Production Code manifest via a ForeignFile
reference in the manifest Files section.

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 221 (251)

Name Description

CompilerOpti
onSetId

If a CompilerOptionSetId is specified, it must be used for compiling this code
artifact. Otherwise, the DefaultCompilerOptions must be used.

Each ObjectFile has the following attributes:

Name Description

id A unique identifier for further referencing.

Additionally, it consists of the following elements:

Name Description

FileReferenc
e

Reference to the actual binary object file. The kind of the FileReference is either
"RelocatableObjectFile" or "ExecutableObjectFile". This element is mandatory.

ForeignSourc
eFileReferen
ce

The ForeignSourceFileReference elements refer to CodeFile elements of the
Production Code Model Representation which have been used to generate the
binary object file. The presence of the actual source files in the Production code
container is not required. The manifest information, however, needs to be
available.

NOTE
The following example shows a snippet for a very simple model. It consists of one
non-executable object file that have been generated from two ("Production Code")
source files.

 1 <ForeignFile id="ID_999920">
 2 <ForeignReference foreignRefId="ID_9" manifestReferenceRefId="ID_0000001" />
 3 </ForeignFile>
 4 <ForeignFile id="ID_999921">
 5 <ForeignReference foreignRefId="ID_10" manifestReferenceRefId="ID_0000001" />
 6 </ForeignFile>
 7 <ForeignFile id="ID_999922">
 8 <ForeignReference foreignRefId="ID_5" manifestReferenceRefId="ID_0000001"/>
 9 </ForeignFile>
10 <ForeignFile id="ID_999923">
11 <ForeignReference foreignRefId="ID_1" manifestReferenceRefId="ID_0000001" />
12 </ForeignFile>
13 <ForeignFile id="ID_999924">
14 <ForeignReference foreignRefId="ID_3" manifestReferenceRefId="ID_0000001" />
15 </ForeignFile>
16 [...]
17 <Modules>
18 <BinaryModule id="ID_4" creator="JDoe" creationDate="2018-08-09">
19 <ObjectFile id="ID_10">
20 <FileReference fileRefId="ID_01" kind="RelocatableObjectFile" />
21 <SourceFileReference id="ID_02" fileRefId="ID_999920" />
22 <SourceFileReference id="ID_03" fileRefId="ID_999921" />
23 </ObjectFile>
24 <SourceFileReference id="ID_5"fileRefId="ID_999922" />
25 <SourceFileReference id="ID_1" compilerOptionSetRefId="ID_46" fileRefId="ID_999923" />
26 <SourceFileReference id="ID_3" compilerOptionSetRefId="ID_46" fileRefId="ID_999924" />

222 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

27 </BinaryModule>
28 </Modules>

6.1.4. Binary Container Info (optional)

The previously described elements of the manifest for the Binary Code Model Representation are
mandatory. However, there is also information that might not be necessary to describe a binary but
very helpful in the actual use cases for the Binary Code Model Representation such as integration or
validation.

To store and provide this information, the manifest contains the BinaryContainerInfo section. A
BinaryContainerInfo element might contain a description for each of the following topics

• mapping information (memory, registers, etc.)

• run time behavior

• calibration information

• measurement information

• information about the diagnosis interface

The BinaryContainerInfo element is defined as follows:

It contains the following elements:

Name Description

RunTimeComplianceIn
formation

Information regarding run time behavior of the different functions
provided by the Binary Code model representation.

FileReference In addition to the run time information, it is also possible to provide
reference to files that give further information regarding the above
mentioned topics. The kind of the FileReference indicates which topic is
tackled.

Possible kinds are: MapFile, CalibrationInformationFile,
MeasurementInformationFile, DiagnosisInformationFile,
ValidationAndVerificationFile, ComplianceInformationFile, LicenseFile,
ConfigurationFile.

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 223 (251)

Mapping Information

In order to provide the integration engineer with additional information about a binary file that has
already has been linked, a map file can be specified in the MapFileReference element.

NOTE
The following example shows, how a map file can be provided using the combination
of the File element declared for the Manifest and the actual FileReference with
the kind="MapFile".

1 <File id="ID_999913" path="/objects/" name="SpeedController.map" role="other"
 needsChecksum="true"
2 checksum="A43C0994FAD1247988C2AA8A90CCA2E241CF5687" />
3 [...]
4 <BinaryContainerInfo>
5 <FileReference fileRefId="ID_999913" kind="MapFile" />
6 </BinaryContainerInfo>

NOTE
The map file can be used to easily inspect information about the memory mapping
and, memory usage. Furthermore general information about estimated stack size
and the overall link process can be provided here.

Run Time Behavior

In order to integrate a function defined in an eFMI into a binary for the target ECU, it is required to
have information about the run time behavior to decide whether there are enough resources
available in order to coexist with additional functions or tasks running on the same ECU.

NOTE
This information might help the integration engineer to identify possible bottlenecks
before he starts the actual integration.

Hence, the manifest can specify RunTimeComplianceInformation as additional, optional
information.

If RunTimeComplianceInformation is provided, it can specify the run time behavior for one or
more functions as follows:

224 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

It consists of one ForeignFunctionReference that refers to the function in the manifest of the
Production Code model representation. The information about the run time behavior is described by
the following attributes:

Name Description

id A unique identifier for further referencing.

wcExecTime The maximum time consumed by the function in the worst case.

wcStackSiz
e

The maximum stack size required by the function in the worst cas.

wcMemSize The maximum memory consumed by the function in the worst case.

Note that valid units have to be used for each attribute by the author.

NOTE
The following example shows how the RunTimeComplianceInformation can be
defined for some function.

1 <BinaryContainerInfo>
2 <RunTimeComplianceInformation>
3 <RunTimeCompliance id="ID_100301" wcExecTime="8.4ms" wcStackSize="70kb" wcMemSize="840kb">
4 <ForeignFunctionReference foreignRefId="ID_41" manifestReferenceRefId="ID_0000001" />
5 </RunTimeCompliance>
6 </RunTimeComplianceInformation>
7 </BinaryContainerInfo>

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 225 (251)

Calibration

In order to be able to calibrate the binary object provided by the Binary Code Model Representation
with common, widely used calibration tools, the manifest might specify one or more files containing
calibration information. Calibration information is given using FileReference elements with the
kind="CalibrationInformationFile".

NOTE The following code snippet shows how a calibration file can be provided.

1 <File id="ID_999912" path="/" name="myFunction.a2l" role="other"
 checksum="0DC09613F414FFCE10865AF3AD3EC31D3ED61EA8" needsChecksum="true" />
2 [...]
3 <BinaryContainerInfo>
4 <FileReference fileRefId="ID_999912" kind="CalibrationInformationFile" />
5 </BinaryContainerInfo>

NOTE

An incomplete and optional A2L file provides the symbols used for calibration
purposes. When the integrator performs the final linking, the memory addresses of
all A2L files of the used software functions are updated. The resulting A2L files can be
used by calibration tools to dynamically change parameters for example.

Measurement

In order to measure internal values of the controller software during the testing and validation
phase, the manifest might specify one or more file containing measurement information.
Measurement information is given using FileReference elements with the
kind="MeasurmentInformationFile".

NOTE
The following code snippet shows how a measurement information file can be
provided. Note that in this example, in case of an A2L-File, the same file might be
used for calibration and measurement.

1 <File id="ID_999912" path="/" name="myFunction.a2l" role="other"
 checksum="0DC09613F414FFCE10865AF3AD3EC31D3ED61EA8" needsChecksum="true" />
2 [...]
3 <BinaryContainerInfo>
4 <FileReference fileRefId="ID_999912" kind="MeasurmentInformationFile" />
5 </BinaryContainerInfo>

Diagnosis

ECU software often provides some subroutines for diagnosis that is used for testing and
maintenance. Hence, the manifest of a Binary Model representation can contain one or more files
that provide information for diagnosis tools. Diagnosis information is given using FileReference
elements with the kind="DiagnosisInformationFile".

NOTE The following code snippet shows how a diagnosis information file can be provided.

226 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

1 <File id="ID_999914" path="/" name="myFunction.cdd" role="other"
 checksum="E7A58CD816076EE26DE1D6BF2F13630000675FB2" needsChecksum="true" />
2 [...]
3 <BinaryContainerInfo>
4 <FileReference fileRefId="ID_999914" kind="DiagnosisInformationFile" />
5 </BinaryContainerInfo>

Compliance

Since the main intention of the Binary Code container is the protection of intellectual property, the
source code usually cannot be checked according to compliance to relevant standards. However,
since this information might be of interest for the integrating company, an eFMI binary container
shall have an optional section to define one or more files describing the components compliance.
Diagnosis information is provided using FileReference elements with the
kind="ComplianceInformationFile".

NOTE The following code snippet shows how a compliance information file can be provided.

1 <File id="ID_999910" path="/doc/" name="MISRA.doc" role="other"
 checksum="27D8D7BB69E1D7E98C7A278C5A48199CE7B65399" needsChecksum="true" />
2 [...]
3 <BinaryContainerInfo>
4 <FileReference fileRefId="ID_999910" kind="ComplianceInformationFile" />
5 </BinaryContainerInfo>

NOTE
A FileReference can also point to a ForeignFile element and, hence, to an
arbitrary file in the eFMU container. This means it can also point to a compliance
information file from Production Code container.

NOTE
Note that the eFMI standard does not define how the integrity of the compliance
information can be ensured. It is up to the software provider and the integrating
company to ensure the validity and integrity of this compliance information.

License Information

In case that any third party licenses have to be shipped with the binary or to provide license
information is provided using FileReference elements with the kind="LicenseFile".

NOTE The following code snippet shows how a licenese file can be provided.

1 <File id="ID_999911" path="/license/" name="BSD.TXT" role="other"
 checksum="A7549D084CFD2F9C6DEFA940B9BD5DA402B8341D" needsChecksum="true" />
2 [...]
3 <BinaryContainerInfo>
4 <FileReference fileRefId="ID_999910" kind="LicenseFile" />
5 </BinaryContainerInfo>

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 227 (251)

Validation & Verification

For Verification and Validation, additional files can be provide using one or more FileReference
elements with the kind="ValidationAndVerificationFile".

NOTE
The following code snippet shows how some simulation results (e.g., ASAM MDF
format) from a use case for back to back testing as well as some description of
equivalence classes (e.g., properitary XML format) can be specified for th container.

1 <File id="ID_999920" path="/v_n_v/" name="scenario1.mdf" role="other"
 checksum="DB1A8489D88604A5C896BAB2B35631314B257036" needsChecksum="true" />
2 <File id="ID_999921" path="/v_n_v/" name="equivalenceclasses.xml" role="other"
 checksum="F61E2D36002DD140653334E4871DEBE6EE3B721A" needsChecksum="true" />
3 [...]
4 <BinaryContainerInfo>
5 <FileReference fileRefId="ID_999910" kind="ValidationAndVerificationFile" />
6 </BinaryContainerInfo>

Configuration of Runtime

Certain binary files require additional information on runtime. The Binary Code container provides
the possibility to link such information via FileReference elements with the
kind="ConfigurationFile".

NOTE
The following code snippet shows how a SOME/IP stack configuration for Adaptive
AUTOSAR application is referenced.

1 <File id="ID_999910" path="/adaptive/" name="someip.json" role="other"
 checksum="DB1A8489D88604A5C896BAB2B35631314B257036" needsChecksum="true" />
2 [...]
3 <BinaryContainerInfo>
4 <FileReference fileRefId="ID_999910" kind="ConfigurationFile" />
5 </BinaryContainerInfo>

6.2. Binary Format
The Binary Code Model Representation contains object files and libraries in binary format.

For deployment on a target architecture the object file or library must be provided as a binary file ELF
format [ELFLinux].

NOTE

Hence, an ELF file should be be target specific (e.g., for a specific ECU) and, optionally,
may be executable. Executable ELF files will be used in PiL Simulation and can contain
dedicated frame code. PiL-simulation tools may also create their own harness for PiL
simulation. Non-executable ELF files (relocatable ELF) can be used for the integration
on the embedded target.

For Windows-based co-simulation a Binary Code Model Representation might also contain Windows-

228 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

compatible object files or dynamic link libraries [DLLWin].

NOTE

For the (co-)simulation use case the binary artifacts support multiple use cases. On
the one hand, it may be a DLL, shared library or object file for general purpose code
for a general purpose platform (e.g., Windows or Linux) that can be used in a
Software-in-the-Loop simulation.

Additionally, the Binary Code Model Representation can refer to the following Production Code
Model Represention items:

• Simulation Code that might be necessary/used for a standalone SiL or PiL simulation of the
eFMU.

• Tool specific code that might be required to use simulation features of a particular tool.

NOTE
An example for the tool specific code might be a TargetLink S-Function frame used
for a SiL Simulation or an TargetLink TSM-Frame used for PiL simulation. Another
example migth be a minimal stub for debugging purposes on the target architecture.

Beside the actual binary format the Binary Code Model Representation might contain also files
including information for calibration, measurement and diagnosis purposes.

NOTE
An example format for the description of calibration, measurement and diagnosis is
the ASAM A2L format. This might be an incomplete A2L since the absolute memory
addresses will be updated after the final link process is completed.

An eFMI Binary Model Represention might make use of service functions which do not necessarily
have to be contained in the binary files. Especially for the use case of ECU integration these service
functions might be provided by the ECU environment.

[] Tool Interface Standard (TIS) Executable and Linking Format (ELF) Specification.
http://refspecs.linuxfoundation.org/elf/elf.pdf, last visited 2019-03-28.

[] Dynamic-Link Libraries. https://docs.microsoft.com/en-us/windows/desktop/Dlls/dynamic-link-
libraries, last visited 2019-03-29.

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 229 (251)

5000_prod_code.pdf#bookmark-5300_code_fragments
5000_prod_code.pdf#bookmark-5300_code_fragments
http://refspecs.linuxfoundation.org/elf/elf.pdf
https://docs.microsoft.com/en-us/windows/desktop/Dlls/dynamic-link-libraries
https://docs.microsoft.com/en-us/windows/desktop/Dlls/dynamic-link-libraries

230 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Chapter 7. Acronyms
Name Description

AA Adaptive AUTOSAR Application

AlgC Algorithm Code

AlgCL Algorithm Code Language

ARXML Classic AUTOSAR interface description file

AST Abstract Syntax Tree

Bin Code Binary Code

DAE Differential Algebraic Equation system

ECU Embedded Control Unit

eFMI FMI for embedded systems

eFMU FMU for embedded systems

ELF Executable and Linking Format

EqC Equation Code

EqCL Equation Code Language

FFT Fast Fourier Transform

FMI Functional Mock-Up interface

FMI-CS FMI for Co-Simulation

FMU Functional Mock-Up unit

GPL GNU General Public License

LPV Linear Parameter-Varying (control / controller)

LTI Linear Time-Invariant

LTV Linear Time-Varying

ML Machine Learning

MPC Model Predictive Control

NMPC Nonlinear Model Predictive Control

NN Neural Network

ODE Ordinary Differential Equations

PID Proportional-Integral-Derivative (control / controller)

PiL Processor-in-the-Loop

Prod Code Production Code

SiL Software-in-the-Loop

SOA Service-oriented Architecture

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 231 (251)

Name Description

SW Software

SWC Classic AUTOSAR Software Component

V&V Validation & Verification

232 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Chapter 8. Glossary
• Calibration Parameter - Value equals the start value and can be changed anytime during

evaluation of the system by an external source [Req_4.1.09, Req_5.1.13].

• Calibration Variables - Constant for all execution steps, but changeable by eeprom-update
[Req_6.2.05].

• Code - Formal specification of the model behavior.

◦ Production Code - Code intended for the execution on an embedded system.

◦ Target Specific Code - Production Code with specific instructions for a certain target.

• ECU software content - Pre-existing software into which the Production Code has to be
integrated.

• eFMU - Container of model representations and other artefacts according to the eFMI standard.

• Manifest - Meta information in an extendable form describing an associated artefact.

◦ eFMU Manifest - Manifest describing the available model representations of the eFMU
container and how to get access to them, plus other general meta information.

◦ Code Manifest - Manifest describing the model interface of the associated code and providing
additional meta information on how to access and utilize the code.

• Model Representation - Compound of Code + Code Manifest representing the model in one
particular standardized form.

• Parameter - Value equals the start value and can be changed only before initialization of the
system.

• State Machine - A (finite) state machine is used to model a system fluctuating between a fixed
number of states. Transitions rules between one state to another are defined through entry and
exit actions.

• State-Space Representation - A mathematical model describing the dynamics of a system with a
set of first order differential equations. Inputs, outputs and internal state variables are related by
A, B, C, D matrices.

• System constants - Values that are constant for a specific configuration of a software system
under test (a specific variant of software and hardware components), but might be changed if the
component is used for a slightly different configuration (e.g. number of battery cells available).

• Target - The intended productive execution environment of the software function that is
encapsulated in the eFMU. The eFMU target is characterized by the controller hardware
(processor, …) and software (compiler, runtime environment, software architecture).

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 233 (251)

234 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

References
▪ [BOA11] Blochwitz T., Otter M., Arnold M., Bausch C., Clauß C., Elmqvist H., Junghanns A., Mauss

J., Monteiro M., Neidhold T., Neumerkel D., Olsson H., Peetz J.-V., Wolf S. (2011): The Functional
Mockup Interface for Tool independent Exchange of Simulation Models. 8th International
Modelica Conference, Dresden 2011. http://www.ep.liu.se/ecp/063/013/ecp11063013.pdf

▪ [BOA12] Blochwitz T., Otter M., Akesson J., Arnold M., Clauß C., Elmqvist H., Friedrich M.,
Junghanns A., Mauss J,, Neumerkel D., Olsson H., Viel A. (2012): Functional Mockup Interface
2.0: The Standard for Tool independent Exchange of Simulation Models. 9th International
Modelica Conference, Munich, 2012. http://www.ep.liu.se/ecp/076/017/ecp12076017.pdf

▪ [CLangWiki] The C Programming Language. https://en.wikipedia.org/wiki/
C_(programming_language), last visited 2019-02-06.

▪ [CPPLangWiki] C++ Programming Language. https://en.wikipedia.org/wiki/C%2B%2B, last visited
2019-02-06.

▪ [DLLWin] Dynamic-Link Libraries. https://docs.microsoft.com/en-us/windows/desktop/Dlls/
dynamic-link-libraries, last visited 2019-03-29.

▪ [ELFLinux] Tool Interface Standard (TIS) Executable and Linking Format (ELF) Specification.
http://refspecs.linuxfoundation.org/elf/elf.pdf, last visited 2019-03-28.

▪ [KR78] Kernighan Brian W., Ritchie Dennis M. (1978): The C Programming Language (1st ed.),
Englewood Cliffs, NJ: Prentice Hall. ISBN 0-13-110163-3.

▪ [MISRA12] MISRA C:2012: Guidelines for the use of the C language in critical systems. ISBN
978-1-906400-10-1, MIRA Limited, Nuneaton, March 2013

▪ [MISRA08] MISRA C++:2008: Guidelines for the use of the C++ language in critical systems.
ISBN 978-906400-04-0, MIRA Limited, Nuneaton, March 2013

▪ [MISRA04] MISRA AC AGC: Guidelines for the application of MISRA-C:2004 in the context of
automatic code generation. ISBN ISBN 978-906400-02-6, MIRA Limited, Nuneaton, March 2004

▪ [SHA1Wiki] Secure Hash Algorithm. https://en.wikipedia.org/wiki/Secure_Hash_Algorithms, last
visited 2019-02-08.

▪ [Str13] Stroustrup Bjarne (1997), The C++ Programming Language (Forth ed.), Addison-Wesley,
ISBN 0-32-156384-0.

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 235 (251)

http://www.ep.liu.se/ecp/063/013/ecp11063013.pdf
http://www.ep.liu.se/ecp/076/017/ecp12076017.pdf
https://en.wikipedia.org/wiki/C_(programming_language
https://en.wikipedia.org/wiki/C_(programming_language
https://en.wikipedia.org/wiki/C%2B%2B
https://docs.microsoft.com/en-us/windows/desktop/Dlls/dynamic-link-libraries
https://docs.microsoft.com/en-us/windows/desktop/Dlls/dynamic-link-libraries
http://refspecs.linuxfoundation.org/elf/elf.pdf
https://en.wikipedia.org/wiki/Secure_Hash_Algorithms

236 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Appendix A: Legal information

Copyright
The eFMI Standard consists of (1) the actual specification text and (2) accompanying software
artifacts the specification text refers to and leverages on for defining how valid eFMUs must look like
and what their meaning is (the XML Schema Definitions (XSD) for the manifests of eFMUs); both are
copyrighted by the Modelica Association [https://modelica.org/]:

© 2021-2024, Modelica Association and contributors.

Licensing
The specification text of the eFMI Standard is released under Attribution-ShareAlike 4.0 International
(CC BY-SA 4.0) [https://creativecommons.org/licenses/by-sa/4.0/] license:

This work is licensed under a CC BY-SA 4.0 license.

The XML Schema Definitions of the eFMI Standard are released under 3-Clause BSD License
[https://opensource.org/licenses/BSD-3-Clause]:

Registered trademarks
Modelica® is a registered trademark of the Modelica Association.

eFMI® is a registered trademark of the Modelica Association.

FMI® is a registered trademark of the Modelica Association.

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 237 (251)

https://modelica.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://opensource.org/licenses/BSD-3-Clause

SSP® is a registered trademark of the Modelica Association.

DCP® is a registered trademark of the Modelica Association.

Third party marks and brands are the property of their respective holders.

Colophon
This document has been typeset in AsciiDoc® [https://asciidoc.org/] using Asciidoctor
[https://asciidoctor.org/] and Asciidoctor PDF [https://docs.asciidoctor.org/pdf-converter/latest/] to generate
HyperText Markup Language [https://html.spec.whatwg.org/] and Portable Document Format (ISO
32000-2:2020) distributions. AsciiDoc® is licensed under Eclipse Public License 2.0
[https://www.eclipse.org/legal/epl-2.0/], and Asciidoctor and Asciidoctor PDF are licensed under MIT
License [https://opensource.org/license/mit].

The Portable Document Format distribution of this document uses the Sans and Mono font of the
Kurinto Font Folio [https://www.kurinto.com/] licensed under the SIL Open Font License (OFL)
[https://openfontlicense.org/] version 1.1.

Disclaimer
This release is a candidate-draft for the eFMI Standard 1.0.0 (the first stable version of the eFMI
Standard); its version is eFMI Standard 1.0.0 Beta 1. It succeeds the eFMI Standard 1.0.0 Alpha 4
candidate-draft. Candidate-drafts provide no guarantees or implications (including neither extent,
features, structure nor wording) for future eFMI Standard releases including the final stable release
they are a candidate of.

238 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

https://asciidoc.org/
https://asciidoctor.org/
https://docs.asciidoctor.org/pdf-converter/latest/
https://html.spec.whatwg.org/
https://www.eclipse.org/legal/epl-2.0/
https://opensource.org/license/mit
https://opensource.org/license/mit
https://www.kurinto.com/
https://openfontlicense.org/

Appendix B: Contributors
The eFMI Standard 1.0.0 development has been mostly done within the ITEA 3 project EMPHYSIS
[https://itea3.org/project/emphysis.html] — which run from September 2017 until February 2021, lead by
Oliver Lenord (Robert Bosch GmbH) and was initiated and organized by Oliver Lenord, Christian
Bertsch (Robert Bosch GmbH), Pacôme Magnin (Siemens NV) and Martin Otter (German Aerospace
Center DLR) — and finished from 2021-2024 in the succeeding Modelica Association Project eFMI
[https://efmi-standard.org] whose project leader was Christoff Bürger (Dassault Systèmes).

Specification
The essential design and actual writing of the specification has been done by the following core
developers:

Algorithm Code

• Main author: Christoff Bürger (Dassault Systèmes)

• Other contributors:

◦ Martin Otter (German Aerospace Center DLR)

◦ Andreas Pfeiffer (German Aerospace Center DLR)

Behavorial Model

• Main author: Christoff Bürger (Dassault Systèmes)

• Other contributors:

◦ Andreas Pfeiffer (German Aerospace Center DLR)

◦ Robert Reicherdt (PikeTec GmbH, part of Synopsys, Inc.)

Production Code

• Main author: Jörg Niere (dSPACE GmbH)

• Other contributors:

◦ Kai Werther (ETAS GmbH)

◦ Michael Hussmann (dSPACE GmbH)

◦ Robert Reicherdt (PikeTec GmbH, part of Synopsys, Inc.)

Binary Code

• Main author: David Brenken (e:fs TechHub GmbH, former name: Elektronische
Fahrwerksysteme GmbH)

• Other contributors:

◦ Robert Reicherdt (PikeTec GmbH, part of Synopsys, Inc.)

◦ Pierre Le Bihan (Dassault Systèmes)

◦ Jörg Niere (dSPACE GmbH)

Introduction

• Main author: Martin Otter (German Aerospace Center DLR)

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 239 (251)

https://itea3.org/project/emphysis.html
https://efmi-standard.org

• Other contributors:

◦ Christoff Bürger (Dassault Systèmes)

Appendix

• Main author: Christoff Bürger (Dassault Systèmes)

• Other contributors:

◦ Martin Otter (German Aerospace Center DLR)

Tool support
The eFMI specification has been assessed by implementing eFMI support in various tools covering
the whole eFMI workflow. More than a hundred test models and variants of the benchmark test
cases (see Section Benchmark test cases) have been used to evaluate the toolchain, validating tool
interoperability and correctness.

The developed and benchmarked tools are (in alphabetic order):

AUTOSAR Builder (Dassault Systèmes)

• Generation of AUTOSAR Platform components (AUTOSAR Adaptive and Classic) from eFMI
Production Code containers. Generated AUTOSAR components can be stored as eFMI
Production or Binary Code containers referencing their adapted source containers.

• Developers: Fabien Aillerie

Astrée (AbsInt Angewandte Informatik GmbH)

• Verification of eFMI Production Code containers for safety and code quality according to
common embedded coding standards like MISRA C:2012.

• Developers: Reinhold Heckmann

Behavioral Model Scripts (German Aerospace Center DLR)

• Generation of eFMI Behavioral Model containers from annotated Modelica models.

• Developers: Andreas Pfeiffer

CSD (Siemens NV)

• Test of eFMI Production Code containers using eFMI Behavioral Model containers and system
integration of production code into existing embedded code.

• Developers: Jishnu Jayaram

Dymola (Dassault Systèmes)

• Generation of eFMI Algorithm Code containers from Modelica models and generation of
respective eFMI Behavioral Model containers from Modelica experiments using the model.
Software-in-the-loop (SiL) test of Software Production Engineering generated eFMI Production
Code containers using eFMI Behavioral Model containers.

• Developers: Christoff Bürger

SCODE CONGRA (ETAS GmbH)

• Generation of eFMI Production Code containers from eFMI Algorithm Code containers.
Software-in-the-loop (SiL) test of eFMI Production Code containers using eFMI Behavioral

240 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Model containers.

• Developers: Kai Werther

Simcenter Amesim (Siemens Digital Industries Software)

• Generation of neural network approximation as eFMI Algorithm Code container from Amesim
models.

• Developers: Jérôme André

SimulationX (ESI Group)

• Generation of eFMI Algorithm Code containers from Modelica models.

• Developers: Gerd Kurzbach

Software Production Engineering (Dassault Systèmes)

• Generation of eFMI Production Code containers from eFMI Algorithm Code containers.
Generation of eFMI Binary Code containers from eFMI Production Code containers.

• Developers: Samuel Devulder, Pierre Le Bihan, Fabien Aillerie, Laurent Le Goff

TargetLink (dSPACE GmbH)

• Generation of eFMI Production Code containers from eFMI Algorithm Code containers and
system integration of production code into the MATLAB/Simulink® ecosystem and dSPACE
hardware. Target system simulation of eFMI Production Code containers for software- and
hardware-in-the-loop simulation.

• Developers: Michael Hussmann, Jörg Niere

TPT (PikeTec GmbH, part of Synopsys, Inc.)

• Test of eFMI Production Code containers using eFMI Behavioral Model containers. Support for
various target platforms for hardware-in-the-loop testing.

• Developers: Robert Reicherdt

Benchmark test cases
The specification has been assessed with benchmark test cases provided in the Modelica library
eFMI_TestCases [https://github.com/modelica/efmi-testcases] and as Simcenter Amesim models. The
eFMI_TestCases library has been managed by Andreas Pfeiffer (German Aerospace Center DLR)
and Christoff Bürger (Dassault Systèmes).

The individual benchmark test cases have been developed by (in alphabetic order):

German Aerospace Center DLR

• Jonathan Brembeck

• Ricardo de Castro

• Michael Fleps-Dezasse

• Martin Otter

• Andreas Pfeiffer

• Jakub Tobolar

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 241 (251)

https://github.com/modelica/efmi-testcases

Robert Bosch GmbH

• Siva Sankar Armugham

• Christian Bertsch

• Oliver Lenord

• Naresh Mandipalli

• Jonathan Neudorfer

• Christian Potthast

• Vishnupriya Veeraragavan

Siemens Digital Industries Software

• Jérôme André

Industrial demonstrators
The eFMI specification and the developed tools have been assessed with the following industrial
demonstrators:

Performance assessment (Robert Bosch GmbH)

Comparing generated Production Code of nine benchmark test cases of the eFMI_TestCases
library with manually developed code. This includes comparison of execution performance on the
Bosch ECU MDG1.

• Tooling: Performance Test Environment

• Contributors:

◦ Vishnupriya Veeraragavan

◦ Oliver Lenord

Powertrain vibration reduction (Robert Bosch GmbH)

Generate a controller with a nonlinear inverse model on the Bosch ECU MDG1 to reduce
vibrations in a powertrain.

• Tooling: Dymola, SCODE-CONGRA, TPT, Astrée and eFMI2AUTOSAR (Robert Bosch GmbH)

• Contributors:

◦ Oliver Lenord

◦ Kai Werther

◦ Siva Sankar Armugham

Model-based diagnosis of thermo systems (Robert Bosch GmbH)

Generate diagnosis functions on the Bosch ECU MDG1.

• Tooling: OpenModelica, SCODE-CONGRA, ECU Test Environment

• Contributors:

◦ Oliver Lenord

242 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

◦ Christian Potthast

Virtual sensor for hybrid drivetrain (Siemens NV, Siemens Digital Industries Software)

Generate virtual sensor by approximating a dynamic model by means of a neural network.

• Tooling: Simcenter Amesim and TargetLink

• Contributors:

◦ Jérôme André (Siemens Digital Industries Software)

◦ Alexander Van Bellinghen (Siemens NV)

◦ Yuri Durodié (Siemens NV)

◦ Jishnu Jayaram (Siemens NV)

◦ Jorg Niere (dSPACE GmbH)

Semi-active damping controller and observer (German Aerospace Center DLR)

Generate a controller (with a nonlinear inverse model) and a prediction model (nonlinear
extended Kalman Filter or nonlinear unscented Kalman Filter) on a pre-development ECU from
e:fs TechHub GmbH (former name: Elektronische Fahrwerksysteme GmbH) and on an ECU of KW
automotive. The implementation with the KW automotive ECU has been tested in real driving
tests.

• Tooling: Dymola and TargetLink

• Contributors:

◦ Florian Bitter (e:fs TechHub GmbH, former name: Elektronische Fahrwerksysteme GmbH)

◦ Jonathan Brembeck (German Aerospace Center DLR)

◦ Daniel Baumgartner (German Aerospace Center DLR)

◦ Christoff Bürger (Dassault Systèmes)

◦ David Brenken (e:fs TechHub GmbH, former name: Elektronische Fahrwerksysteme GmbH)

◦ Dario Celan (e:fs TechHub GmbH, former name: Elektronische Fahrwerksysteme GmbH)

◦ Georg Hofstetter (e:fs TechHub GmbH, former name: Elektronische Fahrwerksysteme
GmbH)

◦ Michael Hussmann (dSPACE GmbH)

◦ Konrad Krauter (e:fs TechHub GmbH, former name: Elektronische Fahrwerksysteme
GmbH)

◦ Severin Kirpal (e:fs TechHub GmbH, former name: Elektronische Fahrwerksysteme GmbH)

◦ Jorg Niere (dSPACE GmbH)

◦ Andreas Pfeiffer (German Aerospace Center DLR)

◦ Raik Ritter (e:fs TechHub GmbH, former name: Elektronische Fahrwerksysteme GmbH)

◦ Julian Ruggaber (German Aerospace Center DLR)

◦ Christina Schreppel (German Aerospace Center DLR)

◦ Jakub Tobolar (German Aerospace Center DLR)

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 243 (251)

◦ Johannes Ultsch (German Aerospace Center DLR)

◦ Christoph Winter (German Aerospace Center DLR)

Dual-clutch use case (Mercedes-Benz AG)

Standardized, parameterized, reusable module for a simplified dual clutch transmission model
with state events. The model extensively uses typically stiff components of the Modelica Standard
Library (modelica.org) like clutches with friction and non-linear springs, resulting in a stiff, mixed
eqution system with discontinous states due to gear shifts. The objective is to demonstrate the
portability of the generated module to hardware-in-the-loop (HiL) systems and to a pre-
development transmission controller unit.

• Tooling:

◦ Model development and eFMU generation: Dymola and TargetLink

◦ Software-in-the-loop tests: Dymola, Software Production Engineering

◦ Hardware-in-the-loop tests: TargetLink, ConfigurationDesk (dSPACE GmbH) and
PROVEtech (Akka Technologies)

• Contributors:

◦ Zdenek Husar (Mercedes-Benz AG)

◦ Jan Röper (Mercedes-Benz AG)

◦ Emmanuel Chrisofakis (Mercedes-Benz AG)

◦ Klaus Riedl (Mercedes-Benz AG)

◦ Christoff Bürger (Dassault Systèmes)

◦ Hans Olsson (Dassault Systèmes)

Transmission model as virtual sensor (Volvo Cars)

Virtual sensor for electric machine control based on a Modelica transmission model. The virtual
sensor provides vehicle state estimation used to mitigate, e.g., backlash in the electric driveline,
and thereby increase the overall performance of the whole electric driveline.

• Tooling: Dymola and TargetLink

• Contributors:

◦ Sarah Bellis (Volvo Cars)

◦ Martin Johnsson (Volvo Cars)

◦ Jart Hageman (Volvo Cars)

◦ Sabina Linderoth (Volvo Cars)

◦ Edvin Eriksson Johannsson (Volvo Cars)

◦ David Kastö (Volvo Cars)

◦ Aditya Naronikar (Volvo Cars)

◦ Ottilia Wahlgren (Volvo Cars)

◦ Emma Kroon (Volvo Cars)

244 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

◦ Johannes Emilsson (Volvo Cars)

◦ Joachim Härsjö (Volvo Cars)

◦ Per Jacobsson (Volvo Cars)

◦ Johan Bergeld (Volvo Cars)

◦ Christoff Bürger (Dassault Systèmes)

AEBS: Advanced Emergency Braking System (Dassault Systèmes)

Advanced emergency braking controller derived from industrial Simulink (MathWorks) model with
enabled subsystems and signal locks. For correct handling of the side-effects of enabled
subsystems Modelica state machines are used; the signal locks are modeled using previous of
Modelica synchronous. The final objective is the generation and validation of an AUTOSAR
Adaptive Platform component starting from the Modelica model via a seamless tool chain based
on eFMI.

• Tooling:

◦ Model development and Algorithm Code generation: Dymola

◦ Production and Binary Code generation: Software Production Engineering

◦ AUTOSAR Adaptive Platform component generation: AUTOSAR Builder

• Contributors:

◦ Christoff Bürger (Dassault Systèmes)

◦ Samuel Devulder (Dassault Systèmes)

◦ Fabien Aillerie (Dassault Systèmes)

pNMPC controller for semi-active suspension (GIPSA-lab)

Model-based controller for semi-active suspension regulation with hardware-in-the-loop (HiL) test
via the INOVE vehicle suspension test rig. The controller is a parameterized nonlinear model
predictive controller (pNMPC) from GIPSA-lab using a neural network model to predict the future
behavior of the car like the response of chassis and wheel to a given road profile and suspension
parameter. The suspension control is realized by means of this simulated prediction. A Simcenter
Amesim physics model of the whole car including suspension, chassis and wheels is used to
derive and train the neural network model, for which in turn an implementation as eFMI GALEC
code is generated (all within Simcenter Amesim). Respective eFMI production code is generated
using TargetLink. The final solution is deployed on a dSPACE MicroAutoBox II ECU, based on
GIPSA-lab’s pNMPC module and a S-function block wrapping the production code.

• Tooling: Simcenter Amesim and TargetLink

• Contributors:

◦ Olivier Sename (Gipsa Lab)

◦ Rattena Tang (Gipsa Lab)

◦ Suzanne De Conti (Gipsa Lab)

◦ Karthik Murali Madhavan Rathai (Gipsa Lab)

◦ Thanh-Phong Pham (Gipsa Lab)

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 245 (251)

◦ Manh-Hung Do (Gipsa Lab)

◦ Marc Alirand (Siemens Digital Industries Software)

◦ Jérôme André (Siemens Digital Industries Software)

◦ Joerg Niere (dSPACE GmbH)

246 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Appendix C: Reserved Built-in Functions
This section lists already designed built-in functions that are not yet part of the efmi standard but
might be added to it in the future. Therefore, the names and functionality of these functions are
reserved:

Overview of the reserved built-in functions

Function-Name Description

Round Real r to an Integer

roundTowardsZero(r) Round towards zero (also known as truncation).

roundAwayZero(r) Round towards infinity.

roundHalfDown(r) Round half towards negative infinity.

roundHalfUp(r) Round half towards positive infinity.

roundHalfTowardsZero(
r)

Round half towards zero (also knowns as: round half aways from
infinity).

roundHalfAwayZero(r) Round half away zero (also known as: round half towards infinity)

roundHalfToOdd(r) Round half towards odd number.

Division of Integer variables i1, i2 with rounding to an integer

divisionDown(i1,i2) integer(roundDown(i1/i2)).

divisionUp(i1,i2) integer(roundUp(i1/i2)).

divisionAwayZero(i1,i
2)

integer(roundAwayZero(i1/i2)).

divisionHalfDown(i1,i
2)

integer(roundHalfDown(i1/i2)).

divisionHalfUp(i1,i2) integer(roundHalfUp(i1/i2)).

divisionHalfTowardsZe
ro(i1,i2)

integer(roundHalfTowardsZero(i1/i2)).

divisionHalfAwayZero(
i1,i2)

integer(roundHalfAwayZero(i1/i2)).

divisionHalfToEven(i1
,i2)

integer(roundHalfToEven(i1/i2)).

divisionHalfToOdd(i1,
i2)

integer(roundHalfToOdd(i1/i2)).

divisionEuclidean(i1,
i2)

Euclidean division of two integers.

Integer remainder of division of Integer variables i1, i2

remainderDown(i1,i2) Integer remainder of roundDown(i1/i2).

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 247 (251)

Function-Name Description

remainderUp(i1,i2) Integer remainder of roundUp(i1/i2).

remainderAwayZero(i1,
i2)

Integer remainder of roundAwayZero(i1/i2).

remainderHalfDown(i1,
i2)

Integer remainder of roundHalfDown(i1/i2).

remainderHalfUp(i1,i2
)

Integer remainder of roundHalfUp(i1/i2).

remainderHalfTowardsZ
ero(i1,i2)

Integer remainder of roundHalfTowardsZero(i1/i2).

remainderHalfAwayZero
(i1,i2)

Integer remainder of roundHalfAwayZero(i1/i2).

remainderHalfToEven(i
1,i2)

Integer remainder of roundHalfToEven(i1/i2).

remainderHalfToOdd(i1
,i2)

Integer remainder of roundHalfToOdd(i1/i2).

remainderEuclidean(i1
,i2)

Integer remainder of Euclidean division.

Remainder of division of Real variables r1, r2

realRemainderDown(r1,
r2)

Real remainder of roundDown(r1/r2).

realRemainderUp(r1,r2
)

Real remainder of roundUp(r1/r2).

realRemainderAwayZero
(r1,r2)

Real remainder of roundAwayZero(r1/r2).

realRemainderHalfDown
(r1,r2)

Real remainder of roundHalfDown(r1/r2).

realRemainderHalfUp(r
1,r2)

Real remainder of roundHalfUp(r1/r2).

realRemainderHalfTowa
rdsZero(r1,r2)

Real remainder of roundHalfTowardsZero(r1/r2)

realRemainderHalfAway
Zero(r1,r2)

Real remainder of roundHalfAwayZero(r1/r2)

realRemainderHalfToEv
en(r1,r2)

Real remainder of roundHalfToEven(r1/r2)

realRemainderHalfToOd
d(r1,r2)

Real remainder of roundHalfToOdd(r1/r2)

248 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

Definition of the reserved built-in functions
The following functions are appended to Cbuiltin1:

 1 /***
 2 Direct rounding to an integer:
 3 ***/
 4
 5 function roundTowardsZero
 6 input Real r;
 7 output Real i;
 8 algorithm /*
 9 Also known as: truncation, round away from infinity.
10 i := (if r >= 0.0 then roundDown(r) else roundUp(r));
11 */ end roundTowardsZero;
12
13 function roundAwayZero
14 input Real r;
15 output Real i;
16 algorithm /*
17 Also known as: round towards infinity.
18 i := (if r <= 0.0 then roundDown(r) else roundUp(r));
19 */ end roundAwayZero;
20
21 /***
22 Rounding to the nearest integer (using a tie-breaking rule):
23 ***/
24
25 function roundHalfDown
26 input Real r;
27 output Real i;
28 algorithm /*
29 Also known as: round half towards negative infinity.
30 i := roundUp(r - 0.5);
31 */ end roundHalfDown;
32
33 function roundHalfUp
34 input Real r;
35 output Real i;
36 algorithm /*
37 Also known as: round half towards positive infinity.
38 i := roundDown(r + 0.5);
39 */ end roundHalfUp;
40
41 function roundHalfTowardsZero
42 input Real r;
43 output Real i;
44 algorithm /*
45 Also known as: round half away from infinity.
46 i := roundAwayZero(r - sign(r) * 0.5);
47 */ end roundHalfTowardsZero;
48
49 function roundHalfAwayZero
50 input Real r;
51 output Real i;
52 algorithm /*

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 249 (251)

53 Also known as: round half towards infinity.
54 i := roundTowardsZero(r + sign(r) * 0.5);
55 */ end roundHalfAwayZero;
56
57 function roundHalfToOdd
58 input Real r;
59 output Real i;
60 algorithm /*
61 i := (if roundHalfDown(r) < roundHalfUp(r)
62 then (if integer(remainder(r + 0.5, 2.0)) == 0 then r - 0.5 else r + 0.5)
63 else roundHalfDown(r));
64 */ end roundHalfToOdd;
65
66 /************************************** END OF LISTING **************************************/

The following functions redefine Cbuiltin2, which defines builtin functions for Integer division. For every
function named roundα of Cbuiltin1 with α an arbitrary sequence of characters, Cbuiltin2 contains the
character sequence:

 1 /************************************* BEGIN OF LISTING *************************************/
 2
 3 function divisionα
 4 input Integer dividend;
 5 input Integer divisor;
 6 output Integer quotient;
 7 algorithm /*
 8 quotient := integer(roundα(real(dividend) / real(divisor)));
 9 */ end divisionα;
10
11 function remainderα
12 input Integer dividend;
13 input Integer divisor;
14 output Integer remainder;
15 algorithm /*
16 remainder := dividend - divisor * divisionα(dividend, divisor);
17 */ end remainderα;
18
19 /************************************** END OF LISTING **************************************/

Further, Cbuiltin2 contains the following character sequence:

 1 /************************************* BEGIN OF LISTING *************************************/
 2
 3 function divisionEuclidean
 4 input Integer dividend;
 5 input Integer divisor;
 6 output Integer quotient;
 7 algorithm /*
 8 quotient := integer((if divisor > 0
 9 then roundDown(real(dividend) / real(divisor))
10 else roundUp(real(dividend) / real(divisor))));
11 */ end divisionEuclidean;
12
13 function remainderEuclidean

250 (251) eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0

14 input Integer dividend;
15 input Integer divisor;
16 output Integer remainder;
17 algorithm /*
18 remainder := dividend - divisor * divisionEuclidean(dividend, divisor);
19 */ end remainderEuclidean;
20
21 /************************************** END OF LISTING **************************************/

Above functions are in lexical order w.r.t. their names; they constitute Cbuiltin2 in its entirety.

The following functions redefine Cbuiltin3, which defines builtin functions for Real division, where the
quotient is forced to be an integer according to a rounding strategy. For every function named
roundα of Cbuiltin1 with α an arbitrary sequence of characters, Cbuiltin3 contains the character sequence:

 1 /************************************* BEGIN OF LISTING *************************************/
 2
 3 function realRemainderα
 4 input Real dividend;
 5 input Real divisor;
 6 output Real remainder;
 7 algorithm /*
 8 remainder := dividend - divisor * round_α(dividend / divisor);
 9 */ end realRemainderα;
10
11 /************************************** END OF LISTING **************************************/

Above functions are in lexical order w.r.t. their names; they constitute Cbuiltin3 in its entirety.

eFMI® Standard 1.0.0 Beta 1 (candidate-draft)| www.efmi-standard.org | CC BY-SA 4.0 251 (251)

	eFMI® Standard
	Contents
	Preamble
	.1. Abstract
	.2. Overview
	.3. Introduction

	Chapter 1. General concepts
	1.1. Comparing FMI with eFMI
	1.2. FMI compliance
	1.3. Functions in eFMI
	1.3.1. Block methods
	1.3.2. Built-in functions
	1.3.3. Local functions

	Chapter 2. eFMU container architecture
	2.1. Content description (efmiContainerManifest.xsd)
	2.2. Structure of Model Representations
	2.3. Model Representation Manifests
	2.3.1. Attributes of manifest files (efmiManifestAttributes.xsd)
	2.3.2. Listing of relevant other manifest files (efmiManifestReferences.xsd)
	2.3.3. Listing of files belonging to the model representation (efmiFiles.xsd)
	2.3.4. Referencing
	2.3.5. Checksum calculation
	2.3.6. FMU File References

	Chapter 3. Algorithm Code Model Representation
	3.1. Algorithm Code manifest
	3.1.1. Definition of an eFMU Algorithm Code (efmiAlgorithmCodeManifest.xsd)
	3.1.2. Definition of Clock
	3.1.3. Definition of BlockMethods
	3.1.4. Definition of ErrorSignalStatus
	3.1.5. Definition of Units
	3.1.6. Definition of Variables

	3.2. Guarded Language for Embedded Control (GALEC)
	3.2.1. Language-design Overview
	3.2.2. Notation Conventions
	3.2.3. Block-interface and life-cycle
	3.2.4. General Syntactic and Semantic Rules
	3.2.5. Error handling
	3.2.6. Built-in Functions
	3.2.7. Example Application Scenarios

	Chapter 4. Behavioral Model Representation
	4.1. Behavioral Model manifest
	§1: Encoding of manifests
	§2: General structure and content of manifests
	§3: Root of manifest
	§4: Test scenarios of manifest
	§5: Mapping configurations of manifest
	§6: Tolerances setups of manifest

	4.2. Behavioral Model semantic
	§1: Structure and content of reference trajectories files
	§2: Time grids and reference values at actual sampling points
	§3: Tolerances and acceptable deviation at actual sampling points
	§4: Interpretation of test scenarios

	Chapter 5. Production Code Model Representation
	5.1. Production Code Manifest
	5.1.1. Technical description of Production Code
	5.1.2. Code Container
	5.1.3. Code Files
	5.1.4. Technical Information Lookups
	5.1.5. Logical Data

	5.2. Production Code Language

	Chapter 6. Binary Code Model Representation
	6.1. Manifest
	6.1.1. Structure of the Manifest
	6.1.2. Binary Container
	6.1.3. Modules
	6.1.4. Binary Container Info (optional)

	6.2. Binary Format

	Chapter 7. Acronyms
	Chapter 8. Glossary
	References
	Appendix A: Legal information
	Copyright
	Licensing
	Registered trademarks
	Colophon
	Disclaimer

	Appendix B: Contributors
	Specification
	Tool support
	Benchmark test cases
	Industrial demonstrators

	Appendix C: Reserved Built-in Functions
	Overview of the reserved built-in functions
	Definition of the reserved built-in functions

