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Preamble 

.1. CopyRight and License 

This document and accompanying code copyright © 2017-2021 EMPHYSIS partners. 
This document released under Attribution-ShareAlike 4.0 International. 
Source code or other data, such as XML-schema files, that accompany thethis specification document, are released 
under the 23-Clause BSD License. 

.2. Release Notes 

.2.1. Version 1.0.0-alpha.24 

Disclaimer 

This alpha release is a draft version of the eFMI standard (= Functional MockupMock.Up Interface for Embedded 
Systemsembedded systems). It is planned to standardize a potentially improved version by the Modelica 
Association. 

.3. Abstract 

The eFMI (FMI for embedded systems) standard specified in this document aims to extend the scope of FMI 
(https://fmi-standard.org) from simulation towards software development. The eFMI standard is intended as 
exchange format for workflows and tool chains from physical models to embedded software. It is defined as a 
layered approach built upon the FMI for Co-Simulation standard (any version). The effect is An eFMI component, 
that is an eFMU (Functional MockupMock-Up Unit for embedded systems)), can be packed in different formats. 
Especially, an eFMU can be packed as FMU and can then be simulated with anany FMI compliant tool (https://fmi-
standard.org/tools) to perform Software-in-the-loop (SiL) testing. Code generation for an embedded device 
requires however dedicated tool support for eFMI. 

This effort is motivated by the fact that especially the development of advanced control functions and diagnosis 
functions can benefit from physical models. As of today the realization of such model-based functions 
incorporating physical models, in the following refered to as physics-based functions, is very involved. The 
expertise from the physical modeling domains, control design and numerics for real time applications are required 
as well as implementation knowledge in terms of rules & regulations for embedded software have to be taken into 
account in order to supply an industry grade function on an embedded device. 

The eFMI standard describes a container format that will allow to exchange models in a variety of different types 
of model representations: 

•  

https://creativecommons.org/licenses/by-sa/4.0/
https://opensource.org/licenses/BSD-3-Clause
https://fmi-standard.org/
https://fmi-standard.org/tools
https://fmi-standard.org/tools


The Algorithm Code representation describes the mathematical model in a target and implementation 
independent fashion with a standardized intermediate language. This intermediateas input/output, sampled 
data block with one fixed or variable sample time using the standardized intermediate language GALEC 
(Guarded Algorithmic Language for Embedded Control) developed for this purpose. GALEC is based on a small 
subset of Modelica functions together with changes and extensions as needed for embbeded real-time systems. 
GALEC code can be scrambled to provide a certain degree of Intellectual Property protection. Physical 
modeling tools should be able to generate this representation with reasonable effort. 

• The Production Code representations allow to ship C or C++ code within the same container, either as nearly 
target-independent generic code and/or as highly optimized target specific code. Contrary to FMI, there is no 
standardized API (getX, setX, doStep, …), but a description of the actual code interface to allow the code to be 
integrated into existing software architectures with minimal calling overhead. When an eFMI is packed as 
FMU, an FMU wrapper is added to a selected code representation. Software development tools should be able 
to provide the transformation from an Algorithm Code to one or more Production Code representations with 
reasonable effort. 

• The Binary Code representations provide target specific executable codes. These code representations 
naturally provide the best Intellectual Property protection. 

• The Behavioral Model representation provides references results for different scenarios to allow automatic 
tests of the Production and Binary Code representations. In the future this representation might be extended 
to include the original model from which the eFMI representations are derived, or computable scenarios 
might be added in form of FMUs. 

By means of aone global content XML description of all parts of an eFMU and modelby one XML manifest file for 
every eFMI representation specific model description filesshipped in an eFMU, a highly flexible and extensible 
mechanism is provided that allow to integrate eFMUs into arbitrary software architectures being deployed to any 
kinds of execution environment, including for example AUTOSAR or adaptive AUTOSAR. 

.4. Overview 

This document specifies the eFMI (FMI for embedded systems standard) with references to the FMI (Functional 
Mock-upUp Interface) standard (https://fmi-standard.org/) 

In section Section .5 the development of the eFMI standard and its intended usage is motivated. 

The technical key concepts with reference to the current FMI standard are explained in section Chapter 1 for the 
better understanding of the later sections. 

Thereafter the eFMI standard is specified starting with the description of the overall container structure of an 
eFMU (Functional Mock-upUp Unit for embedded systems) in section Chapter 2. 

The following sections Chapter 3, Chapter 4, Chapter 5, Chapter 6 are dedicated to the different types of model 
representations supported by eFMI. Each description consists of an introductory section followed by the 
specifications of the corresponding meta data and language: 

• The Behavioral Model representation provides reference results to allow automatic verification of the 
Production and Binary Code representations. 

• The Algorithm Code representation describes the mathematical model of discrete-time, sampled data, 
input/output blocks in a target and implementation independent fashion with the standardized intermediate 
language GALEC (Guarded Algorithmic Language for Embedded Control - a small subset of the Modelica 
language (https://www.modelica.org/modelicalanguage) with extensions as needed for embbeded systems). 

• The Production Code representation defines one or more mappings of an Algorithm Code representation to C 
or C++ Code (for example 32-bit and/or 64-bit representation of floating point numbers, generic ANSI C-Code 
and/or code specialized to a particular target environment like AUTOSAR and/or specific target processors). 

https://fmi-standard.org/
https://www.modelica.org/modelicalanguage


• The Binary Code representation provides one or more target specific executable codes for one production code 
representation. 

In the following image an overview of the eFMI representations is given, together with examples for potential tool 
chains: 





This standard document is accompanied by the following open source codes and files to allow tools to more easily 
support the eFMI standard: 

• XML schema files for all xml manifest files defined in this document. 

• An eFMI compliance checker in form of a Python library, to check compliance of eFMUs (Functional Mockup 
Units for embedded systems) with this specification. 

• The eFMI_TestCases Modelica package providing > 20 dedicated Modelica models and variants of them to test 
eFMI tool chains. 

• The eFMI Modelica package providing all eFMI builtin-functions as Modelica functions with a Modelica 
implementation, in order that Modelica models can use these functions. 

• ReferenceResults for the models of the eFMI_TestCases library in form of > 50 csv files. 

• eFMUs for the eFMI_TestCases library generated with various tools. 

.5. Introduction 

The goal of the eFMI standard (FMI for embedded Systems) is to enhance Production Code of embedded control 
systems by physics-based models in an automated way. This shall improve the performance of the underlying 
systems, reduce the maintenance costs and increase the productivity of software development for embedded 
systems. 



Embedded software is commonly used on ECUs (Electronic Control Units) to control or monitor a system. In these 
cases it is beneficial to incorporate knowledge of the system behavior into the function. Physical models aim to 
describe the behaviour of the system for a given range of operation. These models are well described by 
differential- and algebraic equations or can be approximated by projection on a neural network. 

Physical models can be utilized to achieve a significantly better performance of the system in applications such as: 

• observers/virtual sensors (e.g. extended and unscented Kalman filters, moving horizon estimation), 

• model-based diagnosis (e.g. signal based fault detectors, linear/nonlinear residual generators), 

• feedback and feedforward controllers (e.g. linear controllers with gain scheduling, nonlinear inverse models, 
nonlinear dynamic inversion, feedback linearization, linear/nonlinear model-predictive control), 

• neural networks to approximate physical models and/or the above applications. 

These types of functions are typically hand-coded software implemented and tested in an elaborate and time-
consuming fashion. The eFMI standard aims to provide model exchange capabilities that allow to transfer physical 
models created in dedicated modeling and simulation tools to embedded code generating tools for ECU software. 
This enables an end to end workflow from physical modeling to the deployment of the software function on an 
embedded device. 

The eFMI standard is an open standard based on the FMI standard (Functional Mock-upUp Interface, https://fmi-
standard.org/). eFMI components are able to interoperate with software components according to the automotive 
embedded system standards AUTOSAR (https://www.autosar.org/standards/classic-platform/) and Adaptive 
AUTOSAR (https://www.autosar.org/standards/adaptive-platform/). Generated code shall refer to typical safety 
measures and coding guidelines, e.g. in the Automotive industry the ISO 26262 and MISRA-C 2012 for Autocode 
(https://www.misra.org.uk/Activities/MISRAAutocode/tabid/72/Default.aspx). 

Different types of model representation shall allow to separate the concerns of deriving a proper computation 
algorithm and its compliant implementation for an embedded device. The container architecture and rich meta 
information, extending the FMI model description, support the integration in existing development processes and 
tool chains. 

1. General concepts 

This section describes the general concepts of the eFMI standard 

The goal of the standard is to extend the existing FMI standard to the embedded domain. The FMI standard is 
focused on simulation of models and model parts, on few standardized execution platforms (Windows, Linux) with 
well known tool chains. With this context in mind, the FMI standard does not consider any constraints with respect 
to resource consumption or run time characteristics of the model. 

In contrast there is a considerable diversity of embedded platforms, each with their own constraints with respect 
to runtime performance, memory limits or available compiler support. Given these additional constraints the goal 
of the FMI standard "Compile once, run everywhere" is neither feasible nor desirable. 

A further aspect is the use of models not only for the sake of simulation but in a broad application range, from 
advanced control strategies like model predictive control to model based diagnosis. The eFMI standard must 
consider these aspects and is therefore designed as an extension to the FMI standard as described in the following. 

1.1. Comparing FMI with eFMI 

A major enhancement of the eFMI standard in comparison to the FMI standard is the introduction of different 
abstraction levels. The FMI standard is based on an executable C Code with an interface of fixed and well defined 
functions (like getX, setX and doStep). This approach is well suited for the purpose of simulation on a standardized 
platform (either Windows or Linux). 

https://fmi-standard.org/
https://fmi-standard.org/
https://www.autosar.org/standards/classic-platform/
https://www.autosar.org/standards/adaptive-platform/
https://www.misra.org.uk/Activities/MISRAAutocode/tabid/72/Default.aspx


However, such an approach is not very suitable for (deeply) embedded code due to the following reasons: 

• Support of a diverse number of execution targets. 

• Support of a diverse number of compilers. 

• Integration of the code into existing code structures (in the following we will call this the "Software context") 
with minimum overhead in data passing and function calling. 

For this reason one fixed C Code (or one fixed executable) representing the implementation is not sufficient. 
Instead the eFMI supports the concept of several C Code implementations (or also binary implementations), 
each with a description of the interface of the C Code. These descriptions are defined in so-called manifest files 
and are bundled with the corresponding code files into a Production code container. More details on these 
manifest files can be found in the section on Production Code manifests (Section 5.2). Here you will also find 
examples demonstrating the influence of the software context onto the generated code and manifest descriptions. 

An FMU represents exactly one model (implemented by the C Code or executable). The same shall be true also for 
an eFMU despite of the fact that it may contain any number of C Code implementations, and additionally, it shall be 
easily possible to add further implementations (e.g. for different targets or software contexts) into the eFMU at any 
time. 

This requirement is enabled by adding a higher level abstraction to the eFMU, namely the "Algorithm Code". 

The Algorithm Code contains an abstracted description of the function(s) to be computed, and serves as the input 
to generate the C Code implementations. The functions are described in a pseudo programming language (majorly 
influenced by "Modelica"), functions), and the meta data is also given in a manifest file. The Algorithm Code is a 
solution to a causalization of this system by specifying 

• Causalization: the input/output behaviour of the system. 

• Discretization: discretization of differential equations (use of solver, time discretization). 

The Algorithm Code is organized in code containers in the eFMU, similar to the Production Code container. For 
more details on the organization of these containers to form a valid eFMU, please see the section on container 
architecture (Chapter 2). 

The following table summarizes the differences between FMI and eFMI. 

Topic FMI eFMI 

Goal (co-) simulation efficient ECU implementation 

Execution 
platform 

standardized (Windows (.dll), 
Linux) 

diverse: different ECUs, different compilers 

Reuse 
"as is" in "all" simulation 
environments 

highly limited (therefore several implementations 
possible) 

Interface 
fixed based on standardized 
API (getX, setX, doStep, …) 

not fixed, but description of the actual interface 



Implementation 
one implementation (one 
source code, one binary) 

any number of implementations (target, vendor and 
"architecture" dependent) 

Abstraction level C Code level 
Abstract model representation algorithm (Algorithm 
Code) in addition to (derived) C Code implementation 
(Production Code) 

1.2. FMI compliance 

An important fact is that despite the broadened scope of the eFMI, an eFMU is always alsocan be packed into an 
FMU. This is achieved by taking a distinguished Production Code level implementation and wrapping this to an 
FMI compliant interface with corresponding model description file. Surely this Production Code level 
implementation must be target independent and suitable for simulation targets like Windows or Linux. 

1.3. Functions in eFMI 

In the following different kinds of functions considered in the eFMI standard are described. It is mentioned for 
which model representation a certain function kind is available. Differences between the kind of functions and 
consequences and requirements for e.g. transformation tools are also covered. 

1.3.1. Block methods 

(Available in Algorithm Code and Production Code model representation) 

The Algorithm and Production Code model representation is mathematically defined as a sampled input/output 
block with one (potentially varying) sample period for the whole block. All variables of the block have a defined 
type and all statements of the block are sorted and explicitely solved for a particular variable. Three block methods 
are defined, so functions that operate on the same memory self that is exchanged between the function calls. 
Especially, methods are provided to initialize the self memory with function Startup and to perform one step at 
the actual sample instant with method DoStep. 

The block methods are defined in the Algorithm Code representation. A Production Code generator translates 
these methods to C-functions. It is also possible to define Production Code interface functions directly in C, without 
providing an Algorithm Code representation. 

On Production Code level the block methods are highly integrated in the environment provided by the embedded 
control unit (ECU). For example, if the ECU provides input signals at certain addresses in memory or the 
parameters are part of an overall global C-struct. Consequently the actual implementation/interface of the 
methods is at liberty of the Production Code generating tool. 

1.3.2. Built-in functions 

(Available in Algorithm Code and Production Code model representation) 

Built-in functions are functions with well defined syntax and semantics in the eFMI standard. This includes 
elementary functions such as sin, cos, log, exp, but also functions to solve linear equation systems in various 
ways, for example 

  x := solveLinearEquations(A, b); 

to solve the linear equation system A*x = b with regular A matrix for x. 



Built-in functions can be used in Algorithm Code or Production Code. All built-in functions that are supported by 
the eFMI standard are defined in Section 4.2.6. The names of the built-in functions are reserved and must not be 
declared by the user. 

A tool that transforms Algorithm Code into Production Code doesntdoesn’t need additional information for those 
functions, because their syntax and semantics are clearly defined thus the tool knows how to handle it. 

1.3.3. Local functions 

(Available at Algorithm Code and Production Code level) 

In Algorithm Code, local functions can be defined together with the physics-based model that underlies the eFMU. 
A local function is formally defined with the GALEC language, see section [GALEC Language]. A Production Code 
generator generates a C-function from this definition. Alternatively, a local function can be provided as C Code, 
together with a GALEC wrapper that defines how the call of the GALEC function is mapped to C (the syntax and 
semantics is identical to the Modelica external function interface). The declaration of the logical function interface 
must be provided in the corresponding manifest file. 

Example of a local function implemented with the GALEC language: 

function add 
  input  Real u1; 
  input  Real u2; 
  output Real y; 
algorithm 
  y := u1 + u2; 
end add 

Example of a local function wrapper with the GALEC language around a C-function: 

// GALEC function wrapper 
function dot  // scalar product 
  input  Real v1[:]; 
  input  Real v2[size(v1,1)]; 
  output Real y; 
  external "C" y = dot(size(v1,1), v1, v2) 
end dot 
 
// C Code signature 
float_t dot(const int32_t n, float_t const v1[], float_t const v2[]); 

2. eFMU container architecture 

An eFMU can be packed in different formats. The basic structure of the eFMU specific part is always: 

<eFMU root directory>  // depends on the package format 

    // Directories for eFMU model representations (tool specific) 

    schemas            // directory with the used eFMI schemas 

    __content.xml      // defines the eFMU folder structure 

The only required names are the file name __content.xml and the directory name schemas at the root of the 
eFMU folder. All other directory and file names are defined by the eFMU generation tool. The used directory and 
file names are stored in the __content.xml file and can therefore be deduced by reading this file. 

The following eFMU package formats are defined: 

1. The <eFMU root directory> is a standard directory in the file system. 
[This is useful to hold an eFMU in a text-based version control system, such as github, gitlab or svn.] 



2. The <eFMU root directory> of (1) is zipped with the efmu-content, especially __content.xml, at the 
root of the zip-file. The zip-file has the extension .efmu. 
[This packaging is useful to ship or distribute an eFMU.] 

3. The <eFMU root directory> of (1) is a path extra/org.efmi-standard inside a standard FMU 
(Functional Mockup Unit) of any FMU type and any FMU version. The path is defined according to the FMI 3.0 
specification and the way how eFMI is standardized by the Modelica Association (for example: 
extras/org.efmi-standard). Details need still to be fixed.. With attribute activeFMU inside the 
__content.xml file it is defined which of the Algorithm, Production or Binary code representations is used 
as basis of the FMU. 
[This package format is useful to ship or distribute an eFMU for Software-in-the-Loop simulation with any 
suitable FMU tool.] 

Note, Algorithm Code, Production Code and Binary Code representations can optionally store associated FMUs. For 
example Algorithm Code can store a Model-in-the-Loop FMU and Production Code can store one or more 
Software-in-the-Loop FMUs for different targets. In order to execute these FMUs directly, an eFMI tool is needed. 
Otherwise, one of the stored FMUs can be selected for package format (3) in order that any FMI-tool can simulate 
this specific FMU. 

Example: 

An eFMU could be stored as zip-file with extension .fmu having the following internal structure: 

modelDescription.xml      // required FMI file 

// optional FMI directories and files 

extras                    // extrasextra                     // extra directoy 

of FMI 2.0 and 3.0 

    org.efmi-standard     // eFMU root directory 

        // tool specific directories, e.g. AlgorithmCode 

        schemas           // directory with the used eFMI schemas 

        __content.xml     // defines the eFMU folder structure 

An eFMU may contain any number of additional subfolders below the <eFMU root directory> with one 
subfolder for each model representation. An eFMU container can contain only one Behavioral Model 
Representation, one Equation Code Model Representation, one Algorithm Code Model Representation, but can 
contain multiple Production Code Model Representations and also multiple Binary Code Model Representations. 
Each Model Representation itself can be organized in subfolders. It must have a dedicated manifest file. Other files 
describing the model representation such as code, an FMU, documentation, or license files may be organized in this 
subfolder. 

The following diagram sketches the eFMU containers visually (details are given in the next sub-section): 



 

2.1. Content description (efmiContainerManifest.xsd) 

The __content.xml file is the registry for all model representations in the eFMU container. It has the following 
schema definition: 



Name 

Description 

xsdVersion 

Version of the 
__content.xml 
schema file in 
semantic version 
number format 
(https://semver.org)
. 

activeFMU 

Value of name 
attribute of model 
representation 
whose FMU is 
currently unpacked 
in the root directory 
of the FMU. If no 
FMU is unpacked 
currently, the value 

https://semver.org/


Name 

Description 

of this attribute must 
not be set. 

efmiManifestAttributesBase 

A group of attributes 
that is identical for 
all manifest files. For 
details see 
[ManifestAttributesB
ase]. 

Each model representation that is a part in the eFMU container must have a corresponding entry in the 
__content.xml file with the following information: 



Name 

Description 

name NameUnique 
name of the 



Name 

Description 

subfolder. Serves 
also as 



Name 

Description 

identification 
item within the 



container, also 
defining its root 
directory name. 

kind 

The type of the 
model 
representation. 
The allowed 
values are 
EquationCode
, 
AlgorithmCod
e, 
ProductionCo
de, 
BinaryCode, 
BehavioralMo
del. 

manifest 

Path toName of 
the container’s 
manifest file 
relative to the 
root directory of 
the model 
representation.. 
The manifest file 
must beis located 
in the root folder 
of the model 
representationco
ntainer’s root 
directory, cf. 
"name" attribute. 

checksum* 

SHA-1 checksum 
of the binary 
content of the 
manifest file. A 
checksum of the 
whole subfolder 
is not required, 
because the files 
belonging to a 
model 
representation 
and their 
checksums are 
listed in the 
manifest file itself. 

manifestRefId 

The unique GUID 
of the manifest 
file (= 
corresponding 
attribute of 



Name 

Description 

ManifestReferenc
e). References a 



Name 

Description 

manifest using the 
Manifest elements 



Name 

Description 

id attribute. This 
information has 



Name 

Description 

been added for 
technical 



Name 

Description 

purposes only to 
speedup resolving 



Name 

Description 

references 
between manifest 



Name 

Description 

files via the 
manifestRefI



Name 

Description 

d outlined below. 
Otherwise, 



Name 

Description 

following an 
inter-manifest 



Name 

Description 

reference (via a 
manifestRefI



Name 

Description 

d used in the 
source manifest) 



Name 

Description 

would demand to 
read other 



Name 

Description 

manifest files 
until a manifest 



with the desired 
id is found). 



The following is an example of such a content file: 

<?xml version="1.1" encoding="utf-8"?> 
<Content xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
         xsi:noNamespaceSchemaLocation="schemas/efmiContainerManifest.xsd" 
         xsdVersion ="0.89.0" 
         efmiVersion="1.0.0" 
         id         ="{92b7edbe-e77d-419a-8457-bf8d452a98f6}" 
         name       ="MyModel" 
         generationDateAndTime="2018-11-30T152021-02-27T15:43:25Z" 
> 
 <ModelRepresentation kind         ="ProductionCode" 
                         name         ="TLGeneratedCode_v1" 
                         manifest     ="./="mark.xml" 
                         checksum     
="e29810938a2a535dc8f6f9b8f51c5febe834ee01" 
                         manifestRefId="63f8c810-f008-47f0-a4b6-7a243f83e46b" 
/> 
 <ModelRepresentation kind         ="AlgorithmCode" 
                         name         ="algoCode_v1" 
                         manifest     ="./="luke.xml" 
                         checksum     
="e29810938a2a535dc8f6f9b8f51c5febe834ee05" 
                         manifestRefId="63f8c810-f008-47f0-a4b6-7a243f85e46b" 
/> 

 <ModelRepresentation kind         ="EquationCode" 
                         name         ="equCode" 
                         manifest     ="./john.xml" 
                         checksum     
="e29810938a2a535dc8f6f9b8f51c5febe834ee04" 
                         manifestRefId="63f8c810-f008-47f0-a4b6-7a253f85e46b" 
/> 
 <ModelRepresentation kind         ="BinaryCode" 
                         name         ="binCode_v1" 
                         manifest     ="./="matthew.xml" 
                         checksum     
="e29810938a2a535dc8f6f9b8f51c5febe834ee08>" 
                         manifestRefId="63f8c810-f008-47f0-a4b6-7a243f85e47b" 
/> 
</content> 

This __content.xml file describes therefore the following directory structure: 

<eFMU root directory> 

    TLGeneratedCode_v1 

        mark.xml 

    algoCode_v1 

        luke.xml 

    equCode 

        john.xml 

    binCode_v1 

        matthew.xml 

    schemas               // directory with the used eFMI schemas 

    __content.xml         // the xml-file of the example above 

This example just demonstrates that the folder names of the model representations and the manifest file names 
are defined by the generating tool. Typically, more descriptive names would be used, such as: 

<eFMU root directory> 

    BehavioralModel 



        manifest.xml 

    EquationCode 

        manifest.xml 

    AlgorithmCode 

        manifest.xml 

    ProductionCode_Generic_C_Float32 

        manifest.xml 

    ProductionCode_Generic_C_Float64 

        manifest.xml 

    ProductionCode_Autosar_Float32 

        manifest.xml 

    schemas 

    __content.xml 

2.2. Structure of Model Representations 

Each model representation can have its own flexible structure. Its content and the structuring of information is 
described in the manifest file (for details on specific manifest files for the different kind of model representations 
refer to the corresponding sections). Which file in a model representation is its manifest file can be found as the 
reference entry in the __content.xml file. The manifest file must be located in the model representation’s root 
folder. 

eFMI allows for having model representations consisting of a manifest file only, hence information should not be 
doubled. For example, a tool generating directly a Production Code Model Representation must also generate an 
Algorithm Code Model Representation, because information relevant for Algorithm Code is stored only in the 
corresponding manifest file and not in the Production Code manifest. 

2.3. Model Representation Manifests 

The model representation manifests share the same guiding principles: 

1. Entity names start with a capital letter 

2. Attribute names start with a lower-case letter and use camelCase where needed. 

3. Entities that serve as a group get the name of the grouped entities and an 's' as postfix. 

4. Each entity that should be referred to has an attribute called id. 

5. The type of an id attribute is an arbitrary string. 

6. All id attribute values in a manifest file are unique. 

7. References to other elements within or across manifest are established through attributes ending with 
"RefId". The value is the id of the referenced element. 

8. For file references a string attribute is used and the value is interpreted as the relative path starting at the 
corresponding model representations root folder. 

9. The context of a reference is specified in the definition of the manifest element and could be either within the 
same manifest (local context) or within the a referenced manifest (foreign context). 

All manifests also share the principles outlined in the following sections: 

2.3.1. Attributes of manifest files (efmiManifestAttributes.xsd) 



The top-level element of a manifest file has the two attributes xsdVersion and kind that have a fixed value that 
is specific to the corresponding manifest file. For example, these two attributes are defined for the AlgorithmCode 
manifest file in the following way: 

The attributes have the 

following meaning: 

AName Description 

xsdVersion 
The version of this manifest schema file in semantic version number format 
(https://semver.org). 

kind 
The type of this manifest file. The allowed values are 
EquationCode, AlgorithmCode, ProductionCode, BinaryCode, 
BehavioralModel. 

Additionally, the top-level element of a manifest file has the following attributes (that are not specific to the 
manifest kind): 

https://semver.org/




The attributes have the 

following meaning: 

Name Description 

efmiVersion 
The version of the efmi Standard in semantic version number format 
(https://semver.org) (currently: "0.7.0"). 

id The UUID for this manifest file. 

https://semver.org/


Name Description 

name 
The name of the block (controller, diagnosis system etc.) as used in the 
modeling environment from which the manifest file was created, such as 
"Modelica.Mechanics.Rotational.Examples.CoupledClutches". 

description Optional string with a brief description of the block. 

version 
Optional version number of the block as used in the modeling environment 
from which the manifest file was created. [Example: "1.0"]. 

generationDateAndTime 

Date and time of the last modification of the manifest file. The format is a 
subset of "xs:dateTime" and should be: "YYYY-MM-DDThh:mm:ssZ" (with 
one "T" between date and time; "Z" characterizes the Zulu time zone, in other 
words, Greenwich meantime). 
[Example: "2009-12-08T14:33:22Z"]. 

generationTool 
Optional name of the tool that created the manifest file. If the files have been 
created manually use generationTool="manual". 

copyright 
Optional information on the intellectual property copyright for the manifest 
and code files. 
[Example: copyright = ""© My Company 2020"]. 

license 

Optional information on the intellectual property licensing for the manifest 
and code files. 
[Example: license = "BSD license <license text or link to license>" or 
"Proprietary" or "Public Domain"]. 

Note, optional attributes defined in the __content.xml file, hold also for the manifest files in folders below this 
file, if not redefined in a manifest file. For example, if attribute license is defined in the __content.xml, but in 
no other manifest file of this eFMU, then the defined license holds for all directories and files below the <eFMU 
root directory>. If, say, a Production Code manifest defines a license attribute, then this license holds for 
all directories and folders in this Production Code model representation, independently what is defined in the 
__content.xml file. 

2.3.2. Listing of relevant other manifest files (efmiManifestReferences.xsd) 

The information about the eFMU is layered into several model representations (e.g. Algorithm Code, Production 
Code). In order to allow cross referencing between these model representations, the manifest files to be referenced 
need to be registered in a manifest file of a certain model representation. For this the ManifestReference tag 
is used with the following attributes 



Name 

Description 



id 

Unique id of the 
manifest 
reference entry. 
This id is used 
to establish 
cross manifest 
references. 

manifestRefId 

The unique 
GUID of the 
manifest. [Note, 
the name of the 
associated 
model 
representation 
in the 
__content.x
ml file is not 
used, in order to 
decouple the 
manifest files 
from the 
container 
manifest.] 

checksum 

The checksum 
of the 
referenced 
manifest file. 

origin 

Boolean flag to 
indicate if that 
referenced 
model 
representation 
is the one that 
was used to 
derive the 
current model 
representation. 



Example: 

<ManifestReferences> 
  <ManifestReference id           ="ID_1" 
                     manifestRefId="{63f8c810-f008-47f0-a4b6-7a243f85e46b}" 
                     checksum     ="e29810938a2a535dc8f6f9b8f51c5febe834ee05" 
                     origin       = true /> 
  <ManifestReference id           ="ID_2" 
                     manifestRefId="{63f8c810-f008-47f0-a4b1-7a243f85222b}" 
                     checksum     ="b4b84af148e587b95300d7a734302d1b911a6e58" 
                     origin       =false /> 
</ManifestReferences> 

2.3.3. Listing of files belonging to the model representation (efmiFiles.xsd) 

Each manifest contains a list of the files that are part of its model representation. These files are listed in a manifest 
as follows in the Files elements tag. 



A File element has the following attributes: 



Name Description 

id 
id of the file reference entry. This is id is used to refer to the file reference within the 
manifests. 

name Name of the file 

path 
Directory part of path to the file (relative to root of model representation)). Value has to 
start with ./ and end with /. 

needsChecksum 
boolean flag indicating that the file is considered in the checksum calculation (default 
value "true") 

checksum The checksum of the file. 

role 

The role of the file in the model representation. This attribute is an enumeration with 
the following valid values: 

- "Code": File containing code (Equation Code, Algorithm Code, Production Code or 
Binary Code). 

- "Manifest": The manifest file itself. 

- "FMU": One and only zip-file that is an FMU-container. Any version and any 
representation of an FMU can be used (for example FMI for ModelExchange, or FMI for 
CoSimulation, or FMU with a DLL, or an FMU with C-Code). This representation is useful 
to directly utilize the FMU in any FMI-compliant tool. 

- "FMUFolder": The content of an FMU (so the files after unzipping an FMU). Any 
version and any representation of an FMU can be used. This representation is useful 
when an eFMU is stored in a version control system, such as github, gitlab or svn. 

- "ReferenceData": File containing reference data (for example a csv file that stores 
reference values of variables). 

- "other": All other files (for example an AUTOSAR description file *.arxml). Note, a 
description of the file can be stored in attribute description. 

NOTE: The enumeration values have been selected such that each value may be used on 
an arbitrary level of abstraction, that is kind of model representation. In the future, more 
enumeration values might be added. 

description An optional description of the file (especially if role = \"other\"). 

ForeignFile See below. 



Example of a list of files: 

<Files> 
    <File id="ID_1" name         ="model.c" 
                    path         ="./code"/" 
                    needsChecksum="true" 
                    checksum     ="b4b84af148e587b95300d7a734302d1b912a6e58" 
                    role         ="Code"/> 
    <File id="ID_2" name         ="model.h" 
                    path         ="./code"/" 
                    needsChecksum="true" 
                    checksum     ="b4b84af148e587b95300d7a734402d1b911a6e58" 
                    role         ="Code"/> 
    <File id="ID_3" name         ="misra.doc" 
                    path         ="./code"/" 
                    needsChecksum="true" 
                    checksum     ="b4b84af148e587b95300d7a734302d1b914a6e58" 
                    role         ="other"/> 
    <File id="ID_4" name         ="model.arxml" 
                    path         ="./code"/" 
                    needsChecksum="true" 
                    checksum     ="b4b84af148e587b95300d7a734302d1b911a7e58" 
                    role         ="other"/> 
    <File id="ID_5" name         ="model.doc" 
                    path         ="./description"/" 
                    needsChecksum="false" 
                    role         ="other"/> 
</Files> 

2.3.4. Referencing 

Referencing inside a model representation 

Reference attributes pointing to entities in the same manifest must fulfill the naming convention that the attribute 
name consists of the original entity name and adding "RefId" as postfix. The value of the reference attribute must 
thereby be a valid id in the given context of the reference attribute, meaning that the id must exist in the context 
and be of the right type. For example a value of reference attribute variableRefId is an id number in the same 
manifest referencing a variable. In the Production Code Model Representation manifest file shown below, the 
DataReference with ID_100 references the variable T with ID_33 using the attribute variableRefId. 

Referencing files 

Files play a certain role in the eFMU model representation and are listed in a Files element of each manifest. 
Referencing files inside a model representation is done by using a FileReference element that comes along 
with Files and File element itself and not using a fileRefId attribute only. The reason to use a certain 
FileReference element is that the element comes along with a kind attribute of type string to allow for 
specifying the kind of a file in more detail. 



Name 

Description 

fileRefId 
Reference to the id 
in the file overview 

kind 

Attribute for a 
more detaildetailed 
specification of the 
kind of file used. 
The list of allowed 
values is not 
predescribed but 
should follow the 
guideline ???? 

<CodeFile id="ID_13" fileType="ProductionCode"> 
    <FileReference fileRefId="ID_1" kind="SourceCode"/> 
</CodeFile> 

Note, that a FileReference attribute has no id attribute and therefore can’t be referenced. This prevents 
transitive file referencing. 

Referencing into other model representation - ForeignReference 

(efmiManifestReferences.xsd) 

The eFMU describes one model on different levels of abstraction. Thereby the level of abstraction decreases in the 
following order 

1. Behavioral Model 

1. Equation Code 

2. Algorithm Code 

3. Production Code 



4. Binary Code 

In order to 

establish cross referencing between these model representations, the "derived" model representation must 
include a ManifestReference to that model representation as described above. The consistency to the 
referenced one is ensured as follows: 

The manifestRefId is used to retrieve the (current) model representation checksum of the entry in the 
__content.xml file. This (current) checksum can be compared with the (stored) checksum that is part of the 
ManifestReference and is the checksum at the point of creation of that container. Through comparison of both 
consistency can be ensured. 

In order to cross reference into a referenced container’s manifest, a ForeignReference element is present that 
has the following required two attributes: 

Name Description 

manifestReferenceRefId The (manifest local) id of a ManifestReference. 

foreignRefId The id inside the referenced manifest file. 

Example: 

<ManifestReferences> 
    <ManifestReference id           ="ID_1" 
                       manifestRefId="{63f8c810-f008-47f0-a4b6-7a243f85e46b}" 
                       checksum     ="e29810938a2a535dc8f6f9b8f51c5febe835ee05" 
                       origin       ="true"/> 
    ... 
</ManifestReference> 
 ... 
        <Variable name        ="T" 
                  id          ="ID_33" 
                  typeDefRefId="ID_25" 
                  pointer     ="false" 
                  value       ="0.1" 
                  const       ="false" 



                  volatile    ="true" 
                  static      ="false" /> 
        <Variable name        ="_Clocks_interval" 
                  id          ="ID_34" 
                  typeDefRefId="ID_25" 
                  pointer     ="false" 
                  value       ="0.005" 
                  const       ="false" 
                  volatile    ="true" 
                  static      ="false" /> 
        <Variable name        ="gearRatio" 
                  id          ="ID_35" 
                  typeDefRefId="ID_25" 
                  pointer     ="false" 
                  value       ="105" 
                  const       ="false" 
                  volatile    ="true" 
                  static      ="false" /> 
    ... 
        <DataReferences> 
            <DataReference id="ID_100" variableRefId="ID_33" > 
                <ForeignVariableReference manifestReferenceRefId="ID_1" 
foreignRefId="ALG_ID_101"/> 
            </DataReference> 
            <DataReference id="ID_101" variableRefId="ID_34" > 
                <ForeignVariableReference manifestReferenceRefId="ID_1" 
foreignRefId="ALG_ID_100"/> 
            </DataReference> 
            <DataReference id="ID_102" variableRefId="ID_35" > 
                <ForeignVariableReference manifestReferenceRefId="ID_1" 
foreignRefId="ALG_ID_103"/> 
            </DataReference> 
 ... 

In the example above (a cut-out of a Production Code Model Representation manifest file), the 
manifestReferenceRefId attribute (with value "ID_1") identifies the ManifestReference as the one that 
references the Algorithm Code Model Representation with the Manifest id "63f8c810-f008-47f0-a4b6-
7a243f85e46b" in the eFMU container and the foreignVariableRefId attribute the element in that container 
with the given id (e.g. "ALG_ID_102"). 

It has to be checked, that the referenced ids actually are valid and are used for the objects of the right type. 

Important restriction: The names of a variable can differ in the manifests of the Equation Code, the Behavioral 
Model, the Algorithm Code, and the Production Code. But for input and output variables of the eFMI block, that are 
defined in the Algorithm Code manifest, the structure (e.g. scalar or vector or matrix) has to be preserved over the 
different model representations. It means, an output vector y in the EquationAlgorithm Code manifest 
corresponds to a vector with the same length in all other model representations. 

Referencing Files in Foreign Model Representations (efmiFiles.xsd) 

In cases where a file in another model representation is used without change in the current model representation, 
one should use ForeignFile elements in the Files list. 



Name 

Descripti

on 

id 
The 
(manifest 
local) id. 

ForeignReference 

Identifyin
g the 
foreign 
manifest 
and the 
file inside 
the 
manifest. 

Example: 

<ManifestReferences> 



    <ManifestReference id="ID_0" manifestRefId="{63f8c810-f008-47f0-a4b6-
7a243f85e46b}" checksum="???" origin="true"/> 
    ... 
</ManifestReference> 
 ... 
<Files> 
    <File id="ID_1" name="model.c" path="./code" 
          needsChecksum="true" 
checksum="e29810938a2a535dc8f6f9b8f51c5febe835ee05" role="Code"/> 
    <File id="ID_2" name="model.h" path="./code" 
          needsChecksum="true" 
checksum="e29810938a2a535dc8f6f9b8f51c6febe835ee05" role="Code"/> 
    <File id="ID_3" name="misra.doc" path="./code" 
          needsChecksum="true" 
checksum="e29810938a2a535dc8f6f9b8f51c5febe835ee06" role="other"/> 
    <File id="ID_4" name="model.arxml" path="./code" 
          needsChecksum="true" 
checksum="e29810938a2a535dc8f6f9b8f51c5febe835ee08" role="other"/> 
    <File id="ID_5" name="model.doc" path="./description" 
          needsChecksum="false" role="other"/> 
    <ForeignFile id="ID_6"> 
        <ForeignFileReference manifestReferenceRefId="ID_0" 
                              foreignRefId          ="ID_26" /> 
    </ForeignFile> 
</Files> 

Annotations (efmiAnnotation.xsd) 

Additional data that a vendor might want to store and that other vendors might ignore are defined with element 
Annotations (this definition is identical to the corresponding element of FMI 3.0): 



Name 

Description 

type 

Domain name 
in reverse 
domain 
notation of 
the tool that 
can interpret 
the 
annotation. 
Must be 
unique with 
respect to all 
other 
elements of 
the 
Annotation 
list. Domain 
names under 
both the 
"org.mode
lica" and 
"org.efmi
-
standard" 
domains are 
reserved for 



Name 

Description 

future eFMI 
versions. 

2.3.5. Checksum calculation 

The checksum is the mean to ensure integrity across different containers in an eFMU. These different container 
relate to each other and may be changed independent of each other. In order to ensure / check the integrity, with 
each change of a container, its checksum is updated in the reference entry in the __content.xml file. 

For containers, that reference information from other containers or depend on them, also the checksum of these 
referenced containers is locally stored in that manifest. The comparison of these checksums is now an appropriate 
mean to check the consistency within the eFMU. 

The calculation of checksums is done on the files that are listed in the manifest of the container (for which the 
checksum attribute has the value "true") and the checksum is stored in the checksum attribute of the 
corresponding "File" list entry of the "Files" elememt of each manifest file. The calculation for each file is based on 
a hash algorithm, currently SHA1 [SHA1Wiki] (https://en.wikipedia.org/wiki/Secure_Hash_Algorithms). 

The overall checksum of a model representation is the checksum of the manifest file, where all checksums of files 
of the model representation has been stored. Since the paths of the files are part of the manifest file itself it is 
ensured that a change of names, structure or content of the concerned files will result in a different checksum and 
allows for detecting changes, e.g. a model representation has been changed in the container, but has been taken as 
input for transformation tools before. 

https://en.wikipedia.org/wiki/Secure_Hash_Algorithms


On the other hand, changes to "unchecksummed" files (e.g. description files) will not affect the checksum as well as 
adding of files not listed in the manifest (listing in the manifest would also alter the checksum). 

2.3.6. FMU File References 

An eFMU container must be downward-compatible to an FMU container. Hence, it may have an FMU which is 
stored in the root directory of the container (above the "eFMU" directory). Such FMU needs to be associated with a 
certain model representation located in the eFMU container. In general, each model representation may have an 
optional FMU, especially a Production Code model representation. 

The currently activated FMU needs to be specified in the __content.xml file by using the optional attribute 
activeFmu. If it is set, its value must correspond to the name of the associated model representation. If no FMU is 
unpacked currently, the value of this attribute must not be set. 

The optional FMU of a model representation is specified within the manifest file of the model representation, 
where one and only one file in the list of files has the role attribute set to FMU. Its value must be a relative path 
inside the model representation to the FMU file. 

When the FMU of a model representation M is activated, the following steps are performed: 

1. All files in the container’s root except the "eFMU" directory are removed. 

2. The FMU file referenced by M is unzipped to the container’s root. 

3. The value of the attribute activeFmu is set to the name of the model representation M. 

 

3. Behavioral Model Representation 

3.1. Introduction 

The optional Behavioral Model representation provides reference results for different scenarios to allow automatic 
verification of the Production and Binary Code representations. The reference results are stored in csv format 
under the Behavioral Model folder (for details see section Section 3.3)). In the future this representation might be 
extended to include the original model from which the eFMI representations are derived, or computable scenarios 
might be added in form of FMUs. 

Basically, one reference result set consists of a table, where the columns represent the time and variables of the 
original source model (for example a AMEsim, Modelica, Simulink or AMEsimsyq model). Typically, these are the 
input and output variables of the Algorithm Code representation and the data is produced by simulating the 
original source model and storing the result in csv file format. Hereby, it is assumed that the simulations use the 
default values of the tunable parameters and the initial values of the states as defined in the Startup() method 
of the Algorithm Code model representation. 

Automatic testing of a Production Code or Binary Code representation requires the following steps: 

1. The Algorithm Code variable ids of the input/output variables in the Production Code manifest need to be 
determined (note, the C variable names of the variables are usually different to the variables names in the 
Algorithm Code). Therefore an indirect link between the variables in the Production Code manifest and the 
Behavioral Model manifest is established. With additional information in the Behavioral Model manifest the 
expected reference results for the input/output variables of the Production Code can be deduced from the 
corresponding csv-files inside the Behavioral Model folder. 

2. The units of the variables are defined in the Algorithm Code manifest file. 



3. The results produced by executing compiled Production Code resp. Binary Code have to be compared with 
the results stored in the Behavioral Model representation. In the Behavioral Model manifest optionally 
relative and absolute error tolerances are defined to assess the match between the data. A second possibilty 
to specify error tolerances is enabled by having whole data sets of time dependent lower and upper bounds 
of variables in the reference results. More details are given in the next subsection. 

3.2. Behavioral Model Manifest 

The manifest file of the Behavioral Model representation is an instance of an XML schema definition and defines 
the available scenarios with reference results and maximum acceptable deviations from them. 

3.2.1. Definition of an eFMU Behavioral Model (efmiBehavioralModelManifest.xsd) 

This is the root-level schema file of the Behavioral Model representation and contains the following definition: 



Element-Name 

Description 



attributes 

The attributes of 
the top-level 
element are the 
same for all 
manifest kinds and 
are defined in 
section Section 
2.3.1. 
Current kind-
specific values: 
kind = 
"BehavioralMod
el", xsdVersion 
(value is the 
current xsd version 
of the schema for 
the Behavioral 
model manifest), . 

ManifestReferences 

References to 
manifest files of 
other model 
representations for 
which referencing 
is needed within 
this Behavioral 
Model manifest. 
Mainly, the 
Algorithm Code 
manifest on which 
this Behavioral 
Model manifest is 
based on has to be 
listed. This element 
is the same for all 
manifest kinds and 
is defined in section 
Section 2.3.4.3. 

Files 

List of files 
referenced in this 
model 
representation. 
There must be at 
least one file that 
contains reference 
results in csv 
format. This 
element is the same 
for all manifest 
kinds and is 
defined in section 
Section 2.3.3. 

Scenarios 
A scenario groups 
several simulation 
results (parts of 
one scenario) to 



one unit. At least 
one scenario 
definition must be 
present. For details 
see Section 3.2.2. 

Variables 

Required list of 
variables for which 
a link between 
columns in 
reference results 
and variables in the 
Algorithm code 
manifest is 
established in the 
Behavioral Model 
manifest. For 
details see Section 
4.1.6. 

CsvData 

Optional element 
that defines how 
the columns of the 
csv files are 
mapped to the 
variables. It also 
provides 
information for the 
variables in each 
scenario part how 
acceptable 
deviations between 
simulation results 
of 
Production/Binary 
code and reference 
results are 
specified. For 
details see 
[definition-of-
csvdata]. 

Annotations 

Additional data 
that a vendor might 
want to store and 
that other vendors 
might ignore. For 
details see Section 
2.3.4.5. 



3.2.2. Definition of a Scenario (efmiScenarios.xsd) 

A scenario (e.g. open loop test simulations) consists of one or more scenario parts (e.g. simulation runs with 
different numerical solvers). 

Element-Name 

Description 

name 
Optional name of the 
scenario. 

id 
The id of the 
scenario. 

One simulation within a scenario is defined with a ScenarioPart element. The essential content of this element 
is the reference to a csv file. 



Element-Name 

Description 

name Optional name of the scenario part. 

id The id of the scenario part. 

fileRefId 
The reference id of the csv file, in 
which the reference result data for 
this scenario part is stored. 

3.2.3. Definition of Variables (efmiVariable.xsd) 

The variables to be compared in one of the scenario parts are listed in the following element: 



Element-Name 

Description 

id 

The id of the 
variable within 
the Behavioral 
Model 
manifest. 

ForeignVariableReference 

The reference 
to the variable 
defined in the 
Algorithm 
Code manifest 
file. For details 
see Section 
2.3.4.3. A 
reference to 
other model 
representation
s is not 
allowed. It is 
not necessary 
to define all 
variables of the 
Algorithm 
Code manifest 
here. Only the 
variables for 
that reference 
data in csv files 
is provided 
need to be 
listed. 

3.2.4. Definition of CsvData (efmiCsvData.xsd) 

This element is the essential part of the Behavioral Model manifest and provides the information where for the 
variables the data can be found in the reference data files (= csv files). It also contains the information how the 



assessment can be realized, that deviations between the eFMI simulation results (by compiled Production Code or 
Binary Code) and the reference data in the csv files are acceptable. 

Element-Name 

Descript

ion 

TimeData 

Informati
on where 
the time 
vectors 
can be 
found in 
the csv 
files. 

name 

The 
name of 
the time 
variable 
in the 
header of 
the csv 
files that 
are 
reference
d by the 
listed 
scenario 



Element-Name 

Descript

ion 

parts in 
Part. 

SenarioPartRefId 

The 
reference 
id of the 
scenario 
part to 
which 
this 
definitio
n of the 
time 
vector is 
associate
d with. 

Data 

Informati
on about 
reference 
data and 
acceptabl
e 
deviation
s 
associate



Element-Name 

Descript

ion 

d with all 
variables 
(without 
time) of 
all 
scenario 
parts. 

In one element Data the information about reference data and acceptable deviations associated with one 
variables (but not time) of one or several scenario parts are contained. Several scenario part can only be included, 
if the information to be provided is identical for these scenario parts. For the scenario parts, for which the 
information is different for a specific variable, a new element Data has to be listed for this variable. The whole list 
of all Data elements contains a combination of variables and scenario parts. It is not permitted to have the same 
combination twice, because otherwise the information is not unique. 



Element-Name 

Description 

variableRefId 
Reference id of the 
variable to be considered 
in this Data element. 

scenarioPartRefId 

Reference id of the 
associated scenario part 
for which the 
information is provided 
in this Data element. 
Several scenario parts 



Element-Name 

Description 

can be listed within the 
element Parts. 

Nominal 

The nominal reference 
value of the variable that 
is associated with a 
column of the table in the 
csv files. If the variable is 
a vector or a 
multidimensional array, 



Element-Name 

Description 

then each relevant 
component of the 
vector/array is listed by 
a separate element 
Nominal. 

name The name of the nominal 
variable in the header of 
the csv files that are 



Element-Name 

Description 

referenced by the listed 
scenario parts in Part. 

index 

Index of vectors resp. 
flattend index of 
multidimensional arrays. 
The element has to be 
absent for scalar 
variables and is required 
for vectors and 



Element-Name 

Description 

mutlidimensional arrays. 
The index corresponds 
to the referenced 
Algorithm code variable 
(referenced by the 
element 
variableRefId and 
the corresponding 
element 
ForeignVariableRe
ference in the element 
Variable). For 



Element-Name 

Description 

multidimensional arrays 
the scalar index is 
according to a row-major 
order of all elements of 
the array. 

Tolerances 
Optional error tolerance 
information to be used 
for comparison of 
computed and given 



Element-Name 

Description 

values in the csv files of 
the variable considered 
in this Data element. 

The details of the error tolerance information valid for one variable (scalar or vector or multidimensional array) is 
given with the following element. For each possible value of floatPrecision maximum one element 
Tolerance has to be present. 



Element-Name 

Description 

floatPrecision 

Floating point precision that 
has to be used to run the 
compiled Production Code or 
Binary code to be compared 
with the reference results 
(32-bit or 64-bit). 

absTol 

Optional default value for the 
absolute error tolerance that 
should be used for signal 
comparisons. For vectors or 
multidimensional arrays 
these default values are used 
for all components. 

relTol 

Optional default value for the 
relative error tolerance that 
should be used for signal 
comparisons. For vectors or 
multidimensional arrays 
these default values are used 
for all components. 



Element-Name 

Description 

ToleranceItem 

Optional list of detailed 
information about error 
tolerances and additional 
columns for time-dependent 
lower/upper bounds of 
nominal reference result 
values. 

The element ToleranceItem contains detailed error tolerance information about a scalar variable resp. one 
component of a vector/multidimensional array. If the considered variable is a scalar, then only one element 
ToleranceItem has to be present within the list of the element Tolerance. For vectors or multidimensional 
arrays only entries for relevant indices are needed and the values of the attribute index have to be different for 
each of the entries. 



Element-Name 

Description 

absTol 

Optional absolute error tolerance of the scalar 
value considered in this tolerance item. If there 
is already a default value of absTol specified 
in the element Tolerance, then this more 
specific value of the element 
ToleranceItem has to be used. 

relTol 

Optional relative error tolerance of the scalar 
value considered in this tolerance item. If there 
is already a default value of relTol specified 
in the element Tolerance, then this more 
specific value of the element 
ToleranceItem has to be used. 

csvLower 
Optional name of the lower bound variable in 
the header of the csv files that are referenced 
by the listed scenario parts in Part. 



Element-Name 

Description 

csvUpper 
Optional name of the upper bound variable in 
the header of the csv files that are referenced 
by the listed scenario parts in Part. 

index 

Index of vectors resp. flattend index of 
multidimensional arrays. The element has to 
be absent for scalar variables and is required 
for vectors and mutlidimensional arrays. The 
index corresponds to the referenced Algorithm 
code variable (referenced by the element 
variableRefId and the corresponding 
element ForeignVariableReference in 
the element Variable). For 
multidimensional arrays the scalar index is 
according to a row-major order of all elements 
of the array. 

The lower and upper bound variables are not listed or referenced elsewhere in the manifest. The corresponding 
columns in the csv files contain data to define time-dependent lower/upper bounds of an acceptable simulation 
with the given float precision in the element Tolerance. 



It is permitted to set all elements absTol, relTol, csvLower and csvUpper. If absTol or relTol are set, 
then csvLower and csvUpper cannot be set and vice versa. For the case, that csvLower and csvUpper are set 
and if there is already a default value of relTol or absTol specified in the element Tolerance, then these 
default values have to be ignored for the specific scalar variable/component in this ToleranceItem. 

3.2.5. Comparison of signals 

The Behavioral Model manifest contains the neccessary information to use inputs in csv files and to compare the 
simulation results of compiled Production Code or Binary Code with reference results in csv files. For the 
assessment, if the result deviations are acceptable, two cases have to be distinguished (depends individually on 
each variable and scenario part): 

1. Check by using absolute and/or relative error tolerances or 

2. Check by using lower and/or upper bounds. 

For a scalar variable there is a column in a csv file that corresponds to the reference result data of this variable. 
Each row of the data is associated to a time instant of the time vector. In the following the data vector is called 
y_ref. The corresponding simulation result is called y_sim (also a time dependent vector with the same length 
as y_ref and the values of the variable at the time instants given by the time vector). If the check is based on 
lower/upper bounds, then there are further columns in the csv files that are associated to the time dependent 
lower and upper bounds of the variable. In the following the vectors are called lower and upper. The i-th 
component of all the described vectors are access by y_ref_i, y_sim_i, lower_i and upper_i. 

If for all time instances t_i the following holds, then the test is passed otherwise not: 

1. abs(y_ref_i - y_sim)_i ≤ max(absTol, relTol*abs(y_ref_i)) resp. 

2. lower_i ≤ y_sim_i ≤ upper_i 

3.3. Behavioral Model Data 

The csv files as they are contained in a Behavioral Model representation are according to 
(https://en.wikipedia.org/wiki/Comma-separated_values). In the first line there is a list of header names that 
define the names of the columns separated by a colon. In the following lines for each of the variables defined in the 
header a numeric value is provided separated by colon. 

The unit of the time is seconds. Values of Boolean variables have to be represented by the Integer values 0 (false) 
and 1 (true). 

Example: 

Time,wLoadRef,wMotor,vMotor,isReset 

0,0,10,-200,0 

0.001,0.003,10,-193.70000000000002,0 

0.002,0.006,10,-187.41e3,1 

0.003,0.009,10,-181.12958499999996,1 

0.004,0.012,10,-174.85834414999999,0 

4. Algorithm Code Model Representation 

https://en.wikipedia.org/wiki/Comma-separated_values


The 

Algorithm Code model is a portable and tool-independent intermediate representation for coupling physics-
modeling tools with embedded Production Code generation. Mathematically, it is described as a sampled 
input/output block with one (potentially varying) sample period Ti for the whole block where inputs ui and 
previous (block internal) states xi are provided at sample time ti and outputs yi and new states xi+1 are computed 
and are latest used at sample time ti+1 = ti + Ti (see figure to the right). All variables of the block have a defined type 
and all statements of the block are sorted and explicitely solved for a particular variable. Functions are provided to 
execute the relevant parts of the block, especially to initialize it and to perform one step. 

The purpose of the Algorithm Code model representation is to provide a well defined reusable basis for the 
Production Code generating tools. It can be seen as a target-independent Production Code on a logical level where 
the relationship to the original model is clearly visible (for example, the hierarchy of the original model is visible in 
the variable names). Depending on the embedded device the eFMU should be run on, a single Algorithm Code 
model representation can be used to generate multiple Production Code model representations and is therefore 
the last target independent model representation of the eFMU. 

The Algorithm Code model representation consists 

• of a manifest file in XML format in which all interface variables are defined (see section [Algorithm Code 
Manifest]), 

• one code file with extension .alg that represents the executable part of the block consisting of a block with 
declarations, and mandatory definitions of the three methods Startup, DoStep and Recalibrate. These 
methods are defined in a target-independent way with the new language GALEC (Guarded Algorithmic 
Language for Embedded Control) which is a small subsetbased on the syntax of thea Modelica 
languagefunction (https://www.modelica.org/modelicalanguage) with extensions as needed for embbeded 
systems (see section [GALEC - The Algorithm Code Language]). 

In the Algorithm Code specification and its examples the following coding conventions are used: 

• Types — primitives and components — start with capital letters, and each successive word part starts 
capitalized. Examples: Real, Boolean, Pid, GearBox, CrankShaftPid. 

• Stateless functions — including builtin functions — are defined with keyword function. The function names 
start with lower-case letters, and each successive word part starts capitalized. Examples: sin, 
solveLinearEquations, computeCrankShaftPid. 

• Stateful functions are defined with keyword method. The method names start with capital letters, and each 
successive word part starts capitalized. Examples: Startup, Recalibrate, DoStep. 

• Functions for scalars that are generalized to one and two dimensions use the scalar function name with suffix 
1D and 2D appended. Examples: roundTowardsZero1D, interpolate2D. 

4.1. Manifest 

https://www.modelica.org/modelicalanguage


The 

manifest file of the Algorithm Code model representation is an instance of an XML schema definition and defines 
the variables and block methods that represent a sampled input/output block, see figure to the right. 

 

4.1.1. Definition of an eFMU Algorithm Code (efmiAlgorithmCodeManifest.xsd) 

This is the root-level schema file of the Algorithm Code model representation and contains the following definition: 





On the top level, the schema consists of the following elements (see figure above): 



Element-

Name 
Description 

attributes 

The attributes of the top-level element are the same for all manifest kinds and are defined 
in section Section 2.3.1. 
Current kind-specific values: kind = "AlgorithmCode", xsdVersion (value is the 
current xsd version of the schema for the Algorithm Code model manifest). 

ManifestReferences 
Optional reference to the manifest of the Equation Code on which this Algorithm 
Code manifest is based on. This element is the same for all manifest kinds and is 
defined in section Section 2.3.4.3. 

Files 
List of files referenced in this model representation. There must be at least one file 
that contains the code of the BlockMethods. This element is the same for all 
manifest kinds and is defined in section Section 2.3.3. 

Clock 
A reference to the fixed or variable sample period defined by a block variable. For 
details see Section 4.1.2. 

BlockMethods 
The properties of the block methods DoStep, Recalibrate, and DoStep. For details 
see Section 4.1.3. 

ErrorSignalStatus 
Semantic error signal status to be referenced from ProductionCode manifest to 
mark the single variable that represents the error status. For details see Section 
4.1.4. 

Units 
An optional global list of unit and display unit definitions. These definitions are 
used in the XML element Variables. This element is nearly identical to the 
corresponding FMI 3.0 UnitDefinitions element. For details see Section 4.1.5. 

Variables 

A list of all variables that are accessible from the block methods defined in element 
BlockMethods. A variable might be a scalar or an array of an elementary type. 
Contrary to FMI 3.0, no target type variables (such a Float64) are defined here, 
but mathematical variable types (such as RealVariable). The reason is that 
target specific types are defined for the Production Codes [otherwise it would not 
be possible to define, for example, Float32 and Float64 Production Codes in the same 
eFMU] . For details see Section 4.1.6. 

Annotations 
Additional data that a vendor might want to store and that other vendors might 
ignore. For details see Section 2.3.4.5. 

4.1.2. Definition of Clock 

Element Clock provides a reference to the fixed or variable sample period defined by a block variable. The block 
should be executed periodically with the defined fixed or variable sample period. 



Element-Name 

Description 

id 
The id of the sample 
period of the block. 

variableRefId 

Reference to the 
variable in 
<Variables> that 
defines the sample 
period. This variables 
is only allowed to have 
the following values 
for variable attribute 
blockCausality: 
constant: Sample 
period cannot be 
changed. 
tunableParameter
: Sample period can be 
changed in the 
calibration phase. 
input: Sample period 
from previous to 
current clock tick 

The referenced variable variableRefId defines the sample period for which the block was designed. When the 
production code of this block is integrated in the target system (for example as AUTOSAR runnable), then it is 



expected that the block is executed as periodic sampled data system with this sample period. It might be that also a 
slightly changed sample period in the target system may still result in reasonable performance. 

4.1.3. Definition of BlockMethods 

Element BlockMethods defines properties of the defined block methods. Exactly three BlockMethod elements 
must be defined. 



Description 



Name 

fileRefId 

A reference to the file 
(defined in <Files><File>, 
see section Section 2.3.3) 
in which the code of the 
block methods is stored. 

writeOutputs 

Defines the recommended 
implementation scheme 
to utilize the calculated 
outputs. Default is 
Undefined. The 
currently only allowed 
other value is 
AsSoonAsPossible, 
meaning to utilize the 
outputs at once when they 



are computed, more 
details are given below. 

id 
The ID of the block 
method 

kind 

The kind of the block 
method (this is also the 
name of the method). 
Currently possible values 
are Startup, 
DoStep, 
Recalibrate. 

Signals 

The error signals exposed 
by the respective block 
method (for details 
Section 4.2.5.1) Attribute 
value defines the value 
of the signal. Currently, 
the following values are 
possible: 
"INVALID_ARGUMENT" 
(= the value of an input 
variable is not correct) 
"OVERFLOW" (= the 
value of a variable is Inf) 
`"NAN" (= the value of a 
variable is Not-A-
Number) 
"SOLVE_LINEAR_EQUA
TIONS_FAILED" (= 
failed to solve a linear 
equation system) 
"NO_SOLUTION_FOUND
" (= no solution found for 
other equation systems) 
"UNSPECIFIED_ERROR
" (= error not further 
specified) 



The scheme writeOutputs = "AsSoonAsPossible" is typically used when the controller computes the 
outputs for the current clock tick (e.g. integrates from the previous to the current clock tick). Pseudo-Code for this 
scheme: 

self = <instance of efmi component> 
<initialize self with the manifest start values> or self.Startup() 
<write outputs> 
<wait until clock starts> 
 
<at every clock tick> 
   <read inputs> 
   self.DoStep() 
   <write outputs> 
   if <calibration phase and tunable parameters available> 
       <set tunable parameters> 
       self.Recalibrate() 
   end 
   <wait for next clock tick> 
<end> 

The drawback of this scheme is that the computing time of efmu.DoStep() introduces a time delay until the 
outputs are available. 

Note, it is also possible to write the outputs inside DoStep directly after they are computed (without waiting until all 
statements are processed and the method returns). This implementation scheme of the Production Code is 
recommended if attribute writeOutputs has value AsSoonAsPossible. 

[There are also other implementation schemes that might by useful (currently, it is not possible to state this in the 
Manifest file). Examples: 

Write outputs at next clock tick 

This scheme is typically used when the controller computes the outputs for the next clock tick (e.g. integrates from the 
current to the next clock tick). Pseudo Code: 

self = <instance of efmi component> 
<initialize self with the manifest start values> or self.Startup() 
<write outputs> 
 
<at every clock tick> 
   <write outputs> 
   <read inputs> 
   self.DoStep() 
   if <calibration phase and tunable parameters available> 
       <set tunable parameters> 
       self.Recalibrate() 
   end 
   <wait for next clock tick> 
<end> 

The drawback of this scheme is that the inputs are extrapolated over the sample period because the inputs at the next 
clock tick are utilized in DoStep but are not known when DoStep is called. 

Two different clocks for reading inputs and writing outputs 

The reading of inputs and the writing of outputs might be performed with different clocks that have the same sample 
period, but the clock for the outputs is shifted relative to the clock for the inputs. 

Event clock (purely event based) 



The block might be triggered by an external event (e.g. at a particular angle of the engine shaft). The sample period 
(from the previous to the current clock tick) is provided as input signal. 

4.1.4. Definition of ErrorSignalStatus 

This element defines the single, hidden, error signal variable that holds the error signal status and is referenced 
from the ProductionCode manifest. It consists only of attribute id that defines the ID of this hidden variable: 

4.1.5. Definition of 

Units 

Element Units defines the units that are used by the Variables element. 

This element is identical to element UnitDefinitions of FMI 3.0 with the only exception that there is an 
additional attribute id to identify a unit uniquely in the AlgorithmCode manifest file and without element 
DisplayUnit: 









4.1.6. Definition of Variables 

The Variables element consists of an ordered list of all variables used as model states of the methods defined in 
element BlockMethods, so the values of these variables can be directly accessed and changed in the respective 
method using the name of the variable prepended with the instance name self (for example 
self.previous_x if the variable has name previous_x). Variables that are defined with blockCausality 
= input are set from the environment at the beginning of a sampling period. Variables that are defined with 
blockCausality = output are used at the end of the sampling period by the environment in an appropriate 
way. Variables that are defined locally in a block method are not listed in the Variables element. 



Variables are defined as (hereby one variable is defined according to schema group efmiVariable in file 
efmiVariable.xsd): 

The schema 

definition contains basically the same information as element ModelVariables in FMI 3.0, but using 
mathematical instead of target types and having the following deviations: 

• There is no String type. 

• A type might have Dimensions where the size of a dimension is an Integer literal (a dimension cannot 
depend on a structural parameter as in FMI 3.0). 

• The variable attributes causality, variability and initial of FMI 3.0 are replaced with the new 
attribute blockCausality (see below). 

• The following FMI 3.0 attributes are not present: 

o valueReference 

o canHandleMultipleSetPerTimeInstant 

o clockReference 

o clockElementIndex 

o intermediateUpdate 

o declaredType 

o quantity 

o displayUnit 

o unbounded 

o derivative 



o reinit 

Variable Base (attributes + elements) 

All variable kinds (so RealVariable, IntegerVariable, BooleanVariable) have the following base 
attributes/elements: 



Description 





Name 



id 

The unique 
identification of 
the variable with 
respect to the 
AlgorithmCode 
manifest file (can 
be referenced 
from other 
manifest files). 

name 

The full, unique 
name of the 
variable. Every 
variable is 
uniquely identified 
within an eFMI 
AlgorithmCode 
instance by this 
name. 

description 

An optional 
description string 
describing the 
meaning of the 
variable. 

blockCausality 

Enumeration that 
defines the 
causality, 
variability and 
initialization of the 
variable. Allowed 
values of this 
enumeration: 

• "input": 
The variable 
value is set by 
the 
environment 
at the start of 
a sampling 
period. 

• "output": 
The variable 
value can be 
used by the 
environment 
once it is 
computed. 

• "tunablePa
rameter": 
Independent 
parameter 



that is 
constant 
during a call 
to DoStep() 
and can be 
calibrated. 

• "calculate
dParameter
": A data 
value that is 
constant 
during a call 
to DoStep() 
and is 
computed 
during 
initialization 
or when 
tunable 
parameters 
change. 

• "constant"
: The value of 
the variable 
defined with 
the start 
attribute 
never 
changes. 

• "state": 
Local state 
variable that 
is initialized 
in Startup 
and is 
calculated 
from other 
variables. The 
value of this 
variable is 
kept between 
method calls. 

start 

Initial value of the 
variable as defined 
by default 
initialization. 

The given 
xs:token value 
can encode either 
a scalar value or a 
multi-dimensional 
value where each 
element value is 
separated by an 



XML whitespace 
character. In the 
latter case, the 
array elements are 
given in row-major 
order, that is the 
elements of the 
last index are 
given in sequence. 

[For example, a 
table T[4,3,2] 
(first dimension 4 
entries, second 
dimension 3 
entries, third 
dimension 2 
entries) is mapped 
into the following 
sequence of values: 
T[1,1,1], 
T[1,1,2], 
T[1,2,1], 
T[1,2,2], 
T[1,3,1], 
T[1,3,2], 
T[2,1,1], 
T[2,1,2], 
T[2,3,1], 
…] 

If the variable is a 
scalar, the string 
must encode a 
scalar value. If the 
variable is a multi-
dimensional array, 
the string can 
either: (1) encode 
a scalar value, 
meaning that each 
element of the 
multi-dimensional 
array has the 
respective scalar 
value as start 
value or (2) 
encode a multi-
dimensional value, 
meaning that the 
start values of the 
elements of the 
multi-dimensional 
array are the 
respective 
encoded multi-
dimensional value. 

Encoded values 
must be of the 
variable’s type and 



each must satisfy 
its min and max 
value (if min 
and/or max 
elements are 
defined). 

Dimensions 

If the variable is 
an array, then the 
fixed dimensions 
of the array are 
defined by this 
element. For every 
dimension, the 
number defines 
the number of the 
dimension (must 
be consecutive 
numbers 1, 2, …) 
and size defines 
the fixed size of 
the dimension 
(must be >= 1). 



ForeignVariableReference 

Subelement of type ForeignReference to the variable definition in 
the Equation Code. At least variables with blockCausality = 
input or output have this element defined. For details see Section 
2.3.4.3. 

Annotations 
Additional data of the variable, e.g., for the dialog menu or the graphical layout. For details 
see Section 2.3.4.5. 

In FMI 3.0 the attributes causality, variability, initial are defined, which combinations are allowed 
and why the allowed combinations are needed for an offline simulation program with events. However, for eFMI 
most of the combinations cannot occur. For simplicity, eFMI uses therefore only the attribute blockCausality. 
In the following table the mapping of blockCausality to the FMI 3.0 attributes is defined: 

eFMI FMI 3.0 

blockCausality causality variability initial 

input input discrete --- (no initial) 

output output discrete exact 

tunableParameter parameter tunable exact 

dependentParameter calculatedParameter tunable calculated 

constant local constant exact 

state local discrete exact 

RealVariable-specific attributes 

The following RealVariable specific attributes are defined: 



Attribute-Name 

Description 

unitRefId 

Identifier of the unit of the variable 
defined in list Units.Unit (Section 
4.1.5). The value of the variable is with 
respect to this unit. 

relativeQuantity 

If this attribute is true, thenDefines if 
BaseUnit-based unit conversions have to 
consider the base-unit’s offset of 
displayUnit (defined in 
Units.Unit) must be 
ignored.(relativeQuantity=false) or not 
(relativeQuantity=true). [For example, 10 



Attribute-Name 

Description 

degree Celsius = 10 Kelvin if 
relativeQuantity = "true" and 
not 283.15 Kelvin.] 

min 

Minimum value of variable (variable 
value =≥ min). If not defined, the 
minimum is the largest negative number 
that can be represented on the machine. 
If the variable is a multi-dimensional 



Attribute-Name 

Description 

array, min is a scalar value that holds for 
all array elements. 

max 

Maximum value of variable (variable 
value =≤ max). If not defined, the 
maximum is the largest positive number 
that can be represented on the machine. 
If the variable is a multi-dimensional 
array, max is a scalar value that holds for 
all array elements. 



Attribute-Name 

Description 

nominal 

Nominal value of variable. If the variable 
is a multi-dimensional array, nominal is 
a scalar value that holds for all array 
elements. 

If not defined and no other information 
about the nominal value is available, then 
nominal = 1 is assumed. 
[The nominal value of a variable can be, 
for example, used to define tolerances or 
scaling values for numerical algorithms in 
which the variable is used.] 



Example: 

<Units> 
  <Unit id="UnitID_1" name="s"/> 
</Units 
 
<Variables> 
  <RealVariable id="ID_1" name="Ti" unitRefId="UnitID_1" 
blockCausality="tunableParameter" start="0.1"/> 
  <RealVariable id="ID_A" name="A" blockCausality="constant" start="1.1 1.2 2.1 
2.2"> 
      <Dimensions> 
           <Dimension number="1", size="4"/> 
      </Dimensions> 
  </RealVariable> 
  <RealVariable id="ID_2" name="previous(I.x)"  blockCausality="state" 
start="0.0" min="0.0" /> 
</Variables> 

IntegerVariable-specific attributes 

The following IntegerVariable specific attributes are defined: 

Attribute-Name 

Description 

min 

Minimum value of variable (variable value =≥ min). If not defined, the 
minimum is the largest negative number that can be represented on the 
machine. If the variable is a multi-dimensional array, min is a scalar 
value that holds for all array elements. 

max 

Maximum value of variable (variable value =≤ max). If not defined, the 
maximum is the largest positive number that can be represented on the 
machine. If the variable is a multi-dimensional array, max is a scalar 
value that holds for all array elements. 

Examples: 

<Variables> 
  <IntegerVariable id="ID_11" name="numberOfCylinders" 
blockCausality="tunableParameter" start="6" min="0" /> 



  <IntegerVariable id="ID_12" name="pivots" start="0"> 
     <Dimensions> 
        <Dimension number="1" size="8"/> 
     </Dimensions> 
  </IntegerVariable> 
</Variables> 

BooleanVariable-specific attributes 

The BooleanVariable element has no additional attributes. 

4.2. GALEC: The Programming Language for Algorithm Code 

Containers' Source Code 

The 

algorithm that defines an input/output, sampled data block is defined with the new language GALEC (Guarded 
Algorithmic Language for Embedded Control). This language) that is a small subset of the Modelica Language with 
some extensions as needed for embbeded real-time systems and is definedspecified in this sub-section. GALEC 
is based on a small subset of the SynchronousModelica Language Elements (Chapter 16), and(especially on 
theModelica functions, Modelica External Function Interface (section 12.9, and on Synchronous Language Elements) 
of the Modelica Specification 3.4 (https://www.modelica.org/documents/ModelicaSpec34.pdf). Additionally,) 
together with changes and extensions as needed for embbeded real-time systems. GALEC has the following 
features are provided that are not present in the Modelica Language: 

• The language is designed so that only algorithms can be defined that have an upper-bound on the number of 
operations for each control-cycle to satisfy hard real-time constraints. (for example, there are no while loops). 
Furthermore, all needed memory, especially of arrays and operations on arrays, is known statically. 

• The language is designed for computational safety. For example it can be statically guaranteed that out-of-
bounds and otherwise illegal memory accesses for all possible executions cannot occur at run-time. 

• The language is designed for traceability so that GALEC code can be understood in terms of the original model 
and vice versa. 

• The language has a restricted set of methods to efficiently pass the block state between functions. This is 
different to the Modelica language. 

• A set of built-in functions is defined so that physical models and their solvers can be reasonably mapped to 
GALEC code. For example, there are built-in functions for interpolation and for the solution of linear equation 
systems. 

• The language is designed to handle erroneous situations in a safe way. For example, it is possible to determine 
at the end of the algorithm whether the computed outputs can be used for further processing, or whether it is 
necessary to switch to a backup code, for example, if operations produced qNaN (quiet-Not-a-Number) values. 
Furthermore, min/max values defined in the declaration of variables are used to implicitly limit the variable 
values at the start and at the end of the DoStep method. This is different to the Modelica language that raises 
assertions if min/max definitions are violated. 

https://www.modelica.org/documents/ModelicaSpec34.pdf


The GALEC code of a block is stored in a file with extension *.alg and is a self-contained file that can be parsed 
and interpreted without inspecting the Algorithm Code manifest file. For examples of GALEC programs, see Section 
4.2.7. 

4.2.1. Language-design Overview 

GALEC code generation is subject to many, often contradicting, requirements imposed by physics and mathematics 
(physics-modeling domain), embedded real-time system-control (Production Code domain) and development 
processes for certified systems (embedded development domain): 

(a) An algorithmic source-language for embedded real-time 

GALEC code has to take into account that further embedded code generation typically must satisfy hard 
real-time constraints. Generated algorithmic solutions must have an upper-bound of algorithmic steps 
executed each control-cycle, such that termination within a statically fixed number of computational steps 
can be guaranteed. To derive such upper-bounds for actual GALEC code is subject of the termination-
analysis, which checks that functions of GALEC code are transitively non-recursive and loops always have 
a statically fixed maximal number of iterations. To transform equation-based models to such solutions 
may not always be possible. To that end, GALEC code generators are free to reject valid models of their 
modeling-language as not being suitable for GALEC code generation. 

Another important concern of embedded applications is computational safety, requiring for example that 
programs are free of out-of-bounds or otherwise illegal memory accesses for all possible executions; and that 
control-flows for error detection and handling always shortcut normal program execution [1]. To that end, 
a dimensionality-analysis is enforced, which statically defines the sizes of multi-dimensions w.r.t. function 
call contexts; considering all possible call contexts is required to support generic functions working on 
arbitrary sized multi-dimensions. The dimensions derived are used to statically ensure that all multi-
dimensional accesses always will be within bounds throughout later program executions. Dimensionality 
and termination-analysis are closely linked; bounded loops can conveniently iterate multi-dimensions 
whose statically known dimensions in turn define respective upper iteration bounds. Since iteration 
bounds can depend on the sizes of any multi-dimension, other iteration indices or integer expressions 
combining such, GALEC code supports advanced iteration schemes that are still guaranteed to be well-
defined. 

(b) An algorithmic target-language for simulation of physics-models 

GALEC code generators have to rearrange original physics-model equations to derive an algorithmic 
solution. The more comprehensive, complex and mathematically challenging a controller design is — and 
therefore interesting for modeling its physics — the more rigorous such transformations are typically. 
Particularly later real-time constraints as described in (a) often require radical transformations to handle 
algebraic loops and enable equation-system optimisations like symbolic processing, tearing and index 
reduction. GALEC code generators are therefore encouraged to apply whichever mathematical and logical 
equation-system transformations they consider required to yield an equivalent algorithmic solution. 

Besides the requirement to achieve an algorithmic solution in terms of expression- and assignment-
sequences that compute the next state of the simulated control-cycle, no further transformation has to be 
performed. GALEC provides means to compute with structured-data as common in physics-modeling 
languages, particularly higher-level matrix-operations. And a library of builtin functions supports common 
mathematical tasks like solving a linear system of equations. The exact implementation of all these 
mathematical-abstractions is the responsibility of Production Code generators, leaving opportunity for 
later target-machine specific optimization. To that end, GALEC code generators are highly encouraged to 
leverage on the provided mathematical-abstractions. 

(c) An intermediate-language leaning towards algorithm-logics and mathematical-optimization, 
not algorithm-implementation and target-specific optimization 

The emphasis in (b) has been on mathematical transformations only; otherwise GALEC code generators 
should not apply transformations that curtail Production Code generators in their code generation 
decisions, particularly regarding optimisations leveraging on target-specifics. Typical target-specific 
optimisations are for example data-structure changes to improve memory-layout for faster access-



operations or optimisations of the trade-off between code-size and performance like loop-unrolling. 
Especially higher-level matrix-operations and builtin function calls are interesting for target-specific 
Production Code optimisations. Although it seems obvious not to further reduce such mathematical 
abstractions, it is non-trivial in practice. 

The mathematical equation-system transformations described in (b) typically imply separation or 
reduction of existing and introduction of new multi-dimensional data-structures, influencing matrix-
operation and builtin function calls in turn. For example, tearing may be used to reduce the required 
numerical integration, in turn yielding smaller but also more frequent matrix allocations for linear 
solving. Fortunately, such mathematical transformations most often also result in more efficient 
embedded code generated by Production Code generators; but that is hard to say in general. Of course, if 
required to achieve an algorithmic solution at all, such transformations have to be done. But otherwise, 
the resulting decomposition of matrices accompanied by matrix-operation flattening and therefore 
increase in code size may very well supersede the advantage. 

On the other hand, GALEC code generators have the domain-knowledge for mathematical-optimisations 
that Production Code generators lack. An important case for trade-offs between mathematical and 
Production Code optimisations is scalarization to eliminate controller-output irrelevant or redundant 
state-variables and equations. Physics-models often contain simple equality-equations between the state-
variables of two components; likewise, the components constituting a certain controller may be 
generalized for more advanced cases than their actual application context, leaving equation-parts unused. 
GALEC code generators are encouraged to eliminate such system parts, which typically results in multi-
dimensions with unused elements like a 2x3 matrix of which only four entries are actually required to 
compute the outputs. Eliminating the unused entries means to change model structure, while shifting the 
matrix or changing its dimensionality is not an option because of traceability and a lack of knowledge 
regarding the final matrix-layout Production Code will eventually apply. 

As an alternative, GALEC code can scalarize such multi-dimensions, i.e., flatten the higher-level multi-
dimensional entity to a set of scalars — and therefore dimension-less — otherwise equally typed entities. 
Unused scalars can then just be discarded. The drawback of scalarization is, that all expressions 
containing higher-level matrix-operations with scalarized multi-dimensions and loops referring to such 
must be expanded to respective sequences of scalar operations. Besides being in conflict with the 
requirement to not curtail Production Code from optimizing higher-level matrix-operations, the resulting 
code-size increase due to expansions may very well render the savings in elements futile. 

(d) A language for algorithmic controller implementation 

TODO: Startup and DoStep (with input parameters); eFMU state and method vs. function; previous 
and derivative state-variables. 

(e) A language part of a trustworthy tool-chain from physics-models to embedded-code 

GALEC code generators have to maintain traceability, such that embedded solutions derived from 
physics-based controller designs can be understood in terms of the original model; and vice versa, all 
parts of a controller-model can be traced to its embedded implementation. To link individual physics-
equations to their respective algorithmic solution is very challenging in general, since equations are likely 
subject to rigorous transformations as described in (b). A common denominator between a physics-
model and its transformed solution is however, that both simulate the same system. It therefore is a 
starting point for GALEC code to at least refer to the states of the original physics-model components 
whenever using or updating such. The premise is of course, that controllers are modeled as systems 
consisting of well-structured parts; only then GALEC code generators can, and are highly encouraged, to 
utilize original system-structure for traceability. To that end, GALEC does not only provide mathematical 
multi-dimensions as described in (b), but also nested multi-dimensional components with matrix- and 
scalar-variables; and in case of optimisations resulting in scalarization as described in (c), a quotation-
based notation can be used to denote scalarized elements as if their original multi-dimensions still exist. 
GALEC code generators have to maintain traceability, such that embedded solutions derived from 
physics-based controller designs can be understood in terms of the original model; and vice versa, all 
parts of a controller-model can be traced to its embedded implementation. To link individual physics-
equations to their respective algorithmic solution is very challenging in general, since equations are likely 
subject to rigorous transformations as described in (b). A common denominator between a physics-
model and its transformed solution is however, that both simulate the same system. It therefore is a 



starting point for GALEC code to at least refer to the states of the original physics-model components 
whenever using or updating such. The premise is of course, that controllers are modeled as systems 
consisting of well-structured parts; only then GALEC code generators can, and are highly encouraged, to 
utilize original system-structure for traceability. To that end, GALEC does not only provide mathematical 
multi-dimensions as described in (b), but also nested multi-dimensional components with matrix- and 
scalar-variables; and in case of optimisations resulting in scalarization as described in (c), a quotation-
based notation can be used to denote scalarized elements as if their original multi-dimensions still exist. For 
example, a scalarized real variable may have the name 'a.b[2].c[2,3]', linking it with original 
model structure for traceability although all output-relevant combinations of components a and b and 
matrix c are scalarized into individual variables. 

(f) A portable and tool-independent language for standardized tool-integration and 
distribution of controller implementations 

GALEC code is at the center of eFMUs, linking physics-modeling with embedded-development tooling. 
Although eFMUs are free to only contain target-specific source code, build scripts and resulting binaries, 
such eFMUs are just fancy containers for embedded solutions; and vice versa, a pure modeling eFMU 
without executable embedded-solutions misses the actual purpose of eFMI compared to the ordinary FMI 
standard. It is the GALEC code that brings both worlds together and exposes their relation to eFMU users. 
The latter does not only imply traceability as described in (e), but also to adhere to a common 
specification of controller inputs, outputs, states and parameters and control-cycle functionality — an 
abstract controller usage interface. In the spirit of the FMI standard, and to not preclude a potential future 
integration with it, this interface is given in terms of an FMI like XML manifest declaring all entities and 
functionalities of interest for users of the eFMU. The control-state defined in GALEC code — the state 
components with state variables, control-inputs and -outputs and their nesting — therefore always is 
linked to entities declared in the manifest; likewise, the initialization and control-cycle functions are 
exposed in the manifest to clearly declare the functionality an eFMU provides. GALEC code generators are 
required to derive respective manifests if asked for. 

4.2.2. Notation Conventions 

The concrete syntax of GALEC code is defined using Extended BackusNaurBackus–Naur Form 
(EBNF) according to ISO/IEC 14977. The whole grammar is split into different sections, each 
defining a specific language construct — i.e., syntactic concept — of GALEC code like lexemes, 
references, expressions, statements etc. The EBNF-rules — i.e., syntactic rules — defining the 
syntactic concept a section is about can be amended with further semantic rules given in 
prose. Semantic rules constrain the applicability of the syntactic rules they refer to. They are 
in turn classified w.r.t. the different semantic concepts of GALEC code they contribute to like 
type-analysis, dimensionality-analysis, termination-analysis etc. 

Due to the decision to structure the whole specification w.r.t. language constructs, semantic 
concepts cross-cut sections. Table TODO summarizes all semantic concepts, the semantic 
rules contributing to their definition and the section they are defined. The inevitable 
complexity of cross-dependencies, typical for any serious formal language, is further 
attenuated by using a consistent notation for semantic rules, enabling explicit linkage between 
defined rules, the semantic concepts they contribute to and further rules relevant for or later 
refining a definition. Likewise, syntactic rules are well-prepared for usage in semantic-rules, 
i.e., usage in prescriptive definitions given in prose. 

Syntactic Rules, Terms and Relations 

Each syntactic rule has a unique rule-number of the form G-X1.X2, where X1 is the section the 
rule is part of and X2 is its unique rule-number within that section; the actual EBNF rule 
follows separated by a colon. The non-terminals defined by syntactic rules are human readable 
terms that are well-suited for prose-text usage. Semantic rules denote such usage by writing 
the respective non-terminal in italic. For readability reasons, every non-terminal can be used 
in plural or singular form and its first letter can be capitalized when used at the beginning of a 
sentence. The meaning of a non-terminal within a semantic rule is defined by the following 
meta-rule: 

https://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip


M-1.1 (syntactic term / Meta-rules, terminology): Parts of semantic rules typeset in italic 
refer to non-terminals; they are called syntactic term. Let N be a non-terminal referred to in a 
semantic rule S; let G be the syntactic rule defining N (cf. M-1.2 for uniqueness of syntactic 
rules). The semantic of N in S is: a code fragment F of a whole GALEC program P, where F is 
derived according to G throughout the derivation of P and satisfies all semantic rules amended 
to G. 

M-1.1 requires that the syntactic rule a syntactic term refers to is unique; to that end we 
define: 

M-1.2 (uniqueness of syntactic rules / Meta-rules): For every non-terminal N exists a single 
syntactic rule whose EBNF syntax-rule has N as meta-identifier (cf. ISO/IEC 14977). 

M-1.1 has severe consequences. If, for example, the specification refers to loop-iterator-
declarations, it is clear that this must be names declared by a for-loop regardless in which 
context the syntactic term loop-iterator-declaration is used; this implication is given because 
loop-iterator-declaration just derives to name and is only used by bounded-iteration[2] which in 
turn is only used by for-loop. Besides such implicit restrictions, further explicit restrictions 
about the syntactic relation between syntactic terms — i.e., that some term’s own derivation 
must be in a well-defined relation to another term’s derivation throughout the whole 
derivation — are used: 

M-1.3 (syntactic relations / Meta-rules, terminology): Let N1 and N2 be syntactic terms. 

N1 is contained in N2, if, and only if, N1 is derived throughout the derivation of N2; in this case N2 
is called a container of N1 and we say N2 contains N1 and N1 is part of N2. If, and only if, N2 
contains N1 and both refer to the same non-terminal N, N1 is called a nested N. N2 is the closest 
container of N1, if, and only if, N2 contains N1 and for all N3 containing N1 and that refer to the 
same non-terminal as N2 it holds that N3 contains N2. 

N1 is preceding N2, if, and only if, neither is contained in the other and the left-most derivation 
of the closest container of N1 and N2 derives N1 before N2; in this case N2 follows N1. Instead of 
preceding also the term before is used; and instead of follows also the term after. If, and only if, 
either, N1 follows N2 or N2 follows N1, both are siblings. N1 and N2 are different, if, and only if, 
they are siblings or the one contains the other. 

N1 is lexically-equivalent to a sequence of characters aα, written N1 =lexical aα, if, and only if, N1 
derives to aα. N1 is lexically-equivalent to N2, written N1 =lexical N2, if, and only if, N1 and N2 derive 
to the same sequence of characters. 

If, and only if, N2 contains N1 and throughout all possible derivations of the non-terminal N2 
refers to the non-terminal N1 refers to can be derived at most once, we speak of the N1 of N2; 
obviously, N2 is the closest container of N1 in that case. 

Let d = ߼sub>1, …, ߼sub>nβ1, …, βn be a single definition according to ISO/IEC 14977; ߼sub>iβi 
with 1 =≤ i =≤ n is called the i’th factor of d. A dzδz is called the ?2-…-?z'thγ2-…-γz'th factor of d1δ1, 
if, and only if, ?∀i,j?N∀∀+; i = j - 1; 2 =≤ j =≤ z: djδj is the ?j'thγj'th factor of diδi. Let G be the 
syntactic rule of N2. We call N1 the i1-…-ik'th child of N2, if, and only if, N1 has been derived for the 
i1-…-ik'th factor of G when deriving N2; in this case N2 is called the parent of N1. If, and only if, the 
i1-…-ik'th factor of G has been derived when deriving N2, we say N2 has a i1-…-ik'th child; 
otherwise it is without i1-…-ik'th child. 



A syntactic term F is without a code fragment according to some non-terminal N, if, and only if, 
N is not derived throughout the derivation of F; in this case, we say F does not contain a N, it is 
N-free. Note, that F is a syntactic term — i.e., a code fragment derived according to the 
syntactic rule for the non-terminal F — whereas N is just a non-terminal referring to some 
syntactic rule; nevertheless, N will be highlighted italic in semantic rules as if it is a syntactic 
term, denoting that it is a non-existing code fragment. 

E-1: The derivation of the following block fragment defines various syntactic relations 
(denoted by using capitals only). Note, that according to M-1.1 syntactic relations are only 
defined for syntactically correct inputs, i.e., blocks (cf. S-2.1). 

/* 
    For-loop CONTAINING another for-loop. 
    Thus, neither for-loop is BEFORE or AFTER the other. 
    Both for-loops are function-call-FREE: 
*/ 
for i in 1:size(A,1) loop 
    /* 
        If-statement PART OF a for-loop and CONTAINING a 
        DIFFERENT for-loop. The if-statement is WITHOUT a 
        function-call since it does NOT CONTAIN such: 
    */ 
    if 
        /* 
            The 2ND CHILD of the if-statement is an expression: 
        */ 
        mod(i,2) == 0 
    then 
        /* 
            NESTED for-loop, i.e., a for-loop CONTAINED in 
            another for-loop. The NESTED for-loop FOLLOWS its 
            CONTAINING if-statement's 2ND CHILD: 
        */ 
        for j in 1:size(A,2) loop 
            /* 

                Assignment aα PRECEDING another assignment ߬ β, 
with 
                which its 1ST CHILD is LEXICALLY-EQUIVALENT. 
                The assignment is also BEFORE another assignment 
?γ 
                that is DIFFERENT to ߻β; all three assignments 
are 
                SIBLINGS: 
            */ 
            A[i,j] := 1; // aα 
        end for; 
    else 
        /* 

            Assignment ߠAFTERβ AFTER a PRECEDING assignment aα 
with 
            LEXICALLY-EQUIVALENT 1ST CHILD: 
        */ 

        A[i,j] := 0; // ߊβ 
    end if; 
end for; 
/* 
    Assignment ?γ most likely not PART OF a for-loop, 
    but for sure with exactly one function-declaration CONTAINER 
    that trivially is its CLOSEST function-declaration CONTAINER: 
*/ 
A[size(A,1), size(A,2)] := -1; // ?γ 



E-2: Consider the syntactic rule G-2.3: 

function-declaration = 
    ( "function" | "method" ), 
    name, 
    { parameter-declaration }, 
    [ "protected", { local-variable-declaration } ], 
    "algorithm", 
    { statement }, 
    "end", 
    name, 
    ";" ; 

Its first factor is ( "function" | "method" ), its 1-2’th factor is "method", its 4’th 
factor is [ "protected", { local-variable-declaration } ], its 4-2’th factor is 
{ local-variable-declaration } and its 4-2-1’th factor is local-variable-
declaration. According to the presented syntactic rule, every function-declaration must 
have a 5’th child lexically-equivalent to "algorithm" even if it contains no statements; it can 
also be without 4-2’th child although it has a 4’th and 4-1’th child. It is important to note here, 
that if without 4-2’th child, a function-declaration cannot contain local-variable-declarations; 
the reason is because the 4-2’th factor is the only possibility to derive local-variable-
declaration throughout any possible derivation of function-declaration. Likewise the 6’th 
factor is the only possibility to derive statements throughout the derivation of function-
declarations. Finally, note the difference between without an i'th child vs. without a code 
fragment according to some non-terminal. Local-variable-declaration and parameter-
declaration will always derive variable-declaration throughout their own derivation. Thus, 
function-declarations for example can be without 4-2’th child and still contain a variable-
declaration if they have a 3’rd child, i.e., a function-declaration can be without 4-2’th child but 
still not variable-declaration-free. 

Consider the following function-declaration: 

function foo 
protected 
algorithm 
end foo; 

Its second and eight children are names lexically-equivalent to foo. It is without 1-2’th child 
because it has a 1-1’th child lexically-equivalent to "function". And although it has a 4’th 
child, it is without a local-variable-declaration. 

Using syntactic relations, complicated constraints can be conveniently and precisely defined. 
For example, the usage of references in statically-evaluated expressions is restricted; on the 
one hand, they never must be used to access control-state-dependent — i.e., runtime — values, 
but on the other hand, they should be available to access runtime-independent values 
provided by the dimensionality- and termination-analysis like the dimensional-sizes of 
variables or the iteration-values of loop-iterator variables which are always statically-bound. 
A respective formal definition, based on syntactic relations only, is: every reference contained 
in a constant-scalar-integer-expression must either, be the 3’rd child of a dimension-query or 
have a unique for-loop container whose loop-iterator-declaration is lexically-equivalent to the 
reference. Although such constraints sound like common prose, they are completely formally 
well-defined by meta-rules M-1.1 to M-1.3 and the derivation semantics of EBNF as defined in 
Section 5 of ISO/IEC 14977. 

It is important to note, that meta-rules, like M-1.1 to M-1.3, are used by nearly all semantic 
rules and therefore not explicitly referenced by definitions even if relevant. 



Semantic Rules 

Likewise syntactic rules, also semantic rules have unique rule-numbers. The structure for 
semantic rule-numbers is S-X1.X2; again X1 is the section the rule is part of and X2 a unique rule-
number within that section. The unique rule-number is followed by an informal rule name 
describing the rule-intention, a slash and finally one or more semantic concepts the rule 
contributes to, all wrapped in parenthesis. The actual definition follows separated by colon. 

As an example consider the following semantic rule: 

S-TODO (guarded multi-dimension access / Dimensionality-analysis): For each 
dimensional-context of the function-declaration a reference R is part of (cf. S-TODO), the 
dimensional-bounds of the computed-dimensions of R must be within the dimensional-bounds 
of the declaration R refers to (cf. S-TODO). 

The general definition of dimensional-bounds and what it means for one to be within another 
is given by meta-rule M-TODO to which — like for all common meta-rules — is not explicitly 
referred to. 

Rationales, Limitations and Examples 

Besides syntactic and semantic rules, sections also list rationales, limitations and examples. A 
rationale gives further reason why something is specified as it is, like usage-considerations, 
other specifications of interest or easy overlooked cases that are non-trivial to handle. A 
limitation clarifies a language constraint that might be relaxed in further iterations of the 
standard to support future use-cases, that is required to support further tooling working with 
GALEC code or that is very hard to ease in general for which reason it has been introduced. 
Examples are used to investigate the implications of the specification by demonstrating code 
fragments that are illegal GALEC code or that are valid but with a twist fostering 
understanding of the specification. All three — rationales, limitations and examples — can be 
part of semantic rules, in which case they are uniquely numbered within the rule they are part 
of. If more general, they can also be freestanding, in which case their unique number is 
constructed likewise syntactic and semantic rule numbers, only that rationales are prefixed by 
R-, limitations by L- and examples by E-. In any case, rationales and limitations have an 
informal name describing their intention likewise semantic rules have. If freestanding, they 
also can be associated with semantic concepts, again separated by a slash like for semantic 
rules; if not freestanding and part of a semantic rule, they implicitly contribute to the same 
semantic concepts as the rule they are part of. 

As an example consider the following non-freestanding rationales, example and limitation: 

S-TODO (uniqueness of early loop exits / Termination-analysis): Let B1 and B2 be two 
different early-loop-exits. Their respective closest for-loop containers must be different; and 
their loop-iterator-references must refer to different for-loops. 

R-1 (well-formedness): That early-loop-exits must be part of a for-loop, and the name-analysis 
of their loop-iterator-references, are already defined by S-TODO. 

R-2 (MISRA C:2012 compliance): The rule is introduced to enforce compliance with MISRA 
C:2012, Rule 15.4. 



E-1: The following for-loop is illegal due to multiple early loop exits for each of the nested 
loops: 

for i in 1:3 loop // Outer loop. 
    for j in 1:3 loop // Inner loop. 
        if b1 then 
            break i; // First break of outer and inner loop. 
        else 
            break j; // Illegal: Second break of inner loop. 
        end if; 
    end for; 
    if b3 then 
        break i; // Illegal: Second break of outer loop. 
    end if; 
end for; 

L-1 (relaxation of MISRA C:2012 compliance): To transform non-unique early loop exists to 
a unique form complying with MISRA C:2012 is not trivial. Production code generators may 
miss support for such transformations, to which end this rule has been introduced. On the 
other hand, it may unnecessarily constrain GALEC code generators, even forcing them to fail 
to generate an algorithmic solution. To shift the responsibility of compliance from GALEC code 
generators to Production Code generators, the rule can be disabled using the consider-
misra=false flag throughout GALEC code generation. 

Other specification parts can refer to enclosed rationales, limitations and examples by 
appending their unique number separated by a colon to the number of the enclosing semantic 
rule; for example, one can refer to the limitation of above example by writing S-TODO:L-1. 

4.2.3. Block-interface and life-cycle 

This Section investigates the utilization of GALEC programs (i.e., blocks) that are due for 
deployment on an embedded target and its runtime environment. 

§1: Embedded target, runtime environment, system integration, block 

instance & block-interface (terminology, system integration) 

GALEC defines an operational interface for blocks — called block-interface — that must be 
preserved by Production Code generators when translating a block to code that is subject of 
embedded system integration. Embedded system integration is not just achieved by means of 
a block’s interface; it must over and above adhere to the operational restrictions defined in §1 
to §3 (particularly the block life-cycle of §3 must be satisfied). 

A single block can be instanziated many times on an embedded target and its runtime 
environment; each instance is operationally isolated. There are no restrictions on the number 
or kind of block instances (in particular different blocks can be instanciated within the same 
runtime environment). Any interaction of the runtime environment with a block instance 
must be via its block-interface (even instances of the same block must interact via their block-
interface). 

§2: Block-interface variables & methods (runtime semantic, system 

integration) 



The block-interface constitues of block-interface variables and block-interface methods. 

The block-interface variables are: 

• Block inputs: The sampling inputs provided by the runtime environment. 

• Block outputs: The sampling results consumed by the runtime environment; they must 
never be written by the runtime environment. 

• Tunable parameters: Parameters sporadically, and not necessarily each sampling, 
changed by the runtime environment. 

Besides this block-interface variables, other block-variables exist, which are block internal 
and therefore cannot (and must not, cf. §1) be written or read by the runtime environment: 

• Dependent parameters: The parameters derived from tunable parameters. 

• Block states: The internal states. 

All block-variables are persistently stored in block instances, such that their values survive 
block-interface method calls and therefore can be used in call sequences of such. Each block 
instance has its individual set of block-variables; changing some tunable parameter t of a 
block instance b1 does not change t of another block instance b2 of the same block. 

The block-interface methods are: 

• Startup(): Computes initial values for all block-variables. 

• Recalibrate(): Updates the dependent parameters considering the currently set 
tunable parameters. 

• DoStep(): Computes the block outputs and updates the block states for the given block 
inputs and the current tunable and dependent parameters for a single sampling. 

L-1 (design-space of Production Code generation and system integration): Production 
Code generators and system integration are free to realize a GALEC block by any means they 
see fit as long as its operational semantic is satisfied. They can achieve a mutual agreement 
that block-interface functionality is not supported, like recalibration by means of 
Recalibrate() or reading block inputs from the runtime environment, given that the use-
case and system integration scenario does not require such. In general however, Production 
Code generators must support the full block-interface and life-cycle to be eFMI specification 
conformant. 

Examples of integration scenario specific design-space agreements are: 

1. Not generate and call Startup(), but instead statically evaluate it and store start 
values in read only memory or only load them once when the runtime system boots. 

2. Not generate a dedicated DoStep() function, but instead inline the implementation in 
the runtime environment. 

3. Not generate Recalibrate(), transforming tunable and dependent parameters to 
become constants which can be constant-folded. 



4. Store block-variables globally, leveraging on knowing that there is exactly one instance 
and not several (no need to support individual block-instances). 

5. Not persist block inputs (cf. §3:R-1, last paragraph), but instead provide new values for 
every input every sampling, for example as function arguments to DoStep(). 

Particularly (3) is a common integration scenario, since recalibration typically is only 
performed during the development phase of an embedded system and no longer supported in 
production systems. 

R-1 (block-variable initialization and Algorithm Code Container manifest start values): 
The start values of the variables in the manifest of an Algorithm Code Container are 
conceptually determined by calling Startup() on the target system and its runtime 
environment. A Production Code generator can for example (1) use these start values directly 
in the C-Code for static initialization (i.e., as precomputed values), hereby casting from the 
concrete manifest-variable type in which the start-values are stored to the best fitting 
concrete type of the target system, or (2) provide an implementation of Startup() to be 
called by the runtime environment during startup, or (3) use any other means to ensure 
block-variables have initial values according to Startup() (cf. §2:R-1). 

§3: Block life-cycle (runtime semantic, system integration) 

The permitted interactions with block instances are defined by the following state machine, 
specifying a universal life-cycle for block instances, called block life-cycle (the do-actions of 
states refer to the block-interface methods defined in §2): 







The block-interface methods of a single block instance must be called in sequence by the 
runtime environment; parallel execution of such is prohibited. The block-interface methods of 
separate block instances can be executed in parallel. The block-interface variables of a block 
instance must not be read or written by the runtime environment while any of its block-
interface methods is in execution. 

R-1 (block life-cycle implications for system integration): The following discussion refers 
to the block life-cycle state machine. Italic refers to states or transitions of it; monospace 
refers to state actions, i.e., block-interface methods according to §2. 

The block life-cycle does not enforce the runtime environment to set inputs and tunable 
parameters (input written and tuneable parameter written transitions) separately in sequence 
or at most once before each sampling. It does not prohibit the runtime environment to read 
block inputs or tunable parameters or execute Recalibrate() several times before a single 
sampling. This allows complex system integration scenarios where the runtime environment 
has to setup the next sampling depending on the state of a block instance. 

The block life-cycle enforces however, that whenever a tunable parameter is changed via 
tunable parameter written, all dependent parameters must be recomputed via 
Recalibrate() before the next sampling (recalibration required conditional). Otherwise, a 
protocol error is given and the block behavior is undefined (idle (protocol error) state). 
Several tunable parameter changes can be bundled though; it is not required to switch to 
recalibrating after each individual new tunable parameter is set, but sufficient to do so once 
before the next sampling. 

Likewise, the block life-cycle enforces that DoStep() is executed exactly once for each 
sampling (sampling clock ticks transition). 

The block life-cycle also enforces that the new block inputs, to be used for the next sampling, 
must be ready before the execution of DoStep() starts (all inputs set condition of sampling 
clock ticks transition). It is however not enforced that every input must be assigned a new 
value each sampling. Since Startup() assigns all block-variables a well-defined value, 
including block inputs, following samplings will be well-defined even if an input is not set 
anew (assuming recalibration is done as described in the last but one paragraph). If a block-
input is not updated before a sampling, it has the last value set. It is however very uncommon 
not to set all inputs each sampling; one reasonable scenario not to do so is if the block is 
super-sampled compared to some of its inputs (e.g., a sensor provides a new input value every 
2ms, but the block is sampled every 1ms because of other faster changing inputs). 

E-1: The following C99 pseudo-code snippets sketch typical system integration scenarios for 
blocks. 

All examples share the following conventions. It is assumed that the Production Code 
generator mapped the block-interface methods Startup(), Recalibrate() and 
DoStep() to equally named C functions that expect the block-variables to operate on as 
argument, e.g., a struct pointer; to that end, c is a constant pointer to the static struct holding 
the block-variables (it encapsulates a single block instance). Prose text bracket by [[ and ]] 
denotes arbitrary C code implementing the respective action, but does not interact any further 
with the block-interface than denoted. 

The most common integration scheme, with support for recalibration throughout samplings, 
is: 

/* 
    Initialization: 
*/ 
Startup(c); // Assigns every block-variable a value, particularly 
outputs. 



[[ process initial outputs of block ]] 
 
/* 
    Sampling cycle: 
*/ 
while ([[ block not shutdown ]]) 
{ 
    if ([[ recalibration desired ]]) 
    { 
        [[ set new tunable parameters of block ]] 
        Recalibrate(c); // Recompute dependent parameters of 
block. 
    } 
    [[ set new inputs of block ]] 
    [[ wait until sampling clock ticks ]] 
    DoStep(c); // Recompute internal states and outputs of block. 
    [[ process new outputs of block ]] 
} 

A more simple integration scenario may not utilize recalibration throughout sampling, but 
only once immediately after initialization: 

/* 
    Initialization: 
*/ 
Startup(c); // Assigns every block-variable a value, particularly 
outputs. 
[[ process initial outputs of block ]] 
[[ set new tunable parameters of block ]] 
Recalibrate(c); // Recompute dependent parameters of block. 
 
/* 
    Sampling cycle: 
*/ 
while ([[ block not shutdown ]]) 
{ 
    [[ set new inputs of block ]] 
    [[ wait until sampling clock ticks ]] 
    DoStep(c); // Recompute internal states and outputs of block. 
    [[ process new outputs of block ]] 
} 

An even more simple integration scenario may not require recalibration at all, effectively 
transforming tunable and dependent parameters to constants since they can not change 
anymore after initialization: 

/* 
    Initialization: 
*/ 
Startup(c); // Assigns every block-variable a value, particularly 
outputs. 
[[ process initial outputs of block ]] 
 
/* 
    Sampling cycle: 
*/ 
while ([[ block not shutdown ]]) 
{ 
    [[ set new inputs of block ]] 
    [[ wait until sampling clock ticks ]] 
    DoStep(c); // Recompute internal states and outputs of block. 
    [[ process new outputs of block ]] 
} 



A Production Code generator can optimize this scenario, leveraging on enhanced constant-
folding. 

An advanced integration scenario might also require several different recalibartions and input 
modifications depending on the state of the runtime environment: 

/* 
    Initialization: 
*/ 
Startup(c); // Assigns every block-variable a value, particularly 
outputs. 
[[ process initial outputs of block ]] 
 
/* 
    Sampling cycle: 
*/ 
while ([[ block not shutdown ]]) 
{ 
    // Handle default setup: 
    [[ set new inputs of block ]] 
 
    // Handle first special case, modifying the default: 
    v1 = [[ some value provided by the runtime environment ]]; 
    t1 = [[ read tunable parameter t1 ]]; 
    o1 = [[ read output o1 ]]; // Previous sampling output, or 
initial if first sampling. 
    if (o1 / t1 > v) 
    { 
        [[ set input i1 to v1 ]] 
        if (t1 > 2*v) 
        { 
            [[ set tunable parameter t1 ]] 
            Recalibrate(c); 
        } 
    } 
 
    // Handle second special case (may amend the first case): 
    v2 = [[ some value provided by the runtime environment ]]; 
    t2 = [[ read tunable parameter t2 ]]; 
    if (t2 < v2) 
    { 
        [[ set tunable parameter t2 ]] 
        Recalibrate(c); // Recompute dependent parameters of 
block. 
        [[ set input i2 to input i1 ]] 
    } 
 
    // Everything is prepared for next sampling: 
    [[ wait until sampling clock ticks ]] 
    DoStep(c); // Recompute internal states and outputs of block. 
    [[ process new outputs of block ]] 
} 

4.2.4. General Syntactic and Semantic Rules 

Lexemes 

G-1.1 — G-1.7 (white space characters): 



character = ? any valid ISO/IEC 10646:2017 code point ? ; 
 
white-space = { space | new-line-character | comment } - ( ) ; 
 
space = " " | ? tabulator (ISO/IEC 10646:2017 code point 9) ? ; 
 
new-line-character = 
    ? carriage return, line feed or carriage return followed by 
line feed 
      (ISO/IEC 10646:2017 code point 13 or 10 or 13 followed by 
10) ? ; 
 
comment = single-line-comment | multi-line-comment ; 
 
single-line-comment = "//", { character - ( new-line-character ) 
} ; 
 
multi-line-comment = "/*", { character } - ( { character }, "*/", 
{ character } ), "*/" ; 

G-1.8 — G-1.17 (constants): 

boolean = "false" | "true" ; 
 
digit = (* ? any ISO/IEC 10646:2017 code point in range [48, 57]: 
? *) 
    "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ; 
 
non-zero-digit = digit - ( "0" ) ; 
 
integer = "0" | positive-integer ; 
 
positive-integer = non-zero-digit, { digit } ; 
 
real = ( integer-places, [ decimal-places ], [ exponent ] ) - ( 
integer ) ; 
 
integer-places = integer ; 
 
decimal-places = ".", digit, { digit } ; 
 
exponent = ( "e" | "E" ), [ "+" | "-" ], digit, { digit } ; 
 
constant = boolean | integer | real ; 

G-1.19 — G-1.26 (names): 

keyword = 
      "block" | "protected" | "public" | "end" 
    | "record" 
    | "function" | "method" | "signals" | "algorithm" 
    | "input" | "output" 
    | "Boolean" | "Integer" | "Real" 
    | "limit" 
    | "if" | "signal" | "in" | "then" | "elseif" | "else" 
    | "for" | "loop" 
    | "and" | "or" | "not" | 



    | "size" 
    | "self" 
    (* reserved for future extensions: *) 
    | "while" | "do" | "until" 
    | "break" | "return" 
    | "enumeration" 
    | "__", identifier ; 
 
alphabetic-character = 
    (* ? any ISO/IEC 10646:2017 code point in ranges [65, 90] or 
[97, 122]: ? *) 
      "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | 
"k" | "l" | "m" 
    | "n" | "o" | "p" | "q" | "r" | "s" | "t" | "u" | "v" | "w" | 
"x" | "y" | "z" 
    | "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" | 
"K" | "L" | "M" 
    | "N" | "O" | "P" | "Q" | "R" | "S" | "T" | "U" | "V" | "W" | 
"X" | "Y" | "Z" ; 
 
identifier = ( alphabetic-character, { alphabetic-character | "_" 
| digit } ) - ( keyword ) ; 
 
quoted-identifier = 
    "'", 
    ( 
      "previous", "(", scalarized-reference, ")" 
    | "derivative", "(", quoted-identifier-higher-order-
derivative, ")" 
    | scalarized-reference 
    ), 
    "'" ; 
 
quoted-identifier-higher-order-derivative = 
      scalarized-reference 
    | "derivative", "(", quoted-identifier-higher-order-
derivative, ")" ; 
 
scalarized-reference = 
    ( identifier | keyword ), 
    [ fixed-dimensions ], 
    { ".", ( identifier | keyword ), [ fixed-dimensions ] } ; 
 
fixed-dimensions = "[", positive-integer, { ",", positive-integer 
}, "]" ; 
 
name = identifier | quoted-identifier ; 

S-1.1 (longest match / Meta-rules, lexical-structure): Given the following EBNF grammar: 
Glexemes = { ? all meta-identifiers of G-1.1 — G-1.26 concatenated by | ? }. Let a߻dαβγδ be an 
arbitrary GALEC program P, with aα being an arbitrarily long sequence of characters matched 

throughout a left-most derivation of P according to Glexemes, ߠand ?β and γ being arbitrary long 
but not empty sequences of characters, and dδ being an arbitrary long sequence of characters. 
Let G1 and G2 be any two different rules of G-1.1 — G-1.26 that can be applied next throughout 

the left-most derivation of P according to Glexemes. Assume G1 would match ߠandβ and G2 would 
match ߻;βγ; in that case G1 is not applicable. 

For every left-most derivation of any GALEC program P it must hold that the sequence of G-
1.1 — G-1.26 applications is the same as the sequence of G-1.1 — G-1.26 applications for the 
left-most derivation of P by Glexemes. 



E-1: Let a, ߬  ?α, β, γ and dδ be as defined above, with ߠβ = i, ?γ = 4 and dδ starts with white-
space. The next rule applied within the set G-1.1 — G-1.26 must be G-1.21 (identifier). 

S-1.2 (universality of white space / Meta-rules, lexical-structure): Except for rules G-1.1 —
 G-1.26, { white-space } is implicitly preceding and following each syntactic-factor of a 
syntax-rule (cf. ISO/IEC 14977). 

E-1: The expanded rule of G-TODO, showing its implicit white-space, is: 

state-reference = 
    { white-space }, 
    "self", 
    { white-space }, 
    ".", 
    { white-space }, 
    name, 
    { white-space }, 
    [ { white-space }, computed-dimensions, { white-space } ], 
    { white-space }, 
    { 
        { white-space }, 
        ".", 
        { white-space }, 
        name, 
        { white-space }, 
        [ { white-space }, computed-dimensions, { white-space } 
], 
        { white-space } 
    }, 
    { white-space } ; 

E-2: According to E-1, the following is a valid state-reference: 

self. 
a . b [2 ] // vector 
    . 'c[2].d[3]' 
    . 
    m [ 
3 , /* matrix access */ 4 
] 

E-3: The following is an illegal quoted-identifier due to white-space within its quotes: 

'a . b [2 ] // vector 
    . 
    m [ 
3 , /* matrix access */ 4 
]' 



S-1.3 (primitive names / Name-analysis, terminology): Names, identifiers and quoted-
identifiers are primitive names. Let aα be lexically-equivalent to a primitive name N; aα is the 
name of N. Syntactic terms with a name are called named. Let aα be the name of a named 
syntactic term N; we say N has name aα and N is named aα. 

R-1: The set of named syntactic terms can be easily extended by semantic rules by just 
defining a name for a syntactic term. 

R-1.1 (scalarization and quoted identifiers / Traceability): Quoted-identifiers are provided 
to denote scalarized entities — typically multi-dimensional nested components of the original 
physics-model whose elements are flattened to individual scalar entities for further numeric 
optimisations throughout the generation of an algorithmic solution. By reusing the original 
multi-dimensional query for an element that is now an independent scalar as the scalar’s 
name, traceability can be achieved. 

The previous(aα) and derivative(aα) notations are intended to be used for support-
variables holding the value a variable aα had at the end of the last control-cycle or its 
derivative respectively. Many physics-modeling languages, like Modelica, provide such values 
implicitly by means of operators applicable to any variable. Since algorithmic solutions are 
discrete however, no continuous derivatives exist. And the meaning of previous, in terms of 
the last value before the current, depends on the applied discretization scheme. For backward 
discretization it indeed is the last control-cycle’s value; for forward discretization however, it 
is the current value. For mixed schemes the meaning is unclear. Due to these issues, no 
specific operators are provided. Instead, algorithmic solutions have to explicitly introduce 
variables to hold values or compute derivates. The previous(aα) and derivative(aα) 
notations can be used to give the explicit variables introduced for the variables aα that have 
been subject of such implicit operations convenient names, ultimately increasing traceability. 

E-1: The Modelica model 

model M 
    model MI 
        model MII 
            Real x; 
            Boolean y; 
        equation 
            ... 
        end MII; 
        MII b[3]; 
    equation 
        ... 
    end MI; 
    MI a[2]; 
equation 
    ... 
end M; 

could be scalarized to 

Real 'a[1].b[1].x'; 
Boolean 'a[1].b[1].y'; 
Real 'a[1].b[2].x'; 
Boolean 'a[1].b[2].y'; 



Real 'a[1].b[3].x'; 
Boolean 'a[1].b[3].y'; 
Real 'a[2].b[1].x'; 
Boolean 'a[2].b[1].y'; 
Real 'a[2].b[2].x'; 
Boolean 'a[2].b[2].y'; 
Real 'a[2].b[3].x'; 
Boolean 'a[2].b[3].y'; 

Further numeric analyses could conclude that a.b[2] is an alias or irrelevant for the 
simulation for which reason it can be eliminated, reducing the set of individual scalar state 
variables to only 

Real 'a[1].b[1].x'; 
Boolean 'a[1].b[1].y'; 
Real 'a[1].b[3].x'; 
Boolean 'a[1].b[3].y'; 
Real 'a[2].b[1].x'; 
Boolean 'a[2].b[1].y'; 
Real 'a[2].b[3].x'; 
Boolean 'a[2].b[3].y'; 

R-1.2 (reserved keywords): G-1.19 (keyword) reserves certain character sequences for 
future language extensions; the respective sequences are not used elsewhere in the grammar. 
The sequences while, do and until are reserved for a potential future introduction of non-
bounded or more complicated loops, return and break for potential early function and loop 
exit statements and enumeration for a potential extension with enumeration types. Such 
reservations do not imply by any means that the language indeed will be extended 
accordingly; they rather serve to preserve up-wards compatibility of code when respective 
language extensions are added. The "__", identifier alternative reserves names that 
might collide with internal compiler macros of further tooling; it is in the spirit of 6.11.9 of 
ISO/IEC 9899:TC3. 

E-1: Boolean until; is not a local-variable-declaration due to until being a reserved 
keyword. 

Blocks and Declarations: Control-state and -cycle (memory and inter-

functional flowchart) 

G-2.1 — G-2.3 (blocks, state compartments and functions): 

block = 
    "block", 
    name, 
    { state-entity-declaration } (* TODO: must be inputs, 
followed by outputs followed by parameters *), 
    "protected", 
    { state-compartment-declaration }, 
    { state-entity-declaration }, 
    { error-signal-declaration }, 
    { function-declaration }, 



    "public", 
    { function-declaration }, 
    "end", 
    name, 
    ";" ; 
 
error-signal-declaration = "signal", identifier, ";" ; 
 
state-compartment-declaration = 
    "record", 
    name, 
    { state-entity-declaration }, 
    "end", 
    name, 
    ";" ; 
 
function-declaration = 
    ( "function" | "method" ), 
    name, 
    [ signal-interface ], 
    { parameter-declaration }, 
    [ "protected", { local-variable-declaration } ], 
    "algorithm", 
    { statement }, 
    "end", 
    name, 
    ";" ; 
 
signal-interface = "signals", identifier, { ",", identifier }, 
";" ; 

G-2.4 — G-2.12 (state entity, parameter and local variable declarations): 

state-entity-declaration = 
    [ "constant" | "parameter" ], (* TODO: Definition of terms 
and semantic of constants and tuneable and dependent parameters 
*) 
    variable-declaration ; 
 
parameter-declaration = data-flow-direction, variable-declaration 
; 
 
local-variable-declaration = variable-declaration ; 
 
data-flow-direction = "input" | "output" ; 
 
variable-declaration = 
    ( primitive-type | state-compartment-reference ), 
    name, 
    [ constant-dimensions ], 
    ";" ; 
 
primitive-type = "Boolean" | "Integer" | "Real" ; 
 
state-compartment-reference = name ; 
 
constant-dimensions = 
    "[", 
    ( derived-dimension | constant-scalar-integer-expression ), 
    { ",", ( derived-dimension | constant-scalar-integer-
expression ) }, 



    "]" ; 
 
derived-dimension = ":" ; 

R-2.1 (unique start symbol): According to ISO/IEC 14977 and S-1.2, block is the only start 
symbol. 

S-2.1 (consistent naming / Name-analysis): The 2nd and 12th child of blocks must be 
lexically-equivalent. The 2nd and 5th child of a state-compartment-declaration must be 
lexically-equivalent. The 2nd and 9th child of a function-declaration must be lexically-
equivalent. 

E-1: The following block fragment is illegal due to inconsistent state compartment and 
function names: 

record GearBox // Illegal: GearBox and gearBox not lexically-
equivalent. 
    Real w; 
end gearBox;   // Illegal: GearBox and gearBox not lexically-
equivalent. 
 
method UpdateGearBox // Illegal: UpdateGearBox and 
'UpdateGearBox' not lexically-equivalent. 
    input Real x; 
algorithm 
    self.gearBox.w := (x / self.gearBox.w) * self.gearBox.w; 
end 'UpdateGearBox'; // Illegal: UpdateGearBox and 
'UpdateGearBox' not lexically-equivalent. 

S-2.2 (state compartments, components and variables and control-inputs and -outputs; 
input and output parameters; local variables / Type-analysis, terminology): A state-
entity-declaration without primitive-type is called state component, otherwise it is called state 
variable. State components and variables are called state entities. 

State-compartment-declarations are called state compartment; the state entities contained in a 
state compartment are called its local entities (thus, state compartments have local 
components and variables). 

State entities whose data-flow-direction is lexically-equivalent to input are called control-
input; state entities whose data-flow-direction is lexically-equivalent to output are called 
control-output. Control-inputs and -outputs must be state variables and not be part of state 
compartments (i.e., state components cannot be control-inputs or -outputs nor can such be 
local entities of any state compartment). 

A parameter-declaration whose data-flow-direction is lexically-equivalent to input is called 
an input parameter; otherwise it is called an output parameter. Input and output parameters 
are called parameters. 

Local-variable-declarations are called local variable. 



E-1: The following valid block fragment defines various non-functional entities: 

/* 
    State compartment that is the control-state (cf. S-2.8). 
    It has two local state entities, one variable and one 
component. 
*/ 
block Controller 
    record C 
        Real    r; 
        Integer i; 
    end C; 
 
    Integer i;        // State entity that is a state variable. 
    C c;              // State entity that is a state component. 
 
    function f 
        output Real out_1[size(in, 1)]; // Parameter that is an 
output parameter. 
        input  Real in[:];              // Parameter that is an 
input  parameter. 
        output Real out_2[size(in, 1)]; // Parameter that is an 
output parameter. 
    protected 
        Integer s; // Local variable. 
    algorithm 
        s := 0; 
        for i in 1:size(in, 1) loop 
            s := s + in[i]; 
        end for; 
        out_1 := in / s; 
        out_2 := s * in; 
    end f; 
end Controller; 

S-2.3 (stateless and stateful functions / Side-effect-analysis, terminology): Function-
declarations are just called functions. Functions whose first child is lexically-equivalent to 
method are called stateful function; otherwise, they are called stateless function. 

R-1 (state of stateful functions / Runtime-semantic): The motivation to separate stateful 
functions from stateless is, that the latter cannot change the control-state by any means; only 
stateful functions can write state variables as long as they are not control-inputs (cf. S-
TODO.TODO (non-writeable control-inputs, input parameters and loop iterators; side-
effect-freeness of stateless functions / Side-effect-analysis)). There are no restrictions on 
reading state variables however, including control-inputs and -outputs; stateless functions 
therefore still can depend on the control-state. These restrictions on when control-state 
changes are permitted improve readability of GALEC code and enable the generation of 
Production Code leveraging on parallel computing (cf. S-3.TODO:R-1 (isolated side-effects of 
stateful function calls and parallel computing / Runtime-semantic)). 



S-2.4 (names of state compartments and entities, functions, parameters and local 
variables / Name-analysis): State compartments, state entities, functions, parameters and 
local variables are named. 

The name of a state compartment is the name of its 2nd child. 

The name of a function is the name of its 2nd child. 

The name of a state entity, parameter and local variable is the name of its variable-declaration 
where the name of a variable-declaration is the name of its 2nd child. 

E-1: The following valid block fragment defines various names: 

block Controller2 
    Real 'derivative(shaft[2].x)';   // Scalar named 
'derivative(shaft[2].x)'. 
    GearBox 'shaft[2].gear'[3];      // State component vector 
named 'shaft[2].gear'. 
    Real w;                          // Scalar named w. 
 
    method 'shaft[2].gear.update'            // Stateful function 
named 'shaft[2].gear.update'. 
        input Real 'previous(shaft[2].y)';   // Scalar input 
parameter named 'previous(shaft[2].y)'. 
        input Integer index;                 // Scalar input 
parameter named index. 
    protected 
        Real exp_y;                          // Scalar local 
variable named exp_y. 
    algorithm 
        exp_y := exp('previous(shaft[2].y)'); 
        self.'shaft[2].gear'[index].w := 
        exp_y^2 - self.'derivative(shaft[2].x)' * exp_y; 
    end 'shaft[2].gear.update'; 
end Controller2; 

S-2.5 (unique declarations (Part I) / Name-analysis): Blocks must not contain two different 
functions or state compartments with equivalent names. Functions and state compartments 
must have different names. Parameters and local variables must not be named like functions 
or state compartments. Functions must not contain two different parameters or local 
variables with equivalent names. Parameters and local variables contained in the same 
function must have different names. Different local entities of a state compartment must have 
different names. 

S-TODO incorporates and adds further unique declaration restrictions for iterators. 

R-1 (MISRA C:2012 compliance): The restriction that parameters and local variables must 
not have function or state compartment names is introduced to avoid hiding of outer-scope 
declarations in accordance with MISRA C:2012, Rules 5.3, 5.8 and 5.9. 



R-2 (separate name-space for state entities): State entities can have the name of a state 
compartment, function, parameter, local variable or iterator because, according to S-TODO, 
they can only be accessed using a state-reference which always starts with the unique 
sequence self.. Thus, the intention to refer to a state entity always is clearly denoted; state 
entities are within their own separate name-space. State entities not local to the same state 
compartment can have equivalent names because they are always differently accessed. 

E-1: The following block is illegal due to hiding of outer-scope declarations and re-
declarations (for the definition of preceding and follows cf. M-1.3; for hiding of outer-scope 
declarations cf. the ISO/IEC 9899:TC3 and MISRA C:2012 standards): 

/* 
    The single-line comments in this example are just 
abbreviations for 
        // Illegal: Equally named <C>. 
    where <C> is the comment and refers to the relative locations 
of 
    equally named entities. 
*/ 
 
record efmu // state compartment follows 
end efmu; 
 
record efmu // state compartment preceding 
    C v; // state entity follows 
    Real v; // state entity preceding 
end efmu; 
 
record C // function and local variable follow 
end C; 
 
method DoStep // function follows 
protected 
    Real v; // local variable follows 
    Real v; // local variable preceding 
algorithm 
end DoStep; 
 
method DoStep // function preceding 
protected 
    Integer f; // function follows 
algorithm 
end DoStep; 
 
function C // state compartment preceding and local variable 
follows 
    output Real r; // local variable follows 
protected 
    Boolean r[4]; // parameter preceding 
algorithm 
end C; 
 
function f // local variable preceding 
protected 
    Integer C; // state compartment and function preceding 
algorithm 
end f; 



E-2: The following valid block has no re-declarations or hiding of outer-scope declarations: 

block Controller3 
    C C; // Type and name are lexically-equivalent. 
    /* 
        Name lexically-equivalent to self.C.r, parameter of 
        function f and local variable of function DoStep: 
    */ 
    Real r; 
 
    record C 
        /* 
            Name lexically-equivalent to self.r, parameter of 
            function f and local variable of function DoStep: 
        */ 
        Real r; 
        Boolean DoStep; // Name lexically-equivalent to function 
DoStep. 
    end C; 
 
    method DoStep 
    protected 
        /* 
            Name lexically-equivalent to self.r, self.C.r and 
            parameter of function f: 
        */ 
        Real r; 
    algorithm 
    end DoStep; 
 
    method Startup 
    algorithm 
    end Startup; 
 
    function f 
        /* 
            Name lexically-equivalent to self.r, self.C.r and 
            local variable of function DoStep: 
        */ 
        output Real r; 
    algorithm 
    end f; 
end Controller3; 

S-2.6 (state compartment lookup / Name-analysis): Let R be a state-compartment-
reference. There must exist a state compartment D named like the name of R; according to S-
2.5, D must be unique. We say R refers to D. 

S-2.7 (types of state entities, parameters and local variables / Type-analysis): The first 
child of a variable-declaration D defines its type. If, and only if, D contains a primitive-type T, 
the type of D is lexically-equivalent to T. In this case D has a variable type; otherwise, the type 
of D is the state compartment its state-compartment-reference refers to and D has a 
component type. 



The type of a state entity, parameter and local variable is the type of its variable-declaration. 

The type of parameters and local variables must not be a component type. 

E-1: The following valid block fragment defines entities of various types. Note, that type and 
dimensionality (cf. S-2.12) are orthogonal characteristics; declarations can combine every 
type with any dimensionality. 

block Controller 
    record GearBox 
        Real w;        // State variable of type Real. 
    end GearBox; 
 
    Boolean s;         // State variable of type Boolean. 
    Real w[3];         // State variable of type Real. 
    GearBox g[3];      // State component of type GearBox. 
 
    function 'g.w.T_sum' 
        input Integer T[3, 3]; // Input parameter of type 
Integer. 
        output Real y;         // Output parameter of type Real; 
    protected 
        Real 'g.w'[3];         // Local variable of type Real; 
    algorithm 
        for i in 1:3 loop 
            'g.w'[i] := emfu.g[i].w; 
        end for; 
        y := (if efmu.s then 1 else -1) * sum(real(T) * 'g.w'); 
    end 'g.w.T_sum'; 
end Controller; 

E-2: The following function is illegal due to parameters and local variables with component 
types: 

method UpdateGearBox 
    input Shaft s; // Illegal: Input parameter has a component 
type. 
    input Integer i; 
protected 
    GearBox g; // Illegal: Local variable has a component type. 
algorithm 
    g := s.gear[i]; // Illegal: Cf. S-TODO.TODO (type of 
references / Type-analysis):L-1. 
    g.w := (g.x / g.w) * g.w; 
end UpdateGearBox; 

S-2.8 (state compartment composition graph, control-state and control-state extent / 
Termination-analysis): We define the following directed graph G. For every state 
compartment C, G contains a node labeled with the name of C. For every state component with 
type T and local to C, we add a directed edge from C to T. G is called the state compartment 
composition graph. 



The state compartment composition graph must be cycle-free and it must contain a node N 
labeled efmu from which all other nodes are reachable (and which therefore is its only root, 
i.e., the only node without incoming edges). 

The state compartment named efmu is called the control-state. 

Control-inputs and outputs must be local state entities of the control-state. 

L-1 (unique, all-embracing, finite control-state extent / Runtime-semantic): According to 
S-2.5, state compartments are unique for which reason the state compartment composition 
graph cannot contain two nodes with equivalent label. It can contain multiple edges between 
two nodes however, since for each state component of type nt contained in state compartment 
ns the state compartment composition graph will contain a separate edge from ns to nt. Nodes 
can also have several incoming edges from different nodes, since state components of 
equivalent type can be part of different state compartments. Considering all these constraints, 
the state compartment composition graph must be a directed, cycle-free graph with unique 
root (and not necessarily a directed tree). 

TODO: transform state compartment composition graph to tree defining control-state extent. 
Argue why that one is unique, all-embracing and finite and why that is good-for/required-by 
embedded code. Define that in the context of runtime-semantic the term control-state always 
refers to the control-state extent. 

The control-state must be unique; and considering the restrictions of the state compartment 
composition graph, it must comprise all state entities defined, i.e., be all-embracing 
(reachability) and finite (cycle-free). 

E-1: The following state compartments are illegal because they have a cyclic composition, 
miss the efmu root and have other roots: 

record C1 // Illegal: Part of C1, C2, C3 cycle. 
    C2 c; 
end C1; 
 
record C2 // Illegal: Part of C1, C2, C3 cycle. 
    C3 c; 
end C2; 
 
record C3 // Illegal: Part of C1, C2, C3 cycle. 
    C1 c; 
end C3; 
 
record C // Illegal: Non-efmu root. 
    C2 c; 
end C; 
 
// Illegal: The control-state (efmu root) is missing. 

E-2: The following state compartments are illegal because the control-state is not a root: 

record C1 
end C1; 
 
record C2 



end C2; 
 
/* 
    Illegal: Control-state is not a root (C1 not reachable from 
             efmu in state compartment composition graph): 
*/ 
record efmu 
    C2 c; 
end efmu; 

E-3: The following state compartments are illegal because there are control-inputs and -
outputs that are not local state entities of the control-state or are state components (cf. S-2.2): 

record C 
    input Real i;  // Illegal: Control-input not local to the 
control-state. 
    output Real o; // Illegal: Control-output not local to the 
control-state. 
end C; 
 
record efmu 
    C c; 
    input Real i_1; 
    output Real o_1; 
    input C i_2;    // Illegal: Control-input is a state 
component. 
    output C o_2;   // Illegal: Control-output is a state 
component. 
end efmu; 

S-2.10 (locally and transitively called functions, static function call graph and recursion-
freeness / Termination-analysis): Let Cf be the set of names of the function-calls contained in 
a function f; Cf is called the local function call set of f and we say for each function fc whose 
name is in Cf that it is locally called by f and that f locally calls fc. 

We define the following directed graph G. For every function f (including builtin functions), G 
contains a node labeled with the name of f. For every function fc locally called by a function f, 
we add a directed edge from f to fc. G is called the static function call graph. 

Let n be a node of the static function call graph and nr be a node reachable from n; let f be the 
function named like the label of n and fr the function named like nr. We say fr is transitively 
called by f and f transitively calls fr. 

The static function call graph must be cycle-free. 

S-2.11 (initialization and control-cycle functions / Name-analysis): Every block must 
contain a function named Startup; respective functions are called initialization function. 
Initialization functions must be stateful and parameter-declaration-free. Initialization 
functions must not locally call user-defined functions (i.e., initialization functions can only call 
builtin functions). 



Every block must contain a function named DoStep; respective functions are called control-
cycle function. Control-cycle functions must be stateful and parameter-declaration-free. 

All user-defined functions, except the control-cycle and initialization functions, must be 
transitively called from the control-cycle function (thus, let Nuser-defined be the set of nodes of the 
static function call graph labeled with the name of a user-defined function, excluding the 
control-cycle and initialization functions, and let ncontrol-cycle be the node labeled with the name of 
the control-cycle function: ?∀nuser-defined?∀Nuser-defined: nuser-defined is reachable from ncontrol-cycle). 

R-1 (controller interface / Runtime-semantic): According to S-2.5, the initialization and 
control-cycle functions are unique. They and the control-state are the controller interface, i.e., 
the functionality visible for the runtime environment executing the eFMU. 

L-1 (initialization and control-cycle; control-state consistency / Runtime-semantic): At 
runtime, the Production Code generated for the initialization function must be executed at 
least once before the production code for the control-cycle function is executed for the very 
first time; its purpose is to initialize the control-state at startup and provide the outputs for 
the first clock tick. Thereafter, the Production Code generated for the control-cycle function 
must be executed at every sampling-step to update the blocks’s control-state and compute the 
block outputs. 

To ensure the consistency of the control-state and the computations based on it, the runtime 
environment must never call any function of the controller interface of an eFMU while any of 
its functions is still executing. Any runtime environment interaction with an eFMU must be via 
its controller interface; and any such interaction must satisfy above restrictions. This prohibits 
third parties, for example, to recalibrate an eFMU while its control-cycle function is executing 
or to execute user-defined functions that are not part of the controller interface. 

Note, that production code is not restricted in terms of parallel execution of different 
controllers (i.e., independent applications of the Production Code generated for a single or 
different GALEC programs) as long as the generated production code and its runtime 
environment ensure that each individual application (i.e., block) satisfies above restrictions. 

S-2.12 (scalars, multi-dimensions, vectors and matrices / Dimensionality-analysis, 
terminology): State entities, parameters and local variables without constant-dimensions are 
called scalar; otherwise multi-dimension. Let d = [ a1, …, anα1, …, αn ] be the constant-dimensions 
of a state entity, parameter or local variable v; in that case v is n-dimensional/multi-
dimensional, n is the number of its dimensions and each aiαi with 1 =≤ i =≤ n is its i'th 
dimension. Scalars are zero-dimensional. If, and only if, v is one-dimensional it is called vector; 
if, and only if, it is two-dimensional, matrix. The first dimension of a matrix are its rows, the 
second its columns. 

E-1: The following block fragment declares various scalars and multi-dimensions (denoted by 
using capitals only): 

block S 
    /* 
        A 0-DIMENSIONAL state component, i.e., 
        a state component SCALAR: 
    */ 
    C a; 



    /* 
        A 1-DIMENSIONAL state component, i.e., 
        a state component VECTOR: 
    */ 
    C b[2]; 
     /* 
        A 2-DIMENSIONAL state component, i.e., 
        a state component MATRIX 
        with 2 ROWS and 3 COLUMNS: 
    */ 
    C c[2,3]; 
    /* 
        A 3-DIMENSIONAL state component, i.e., 
        a MULTI-DIMENSIONAL state component, i.e., 
        a state component MULTI-DIMENSION, 
        that is neither, a VECTOR nor a MATRIX: 
    */ 
    C d[1,1,1]; 
    Real r[3,3]; // a state variable MULTI-DIMENSION 
 
    function f 
        input  Real i[:,:]; // an input parameter MATRIX 
        output Integer o;   // an output parameter SCALAR 
    protected 
        Integer j[size(i,1)]; // a MULTI-DIMENSIONAL local 
variable 
        Real    k[size(i,2)]; // a VECTOR, i.e., a MULTI-
DIMENSION 
    algorithm 
    end f; 
end S; 

S-2.13 (dimensional-sizes of state entities / Dimensionality-analysis): State entities must 
not contain dimension-queries or derived-dimensions. 

TODO: More relaxed alternative: Contained dimension-queries must refer to state entities; the 
resulting dependency graph must be cycle-free. More restrict alternative: The constant-scalar-
integer-expressions of their constant-dimensions must derive to positive-integers. 

TODO: Static computation of actual dimensions. 

S-2.14 (dimensional-sizes of parameters and local variables / Dimensionality-analysis): 
Output parameters and local variables must not contain derived-dimensions (i.e., only input 
parameters can contain derived-dimensions). 

TODO: Static computation of actual dimensions. 

S-2.15 (signature of functions; procedures / Type-analysis, terminology): The parameters 
a function contains define its signature, i.e., its input-arity, output-arity and order of inputs 
and outputs. 



Let Sinput be the set of all input parameters contained in a function f; let Soutput be the set of all 
output parameters contained in f. The inputs of f are the tuple Tinput = (p1,…,pn) with n = |Tinput| = 
|Sinput| and ?∀pi,pj?∀Tinput ; i,j?N∀∀+ ; i < j =≤ n: pi?∀Sinput ?∀ pj?∀Sinput ?∀ pi is preceding pj; likewise, 
the outputs of f are the tuple Toutput = (q1,…,qm) with m = |Toutput| = |Soutput| and ?∀qi,qj?∀Toutput ; 
i,j?N∀∀+ ; i < j =≤ m: qi?∀Soutput ?∀ qj?∀Soutput ?∀ qi is preceding qj. The input-arity of f is n; its 
output-arity is m. 

An input parameter is called the i'th input of a function f, if, and only if, it is the i'th element of 
the inputs of f; likewise, an output parameter is called the i'th output, if, and only if, it is the i'th 
element of the outputs. Trivially, an input parameter part of a function f is an input of f and an 
output parameter an output. 

Functions of output-arity 0 are called procedure. 

R-1: The signature of a function defines its whole interface, since the types and dimensions of 
input and output parameters are already defined by S-2.7 and S-2.14. Given for example a 
function of input-arity 3, one can talk about the type and dimensionality of its second input. 

Expressions: Scalar and Multi-dimensional Arithmetic 

G-3.1 — G-3.4 (statically- and dynamically-evaluated expressions): 

expression = 
      constant 
    | reference 
    | dimension-query 
    | function-call 
    | parenthesized-expression 
    | if-expression 
    | multi-dimension-constructor 
    | unary-operation 
    | binary-operation ; 
 
parenthesized-expression = "(", expression, ")" ; 
 
dimension-query = "size", "(", reference, ",", constant-scalar-
integer-expression, ")" ; 
 
constant-scalar-integer-expression = expression ; 

G-3.5 — G-3.11 (operations): 

unary-operation = 
    unary-operator, 
    ( 
          constant 
        | reference 
        | dimension-query 
        | function-call 
        | parenthesized-expression 
        | if-expression 
    ) ; 



 
unary-operator = "-" | "not" ; 
 
binary-operation = expression, binary-operator, expression ; 
 
binary-operator = arithmetic-operator | relational-operator | 
logical-operator ; 
 
arithmetic-operator = "+" | "-" | "*" | "/" | "^" ; 
 
relational-operator = "<" | ">" | "<=" | ">=" | "==" | "<>" ; 
 
logical-operator = "and" | "or" ; 

G-3.12 — G-3.15 (multi-dimension constructors, function calls and conditional 
expressions): 

multi-dimension-constructor = 
    "{", 
    multi-dimension-constructor-element, 
    { ",", multi-dimension-constructor-element }, 
    "}" ; 
 
multi-dimension-constructor-element = expression | multi-
dimension-constructor ; 
 
function-call = name, "(", [ expression, { ",", expression } ], 
")" ; 
 
if-expression = 
    "(", 
    "if", 
    expression, 
    "then", 
    expression, 
    { "elseif", expression, "then", expression }, 
    "else", 
    expression, 
    ")" ; 

S-3.1 (statically- and dynamically-evaluated expressions / Syntactical-structure, 
terminology): Expressions and all children of such, as well as constant-scalar-integer-
expressions, are called expression. Expressions part of, or that are, a constant-scalar-integer-
expression are called statically-evaluated; all other expressions are called dynamically-
evaluated. 

References contained in statically-evaluated expressions must either, be the third child of a 
dimension-query or refer to a loop-iterator-declaration. Function-calls contained in statically-
evaluated expressions must refer to builtin functions. 

R-1: Considering that builtin functions are stateless (cf. S-2.9:R-2) and loop-iterator-
declarations are unrelated to state variables (the value of a loop-iterator-declaration is a 
statically-defined, finite sequence of iteration-values within a fixed range, cf. S-TODO), 
statically-evaluated expressions cannot use or change the control-state. Their evaluation is 
control-state independent and therefore independent of control-inputs and -outputs (cf. S-



TODO); they can be evaluated throughout Production Code generation, hence, statically-
evaluated. 

Dynamically-evaluated expression on the other hand can directly or indirectly depend on the 
control-state and, by means of assignments, change it. 

S-3.2 (operations, operators and arguments of operations / Type-analysis, terminology): 
Binary-operations and unary-operations are also just called operation. The 2’nd child of a 
binary-operation and the 1’st child of an unary-operation are called its operator. The 1’st and 
3’rd child of a binary-operation O are called its first and second argument respectively; they 
are the arguments of O. The 2’nd child of an unary-operation is called its argument. 

Let ?∀ be lexically-equivalent to the operator O?∀ of an operation O; we call O an ?-∀-operation 
and O?∀ the ?-∀-operator. If, and only if, O is a binary-operation it and its operator are called 
binary; otherwise unary. 

E-1: The expression -v is a unary --operation, whereas v_1 - v_2 is a binary --operation; 
both can be either, statically- or dynamically-evaluated (cf. S-3.1) depending on their 
application context. For example, in A[v_1 - v_2] := -v * A[v_1 - v_2], the binary 
--operations are statically-evaluated whereas the unary --operation is dynamically-
evaluated. 

not-operations are always unary and and- and or-operations are always binary. Note, that 
they can be statically-evaluated, like in A[(if remainderEuclidean(i, 2) == 0 
and i <= size(A, 1) then i else size(A, 1))]. 

S-3.3 (operator precedence and associativity / Meta-rules, syntactical-structure): The 
following table defines a unique disambiguation for the syntactic ambiguities of binary-
operations by means of an operator precedence and associativity for sequences of operators 
with equivalent precedence: 

Operator classes (highest precedence to 
lowest) 

Associativity of contained 
operators 

^ right-to-left 

*, / left-to-right 

+, - left-to-right 

<, >, <=, >= left-to-right 



==, <> left-to-right 

and left-to-right 

or left-to-right 

Binary-operations must satisfy the defined operator precedence and associativity. 

A binary-operation O satisfies operator precedence, if, and only if, it does not contain binary-
operations whose operator has a lower operator precedence than the operator of O and which 
themselves are not contained within a precedence-overriding non-terminal part of O. The 
precedence-overriding non-terminals are: reference, dimension-query, function-call, 
parenthesized-expression, if-expression and multi-dimension-constructor. 

Operator associativity is satisfied if, and only if, binary-operations are derived left-most if their 
operator’s associativity is left-to-right and right-most otherwise. 

L-1 (strict evaluation order of expressions / Runtime-semantic): Operator precedence and 
associativity, together with syntactic rules G-3.5 to G-3.11 imply a well-defined order for the 
evaluation of operation sequences — an evaluation order. For example, production code 
generated for a sequence of additions a + b + c must evaluate it from left-to-right, i.e., first 
add a and b followed by adding the respective result and c. Thus, the evaluation order must 
not be changed by Production Code generators even for expressions that are associative in 
mathematics. Doing so acknowledges, that computational arithmetic is limited considering 
value overflows or floating point imprecision and that typically only GALEC code generators 
have the physics-model-specific numerical knowledge to select an appropriate evaluation 
order (for which reason Production Code generators should not change it). Enforcing an exact 
evaluation order also improves computational consistency between different Production Code 
generators. 

E-1: The following examples illustrate the disambiguation enforced by S-3.3. They leverage on 
the fact that, using parentheses, every syntax-wise ambiguous expression can be explicitly 
disambiguated such that S-3.3 is not required. 

Each example consists of three semantically equivalent expressions, each on a separate line. 
The first line shows a version of the expression requiring S-3.3 for disambiguation. The 
second line shows a version not requiring S-3.3 and that is minimal in the usage of 
parenthesis. The third line shows the expression with completely explicit evaluation order; it 
discloses the actual evaluation order by parenthesizing even expression parts whose 
evaluation order is already well-defined by syntactic rules only. 

Expression 1: 

 a + b  + c 
(a + b) + c 
(a + b) + c 

Expression 2: 

 a +     b * c  / d  / e  * f   + g 



(a + ((((b * c) / d) / e) * f)) + g 
(a + ((((b * c) / d) / e) * f)) + g 

Expression 3: 

  -a ^  -b ^2  *c 
( -a ^( -b ^2))*c 
((-a)^((-b)^2))*c 

Expression 4: 

3 -  a^  -b^2 
3 - (a^( -b^2)) 
3 - (a^((-b)^2)) 

Expression 5: 

3 -   -a ^  -b ^2 
3 - ( -a ^( -b ^2)) 
3 - ((-a)^((-b)^2)) 

Expression 6: 

     a < b  <>  c < d   ==  e < f   and   g == h  <> i   or    j 
+ k  <  l - m   and n   or o 
(((((a < b) <> (c < d)) == (e < f)) and ((g == h) <> i)) or (((j 
+ k) < (l - m)) and n)) or o 
(((((a < b) <> (c < d)) == (e < f)) and ((g == h) <> i)) or (((j 
+ k) < (l - m)) and n)) or o 

E-2: The parenthesis of a^(2*b) cannot be omitted because a^2*b is equivalent to 
(a^2)*b. For example, a^(2*b) yields 64 if a is 2 and b is 3 whereas (a^2)*b yields 12. 

The parenthesis of (a^b)^c cannot be omitted because a^b^c is equivalent to a^(b^c). 
For example, (a^b)^c yields 1 if a is -1, b is 3 and c is 2 whereas a^(b^c) yields -1. 

The parenthesis of (a or b) and c cannot be omitted because a or b and c is 
equivalent to a or (b and c). For example, (a or b) and c yields false if a and b are 
true and c is false whereas a or (b and c) yields true. 

The value assigned to a in a := -b^2; always will be positive whereas for a := 0 - 
b^2;, a := -1*b^2; and a := -(b^2); it always will be negative. 

The strict left-to-right associativity of a <> b <> c is important for the expression to have 
a well-defined — i.e., unique — type. For example, if a and b are of type Integer and c of type 
Boolean, (a <> b) <> c is type-correct whereas a <> (b <> c) is illegal. 

S-3.4 (type of operations / Type-analysis): Except for ^-operations, the arguments of an 
operation must be equally typed. The arguments of arithmetic-operators and relational-
operators, except == and <>-operators, must be of type Integer or Real. The arguments of /-
operations must be of type Real. The arguments of logical-operators must be of type Boolean. 



The argument of unary --operations must be of type Real or Integer; the argument of unary 
not-operations must be of type Boolean. 

Except for ^-operations and operations with an operator that is a relational-operator, the type 
of an operation is the type of its arguments. The type of ^-operations is Real; the type of 
operations with an operator that is a relational-operator is Boolean. 

R-1 (Real-type restriction of /-operation; absence of %-operator / Type-analysis): 
Division of Integer values via the /-operator is prohibited since there exists no common 
mathematical or formal language interpretation of such. Often, integer division is target-
specific. For example in C89, integer division with a negative operand has an implementation-
defined behavior, whereas in C99 it corresponds to divisionTowardsZero. Programming 
languages differ on their interpretation of integer division and remainder; particularly 
regarding the latter a plethora of mod-function and %-operator interpretations exist. The 
problem is related to the implicitly applied rounding of integer divisions; GALEC is explicit 
however and provides a systematic scheme of rounding-related builtin functions (cf. S-2.9), 
like roundUp, divisionUp and remainderUp or roundTowardsZero, 
divisionTowardsZero and remainderTowardsZero for the rounding strategies to 
round plus and minus half up or towards zero respectively. Instead of some implicit-rounding 
/ and %-operator on Integer values, the desired builtin function and explicit type casts via 
real and integer can be used. 

R-2 (equality-tests of Real-typed variables / Coding recommendation): The support of 
Real arguments for == and <>-operations is mostly intended for tests against magic literal 
numbers like 0.0 or 1.0, for example to enable if-statements protecting against division by 
zero. Since tests for exact equality of Real variables are otherwise error-prone, tools are 
advised to warn about such although they are not prohibited. Equality tests of Real-typed 
variables cannot be prohibited easily anyway, since such can be encoded in a plethora of 
different schemes using negation, other relational-operators and temporary variables, like: 

b1 := r1 > r2; 
b2 := r1 < r2; 
if not(b1 or b2) /* r1 == r2 */ then 

L-1 (target-specific ^-operation implementation / Runtime-semantic): The ^-operator 
provides all kind of type-combinations for its base and exponent arguments. It is not 
restricted to just Real arguments, because specialized — and therefore more efficient —
 implementations for different base and exponent type combinations exist, often provided as 
target-specific hardware operations. By enabling, for example, both, Real and Integer-typed 
exponents, Production Code tools can choose the most efficient implementation available on a 
target platform. The return type is always Real however, since overflows in case of only 
Integer arguments are likely if the result would be implicitly forced to fit into the Integer 
representation of a target platform. 

S-3.TODO (type and dimensionality of constant-scalar-integer-expressions / Type-
analysis, dimensionality-analysis): The type and dimensionality of constant-scalar-integer-
expressions are the type and dimensionality of their first child; they must be Integer and scalar 
respectively. 



S-3.TODO (well-defined stateful function calls / Side-effect-analysis): Expressions 
containing a function-call C referring to a stateful function must not contain function-calls or 
state-references that are siblings of C. If-expressions must not contain function-calls referring to 
a stateful function. 

R-1 (isolated side-effects of stateful function calls and parallel computing / Runtime-
semantic): The restrictions on expressions regarding the combination of stateful function-
calls with other function-calls and state variable references promote the isolation of side-
effects into separate statements, such that complex expressions can be understood without 
consideration of control-state changes triggered throughout their evaluation. Moreover, the 
evaluation order of function-call arguments is undefined, such that the runtime-semantic of 
multiple argument-expressions with side-effects would become undefined without S-3.TODO; 
likewise, the runtime-semantic of multi-dimension-constructors containing multiple stateful 
function-calls would become ambiguous. And although the evaluation order of binary-
operations is strict (cf. S-3.3), limiting side-effects in such highly improves clarity. 

S-3.TODO also enables the generation of Production Code that computes different parts of a 
single expression in parallel, without requiring mutual exclusion or memory copying. For 
example, multiple function-calls and the evaluation of function-call arguments can be 
parallelized without the risk of race conditions. 

The even more stringent restrictions on if-expressions are required to ensure their branches 
can be executed in parallel and afterwards the actual result selected (assuming evaluating the 
condition or other siblings of the if-expression requires significant time such that the early 
execution of branches in parallel is worthwhile). The main motivation is however, that side-
effects of expressions, if any at all, are defined regardless of actual control-flow. If an 
expression calls a stateful function, that very function will always be executed, regardless 
which branches of contained if-expressions are actually executed. Conditional evaluation of 
stateful function-calls must be isolated in if-statements instead. 

Note, that calling stateful functions cannot be completely prohibited within expressions; 
otherwise return values of such could not be used like in (a, b) := m();, v := -m();, 
self.A := 2 * m(f(B), f(C)); or self.A := m(m(self.A)); where m and f 
refer to a stateful and stateless function respectively. All of these statements are valid and 
their runtime-semantic is well-defined. 

E-1: The following expression examples illustrate the restrictions on stateful function-calls 
within expressions. Illegal applications are marked by a respective comment; for valid 
expressions the parts that can be evaluated in parallel are marked. All m_aα are stateful 
functions whereas f_aα are stateless functions for any a?Nα∀∀+. 

Expression 1: 

f_1( 
    f_2(m_1()), // Illegal: Sibling state variable reference. 
    f_3(self.v)) 

Expression 1: 

f_1( 
    f_2(m_1()), // Illegal: Sibling stateful function-call. 
    f_3(m_2())) // Illegal: Sibling stateful function-call. 

Expression 1: 



(2 * self.v) + m_1() // Illegal: Sibling state variable 
reference. 

Expression 1: 

m_1() // Illegal: Sibling stateful function-call. 
 + 
m_2() // Illegal: Sibling stateful function-call. 

Expression 2: 

(if 0 < m_1() // Illegal: Sibling state variable reference. 
    then f_1(self.v_1) 
    else 1.0) 

Expression 3: 

(if f_1(self.v_1) 
    then m_1() // Illegal: Within if branch. 
    else self.v_1) 

Expression 3: 

( 
if 
// Parallelizable: Part of separately-evaluable sub-expression-
set aα: 
    f_1(A) 
then 
// Parallelizable: Part of separately-evaluable sub-expression-
set aα: 
    f_2(A * B) * C 
else 
// Parallelizable: Part of separately-evaluable sub-expression-
set aα: 
    f_2(A - B) * C 
) 
 
    + // NOT parallelizable (cf. S-3.3:L-1). 
 
// Parallelizable: Part of separately-evaluable sub-expression-
set aα: 
f_3( 
    D / (E - F),  // Parallelizable: Part of separately-evaluable 

sub-expression-set ߬ β. 
    E * F,        // Parallelizable: Part of separately-evaluable 

sub-expression-set ߬ β. 
    ( 
        f_2(E) // Parallelizable: Part of separately-evaluable 
sub-expression-set ?.γ. 
         *        // Parallelizable: Part of separately-evaluable 

sub-expression-set ߬ β. 
        f_2(F) // Parallelizable: Part of separately-evaluable 
sub-expression-set ?.γ. 
    ) 
) 
 
    + // NOT parallelizable (cf. S-3.3:L-1). 
 
// Parallelizable: Part of separately-evaluable sub-expression-
set aα: 



( 
 
) 
 
    + // NOT parallelizable (cf. S-3.3:L-1). 
 
// Parallelizable: Part of separately-evaluable sub-expression-
set aα: 
( 
    A^3 
) 

To understand why expressions marked to be illegal are prohibited, consider that each of the 
following three can depend on control-state changes performed by previous stateful function-
calls: 

1. the value a reference, that refers to a state variable, will yield 

2. the values a function-call (stateful or stateless) will return 

3. the control-state changes a stateful function-call will perform 

For example, given 

function f_1 
    input Real x_1; 
    input Real x_2; 
    input Real x_3; 
    output Real y; 
algorithm 
    y := x_3 * (x_1 * self.a + x_2 * self.b); 
end f_1; 
 
method m_1 
    output Real y; 
algorithm 
    self.a := self.a + 1; 
    self.b := self.a; 
    y := self.a; 
end m_1; 
 
method m_2 
    output Real y; 
algorithm 
    self.b := 2 * self.b; 
    self.a := self.b; 
    y := self.b; 
end m_2; 

all three cases are demonstrated by the illegal expression f_1(self.a, f_1(m_1(), 
self.b, m_1()), m_2()). The argument values passed to each f_1 call depend on 
when the m_1 and m_2 calls are executed, i.e., the order of argument evaluation. There exist 3! 
* 3! = 36 results if self.a and self.b are of type Integer and the evaluation of inner f_1 
call arguments is not mixed with outer call argument evaluation; if both can be mixed, 5! = 120 
results exist (note, that mixing the evaluation of inner and outer arguments is not prohibited 
by S-3.TODO (eager evaluation and pass-by-value) although usually — except for result 
caching — inefficient). 



S-3.TODO (function lookup / Name-analysis): Let fc be a function-call. There must exist a 
function fd named like the first child of fc; according to S-2.5, fd must be unique. We say fc refers 
to fd. 

S-3.TODO (type of function calls used in expressions / Type-analysis): Function-calls part 
of expressions must refer to functions of output-arity 1; their type is the type of the first 
output of the function they refer to. 

R-1: According to S-3.1, the right-hand of multi-assignments (their function-call child) is not an 
expression; likewise, function-calls whose parent is a statement are not expressions. The 
rationale for either is, that expressions have a unique type and dimensionality characterising 
their potential values. The function-call child of a multi-assignment can refer to a function with 
several outputs however, each with an individual type and dimensionality; and for function-
calls not part of an assignment outputs don’t matter. 

E-1: Let p_1 and p_2 be procedures of input-arities 1 and 2 respectively and let f_1 and f_2 be 
functions of input-arity 0 and output-arities 1 and 2 respectively. The statements 
p_1(f_1());, p_2(f_1(), f_1());, f_1();, f_2();, ( v ) := f_1(); and ( 
v_1, v_2 ) := f_2(); are valid, whereas p_1(p_1(f_1())); and p_2(f_2()); 
are illegal. 

Statements: State changes (intra-functional flowchart) 

G-TODO.TODO — G-TODO.TODO (TODO) 

(* references *) 
reference = local-reference | state-reference ; 
 
local-reference = name, [ computed-dimensions ] ; 
 
state-reference = 
    "self", 
    ".", 
    name, 
    [ computed-dimensions ], 
    { ".", name, [ computed-dimensions ] } ; 
 
computed-dimensions = 
    "[", 
    constant-scalar-integer-expression, 
    { ",", constant-scalar-integer-expression }, 
    "]" ; 
 
(* statements *) 
statement = 
    ( 
          limit-statement 
        | function-call 
        | single-assignment 



        | multi-assignment 
        | if-statement 
        | for-loop 
    ), 
    ";" ; 
 
limit-statement = 
    "limit", 
    ( "self" | reference ), 
    { ",", ( "self" | reference ) } ; 
 
single-assignment = reference, ":=", expression ; 
 
multi-assignment = 
    "(", 
    [ reference, { ",", reference } ], 
    ")", 
    ":=", 
    function-call ; 
 
if-statement = 
    "if", 
    ( expression | error-signal-check ), 
    "then", 
    { statement }, 
    { "elseif", ( expression | error-signal-check ), "then", { 
statement } }, 
    [ "else", { statement } ], 
    "end", 
    "if" ; 
 
error-signal-check = 
    "signal", 
    [ identifier ], 
    [ 
        [ "not" ], 
        "in", 
        identifier, 
        { ",", identifier  } 
    ], 
    [ "or", expression ] ; 
 
for-loop = "for", bounded-iteration, "loop", { statement }, 
"end", "for" ; 
 
bounded-iteration = 
    [ loop-iterator-declaration, "in" ], 
    start-bound, 
    [ ":", iteration-step-size ], 
    ":", 
    termination-bound ; 
 
loop-iterator-declaration = name ; 
 
start-bound = constant-scalar-integer-expression ; 
 
iteration-step-size = constant-scalar-integer-expression ; 
 
termination-bound = constant-scalar-integer-expression ; 



S-TODO.TODO (type of references / Type-analysis): The type of a reference is the type of the 
entity it refers to. 

References referring to a state component must be the third child of a dimension-query or part 
of a limit-statement. 

L-1 (limited application of state components / Runtime-semantic): The semantic rule 
indirectly prohibits any runtime interaction with state components — like passing them as 
function or operation arguments or assignment of such — except to query their 
dimensionality by means of dimension-queries or limiting all their variables by means of limit-
statements. In opposite to variables, state components as such do not exist at runtime; they 
have no runtime values — they are valueless. Only variables have a value that can be used in 
expressions or changed via assignment. As a consequence, Production Code generators do not 
have to preserve state components and are free to choose whichever runtime representation 
they consider most suitable for their nested entities; they can, for example, map the nested 
constants of a state-component to read-only memory or constant fold them or pack nested 
state variables together with other non-nested variables. This is a significant difference to for 
example C89 struct variables, which have a value that must be stored within a locally coherent 
piece of memory, a requirement necessary to enable efficient struct value assignment or 
referencing via pointers (neither exists in GALEC). 

S-TODO.TODO (left- and right-hand of assignments / Side-effect-analysis, terminology): 
Single-assignments and multi-assignments are called assignment. The first child of an 
assignment is called its left-hand; the third child its right-hand. 

S-TODO.TODO (non-writeable control-inputs, input parameters and loop iterators; side-
effect-freeness of stateless functions / Side-effect-analysis): State-references contained in 
the left-hand of an assignment must not refer to control-inputs. Local-references contained in 
the left-hand of an assignment must not refer to input parameters or loop-iterator-
declarations. 

Stateless functions must not contain an assignment whose left-hand contains a state-reference; 
and they must not transitively call stateful functions. 

4.2.5. Error handling 

GALEC incorporates dedicated language means for systematic, reliable and guaranteed error 
handling. Three integrated concepts can be distinguished: (1) error signals with enforced 
signal handling seamlessly incorporated into normal program control-flow, (2) well-defined 
floating point operations with guaranteed quiet Not-a-Number propagation and (3) variable 
ranges for guaranteed block saturation. Together, these concepts enable delayed, but ensured 
error handling avoiding any need to immediately check each and every possible failing 
operation by means of a plethora of exceptions. 

The following sections present these three concepts. 

Error Signals 



Error-signal-declaration semantic 

An error-signal-declaration D of the from 

error-signal-declaration = "signal", identifier, ";" ; 

is called an error signal. The name of an error signal is the name of its contained identifier; its 
name must be unique within the block D is part of. 

Let Predefined be the following sequence of characters 

signal INVALID_ARGUMENT; 
signal OVERFLOW; 
signal NAN; 
signal SOLVE_LINEAR_EQUATIONS_FAILED; 
signal NO_SOLUTION_FOUND; 
signal UNSPECIFIED_ERROR; 

Predefined implicitly follows the characters matched by the 6th child of block; its error signals 
are called predefined. Any other error signals are called user-defined. 

Note: Above specification implies that pre- and user-defined error signals are error signals 
and can therefore be explicitly signaled and checked by user-code. 

Note: The intended usage of the pre-defined error signals is: 

• INVALID_ARGUMENT: Unspecified error in one or more input arguments. 

• OVERFLOW: Computed floating point result is -8-∞ or +8.+∞. 

• NAN: Computed floating point result is qNaN. 

• SOLVE_LINEAR_EQUATIONS_FAILED: Solving a linear equation system via the 
solveLinearEquations builtin function failed. 

• NO_SOLUTION_FOUND: Not used for solveLinearEquations, but for example if an 
optimizer, special nonlinear solver etc. does not find a solution. 

• UNSPECIFIED_ERROR: Error that is not further specified. 

Error-signal-statement semantic 

A error-signal statement S of the form 

error-signal-statement = 
    "signal", 
    identifier,           (* Set of signals set, at least one 
AND/OR signal-closure propagation *) 
    { ",", identifier } ; (* Set of signals set, at least one 
AND/OR signal-closure propagation *) 

has the following semantic: 

1. Each identifier s of S referring to a signal-closure variable s in scope sets all the signals of 
s whenever S is executed. 



2. Any other identifier s of S must refer to an error signal e. Whenever S is executed, e is set. 

3. The union of all error signals set by S is called the signal-set of S. 

Functional error interface and exposed error signals 

A function-declaration F of the form 

function-declaration = 
    ( "function" | "method" ), 
    name, 
    [ signal-interface ], (* 3rd child defining the signal-set -- 
i.e, exposed error signals -- of the function *) 
    { parameter-declaration }, 
    [ "protected", { local-variable-declaration } ], 
    "algorithm", 
    { statement }, 
    "end", 
    name, 
    ";" ; 

has the following semantic w.r.t. error handling: 

1. Let all identifiers contained in the 3rd child of F form the signal-set S of F. Each element s 
of S must refer to an error signal e; each such e is called an exposed error signal of F and 
F is said to expose e. 

2. Block-interface functions must not expose user-defined error signals. 

3. The signal-set of F must be identical to the out-reachable-signals-set an imaginary final 
statement following the last statement of F would have. 

Error-signal-check semantic 

An error-signal-check of the form 

error-signal-check = 
    "signal", 
    [ identifier ],            (* Optional signal-closure *) 
    [ 
        [ "not" ],             (* Optional signal-test-negation 
*) 
        "in", 
        identifier,            (* Set of signals tested, at least 
one *) 
        { ",", identifier  },  (* Set of signals tested, at least 
one *) 
    ], 
    [ "or", expression ] ;     (* Optional fallback-condition *) 

has the following semantic: 

1. A signal-closure is a scoped variable that captures the current error-state (i.e., all the 
currently set error signals). Its scope is the body of the respective if/elseif 
conditional — the error-signal-check-body — similar to loop-iterators (cf. loop-iterator-
declaration, issue #49). It must never be assigned to. 

2. We define the signal-test-set of an error-signal-check as follows: 



o At least one signal tested is given: If, and only if, no signal-test-negation is given, 
the signal-test-set comprises all signals tested; otherwise, it comprises the signals of 
the in-reachable-signals-set of the error-signal-check minus the set of all signals 
tested. 

o No signal tested is given: The signal-test-set is the in-reachable-signals-set; the 
error-signal-check is called unrestricted. 

In any case, the signal-test-set must be non-empty and a 

subset of the in-reachable-signals-set of the _error-

signal-check_. 

3. An error-signal-check is signal-satisfied, if, and only if, any of the signals of its signal-test-
set is set when it is executed. 

4. An error-signal-check is conditional-satisfied, if, and only if, it is not signal-satisfied and 
has an optional fallback-condition that is satisfied when the error-signal-check is 
executed. 

5. An error-signal-check is satisfied if it is signal-satisfied or conditional-satisfied. 

6. The error-signal-check-body B of an error-signal-check is the executed branch of its if-
statement, if, and only if, it is satisfied. In this case, all signals of the signal-test-set are 
unset immediately before the execution of B but after initializing the signal-closure if 
any. 

Error signal propagation semantic: static signal propagation analysis and 

reachable-signals-set 

The idea is simple: To statically decide which error-signals could be set at any point of 
execution, we define a data-flow analysis, whereas the propagated data is a set of error 
signals — the reachable-signals-set; this set in turn can then be used to enforce that error-
checks only check for error-signals that can be set according to their preceding control-flow 
and functions only expose signals that can be signaled but are not checked thereafter for any 
of their possible control-flows. 

We define signal-sets for expressions and statements (a signal-set defines which additional 
signals can be set by the respective language construct): 

1. The signal-set of a function-call is the referred function’s signal-set. The signal-set of any 
other expression is the union of the signal-sets of its contained function-calls. 

2. The signal-set of single-assignments and multi-assignments is the signal-set of their right-
hand sides. 

3. The signal-set of a for-loop is the out-reachable-signals-set of its last statement. 

4. The signal-set of an if-statement is the union of the out-reachable-signals-sets of the last 
statements of its bodies. 

We define reachable-signals-sets for statements and the branches of if-statements, particularly 
error-signal-check branches. Thereby we distinguish between the signals that can be set 
before executing the respective construct (in-reachable-signals-set) and the ones that can be 
set after its execution finished (out-reachable-signals-set): 

1. The in-reachable-signals-set of the first statement S of a function-body is the empty set. 



2. The in-reachable-signals-set of the first branch of an if-statement S is the in-reachable-
signals-set of S; for any further branch of S it is the out-reachable-signals-set of its 
preceding branch. 

3. The in-reachable-signals-set of the body of a branch B of an if-statement is the out-
reachable-signals-set of B. 

4. The in-reachable-signals-set of any other statement S of a function-body is the union of 
the out-reachable-signals-sets of all its preceding statements (according to control-flow). 

5. The out-reachable-signals-set of an error-signal-check branch is its in-reachable-signals-
set minus its signal-test-set, finally unified with the signal-set of its fallback-condition if 
any. The out-reachable-signals-set for a non error-signal-check branch is its in-reachable-
signals-set. 

6. The out-reachable-signals-set of an if-statement is the out-reachable-signals-set of its last 
branch unified with its signal-set. 

7. The out-reachable-signals-set of any other statement is its in-reachable-signals-set 
unified with its signal-set. 

Production Code and exposing errors to the runtime environment 

Since block-interface methods can only expose the 6 pre-defined error signals (cf. Section 
"Semantic: A"), a definition of signal-communication with the runtime environment is only 
required for such. To that end a unique mapping of each pre-defined error signal to a unique 
bit position within a 32 bit integer value is defined. These mappings are bidirectional, such 
that all exposed error signals can be returned to the runtime environment encoded in a single 
32 bit integer value. The bit positions of the pre-defined error signals are: 

• Bit 0: INVALID_ARGUMENT 

• Bit 1: OVERFLOW 

• Bit 2: NAN 

• Bit 3: SOLVE_LINEAR_EQUATIONS_FAILED 

• Bit 4: NO_SOLUTION_FOUND 

• Bit 5: UNSPECIFIED_ERROR 

Bit positions 6 to 15 of the returned error value are reserved for the future if there is need to 
add further pre-defined error signals in later specification versions; for now these bits must 
be never set by error values returned to the runtime environment. 

To enable easy Production Code generator implementation by encoding all error signals — i.e., 
pre- and user-defined — in single, uniquely laid out (i.e., uniform bit position accessible) 32 bit 
integer values, GALEC programs must contain at most 16 user-defined error signals (i.e., 32 - 6 
pre-defined - 10 reserved). 

Examples 

Example 1: The following Example sketches a typical mixed-mode coding style, where some 
error cases are avoided in the first place by special operation modes of the controller and 
others are treated after something failed by testing for respective error signals: 



/* 
    Safe common control-code, potentially selecting or 
deselecting special 
    modes of operation: 
*/ 
... 
v := f(A); // f may signal the error f_ERROR. 
... 
if signal in f_ERROR or not(check(v)) then 
    /* 
        Error-handling path if f(A) signaled an f_ERROR or 
        returned a v not satisfying some check: 
    */ 
    ... 
elseif self.operation_mode == 1 then 
    /* 
        Safe control-code for some special operation mode: 
    */ 
    ... 
elseif self.operation_mode == 2 then 
    /* 
        Safe control-code for some special operation mode: 
    */ 
    ... 
else 
    /* 
        Control-code for normal mode of operations: 
    */ 
    ... 
    x := solveLinearEquations(A, b * v); 
    ... 
    if signal in SOLVE_LINEAR_EQUATIONS_FAILED then 
        /* 
            Handle the special case that the system of linear 
equations 
            has no solution: 
        */ 
        ... 
    elseif signal then 
        /* 
            Handle any other unexpected error of the NORMAL 
operation mode: 
        */ 
        ... 
    end if; 
end if; 
 
if signal s then 
    /* 
        The common control-code or the special modes of operation 
that are 
        supposed to be safe missed some error case or introduced 
        errors themselves. We now can set the control-outputs and 
state 
        variables to some reasonable default values and propagate 
the 
        unexpected error signals to the runtime environment: 
    */ 
    ... 
    signal s; 
end if; 

Example 2: The following example summarises all possible combinations of error signaling 
and checking: 



method DoStep 
/* 
    (1) Signal interface of functions (signals exposed to 
callees): 
*/ 
signals invalid_gear_switch, to_high_velocity; 
algorithm 
    ... 
    /* 
        (2) Universal signal checks, catching and un-setting all 
signals set: 
    */ 
    if signal then 
        ... 
    end if; 
    ... 
    /* 
        (3) Specialized signal checks, catching and un-setting 
            all signals within a specific set: 
    */ 
    if signal in error1, error2 then 
        ... 
    end if; 
    ... 
    /* 
        (4) Restricted universal signal checks, catching any 
signal that is 
            not within a certain set: 
    */ 
    if signal not in invalid_gear_switch, to_high_velocity then 
       ... 
    end if; 
    ... 
    /* 
        (3) Checks with signal variables enclosing the checked 
signals 
            that have been set at the check point: 
    */ 
    if signal s then 
        ... 
        /* 
            (4) Propagation of signal variable, i.e., set all the 
signals that the 
                check s is part of unset: 
        */ 
        signal s; 
        ... 
    else 
        ... 
    end if; 
    ... 
    if ... then 
        ... 
        /* 
            Explicit setting of signals, i.e., signaling of 
errors: 
        */ 
        signal invalid_gear_switch, to_high_velocity; 
        ... 
    end if; 
    ... 
    /* 
        (*) And all kind of combinations of the above 
            (signals to check with signal variables, signal 



            propagation and explicit signaling): 
    */ 
    if signal s in f1_error, f2_error or condition1 then 
        ... 
        signal s, invalid_gear_switch; 
        ... 
    elseif signal s not in invalid_gear_switch, to_high_velocity 
or condition2 then 
        ... 
        signal s; 
        ... 
    end if; 
    ... 
    /* 
        Catch all signals not exposed according to the function's 
interface: 
    */ 
    if signal not in invalid_gear_switch, to_high_velocity then 
    end if; 
end DoStep; 

Example 3: The following example shows typical violations of error signal propagation, 
demonstrating the advantages of a strict static signal-propagation analysis for code 
hardening: 

function f 
    signals Error1; // Violates B.2: Error1 never exposed and 
Error2 is missing. 
    input Real i; 
    output Real o; 
protected 
algorithm 
    if i > 100.0 then 
        signal Error1; 
    elseif i > 200.0 then 
        signal Error2; 
    end if; 
    o := 2.0 * i; 
    if signal in Error1 or o > 350.0 then 
        o := 350.0; 
    end if; 
end f; 
 
method DoStep // Violates B.2: Error2 is exposed but 'signal in 
Error2;' is missing. 
protected 
algorithm 
    ... 
    f(1.0); 
    ... 
    if signal s then 
        ... 
        s := Error1; /* Violates C.1: Signal-closures must not be 
assigned to. */ 
    elseif signal in Error1 then 
        /* 
            Above error-signal-check violates C.2: Signal-test-
sets must be non-empty. 
            Note, that the preceding branch already handles all 
error signals since it 
            is an unrestricted error-signal-check. 
        */ 
    end if; 



 
    signal Error1; 
 
    if signal in Error1, Error2 then 
        /* 
            Above error-signal-check violates C.2: The signal 
test-set is not a subset of the 
            in-reachable-signals-set since Error2 can never be 
set at this point. 
        */ 
        ... 
        signal Error2; 
    elseif signal in Error2 then 
        /* 
            Above error-signal-check violates C.2: The signal 
test-set is not a subset of the 
            in-reachable-signals-set since Error2 can never be 
set at this point. Note, that the 
            signal-set of the error-signal-check-body of the 
preceding branch cannot be handled 
            by this branch; it requires handling in a completely 
separate if-statement. 
        */ 
    end if; 
 
    signal Error1; 
    if signal in Error1 then 
    end if; 
    if signal in Error1 then 
        /* 
            Above error-signal-check violates C.2: Signal-test-
sets must be non-empty. 
            The preceding if-statement already implicitly unsets 
Error1 when its 
            single error-signal-check is satisfied. 
        */ 
    end if; 
end DoStep; 
 
method Startup 
protected 
algorithm 
    // signal in Error1; /* The following if-statement is 
erroneous, even if this line is uncommented. */ 
    if signal not in Error1 then 
        /* Above error-signal-check violates C.2: Signal-test-
sets must be non-empty. 
    end if; 
end Startup; 

Example 4: The following function fragment investigates interesting corner-cases of error-
signal propagation. It is well-suited to exercise the formal definitions of signal-set, in-
reachable-signals-set and out-reachable-signals-set of if-statements. The left-out code hooks 
denoted by … are assumed to be arbitrary code not setting or checking error signals. 

function f 
    signals f_Error; 
    output Boolean b; 
protected 
algorithm 
    b := true; 
    signal f_Error; 
end f; 



 
method DoStep 
    ... 
algorithm 
    ... 
    if signal then // Unset all error signals. 
    end if; 
    signal in TestDefinitions1, TestDefinitions2; 
    if signal in TestDefinitions1 then 
        ... 
        signal TestDefinitions3; 
        ... 
    elseif signal in TestDefinitions2 then 
        ... 
        if signal TestDefinitions3 then 
            ... 
        end if; 
        ... 
    elseif signal in TestDefinitions3 then 
        ... 
    end if; 
    /* 
        At this point still TestDefinitions2 and TestDefinitions3 
WILL be 
        set because only the first branch was tested, its test 
signal-satisfied, 
        the tested signal TestDefinitions1 unset and its body 
executed. 
    */ 
    ... 
    if signal then // Unset all error signals. 
    end if; 
    signal TestDefinitions1, TestDefinitions2; 
    if signal in TestDefinitions1 then 
        ... 
        if signal in TestDefinitions2 then 
            ... 
        end if; 
        ... 
    end if; 
    // At this point no error signals WILL be set. 
    ... 
    /* 
        Assume for the following code an execution where 
NotSetSignal 
        is not set: 
    */ 
    if signal not in NotSetSignal then // Unset all error signals 
except NotSetSignal. 
    end if; 
    i := 2; 
    if signal in NotSetSignal or f() /* Cf. definition of f 
above! */ then 
        i := 2 * i; 
    elseif signal in f_Error then 
        i := 2 * i; 
        signal f_Error; 
    /* 
    The following branch would be invalid, because f_Error can 
never be set when it is tested: 
    elseif signal in f_Error then 
        i := 2 * i; 
    */ 
    end if; 



    // At this point i WILL be 8 and f_Error set. 
end DoStep; 

-8, +8-∞, +∞ and quiet Not-a-Number propagation 

GALEC assumes that the target system of the generated production code is compliant to IEEE 
Standard 754-2008. Even if GALEC code is as much as possible target independent, there are 
corner cases in which the properties of the target system need to be taken into account in 
GALEC. If a target system is not fully compliant to IEEE 754-2008, it should still be possible to 
map GALEC code to such a target, since only a small subset of IEEE 754 is used and/or 
potential deviations in corner cases might still be acceptable [(for example, if a processor does 
not support -8-∞ or +8+∞ handling, but saturates automatically to the largest/smallest 
representable floating point number)]. Note, in the following, IEEE 754 shall always mean IEEE 
754-2008. Deviations to this standard are explicitly marked. 

The language assumes, following IEEE 754 section 6, that exception handling of the processor 
is configured so that an overflow of Real numbers is handled automatically by the processor 
for all language operators without generating exceptions by mapping negative and positive 
overflows to -8-∞ and +8+∞ respectively (e.g. 2.0 < 1.0 / 0.0 is true). With built-in 
function isInfinite(r) it can be inquired whether a Real variable r is -8-∞ or +8+∞ (e.g. 
isInfinite(1.0 / 0.0) returns true). 

The language also assumes that IEEE 754 exception handling of the processor is always 
configured to never generate an exception in case of underflow of Real numbers (so deviating 
from the default exception handling of IEEE 754, section 7.5). 

If the result of a mathematical operation on Real numbers is mathematically undefined (for 
example log(-1.0) or 0.0 / 0.0), then the standard operators of the language return 
quiet Not-a-Number (qNaN) as defined by IEEE 754, section 7.5. It is assumed that the 
processor is configured so that qNaN values are automatically propagated through all 
operations without generating exceptions (hence quiet Not-a-Number). With built-in function 
isNaN(r) it can be inquired whether a Real variable r has qNaN as value or not. 

All relational operators (<, >, <=, >=, ==, <>) trigger error signal NAN if one of their 
operands is qNaN. In such a case the operator returns false. Conceptually, every relational 
operator a ?⊕ b is mapped to a built-in function call f_?(_⊕(a, b) with f_?_⊕ defined 
as: 

function f_?_⊕ 
   signals NAN; 
   input Real a; 
   input Real b; 
   output Boolean y; 
algorithm 
   if isNaN(a) or isNaN(b) then 
      signal NAN; 
      y := false; 
   else 
      y := a ?⊕ b; 
   end if; 
end f_?;_⊕; 

[In C this function can be implemented efficiently for example as the expression (isNaN(a) || 
isNaN(b) ? (error_signal |= Bitmask setting NAN, 0) : a ?⊕ b).] 

All built-in functions (see section Section 4.2.6) that can have qNaN input arguments and are 
not able to propagate qNaN because the output argument(s) are not of type Real trigger the 
NAN error signal. 



[Note, potential issues as sketched in Agner 2019 are not critical because relational operators 
and builtin functions trigger the NAN error signal if a qNaN value cannot be propagated.] 

For some built-in functions that can return qNaN, also companion built-in functions are 
provided, that do not return qNaN, provided none of the input arguments is qNaN. These 
functions start with the prefix safe_ and achieve this behavior (conceptually) by automatic 
limitation of their input argument(s). 

Variable Ranges, explicit and implicit limitation and block saturation 

All variables can be declared with range attributes min and/or max; variables with range 
attributes are called ranged. 

Ranged variables are limited to their defined range at a particular point of execution by means 
of limit-statements. If a variable v is ranged with lower bound ?∀ and upper bound ?,∀, then 
the statement limit v; is equivalent to v := (if v < ?⊥ then ?⊥ elseif v > 
?⊤ then ?⊤ else v);. If v has only a lower bound ?,∀, limit v is equivalent to v := 
(if v < ?⊥ then ?⊥ else v);. If v has only an upper bound ?,∀, limit v; is 
equivalent to v := (if v > ?⊤ then ?⊤ else v);. Limiting a non-ranged entity has 
no effect. 

[Above definition implies that limitation on qNaN values has no effect (the variable’s value 
remains qNaN).] 

limit can also be used to limit all state variables according to their ranges (using keyword 
self), or all nested state variables of a certain state component (by referring to that very 
state component): 

limit self; // Limits all ranged state variables. 
limit c; // Assume c refers to a state component: limits all 
nested state variables of c. 

A single limit statement can limit a set of entities. For example, 

limit self.c.d.vc, self.v, self.c, l; 

limits the variable self.c.d.vc (assuming self.c.d refers to a state component and d is 
one of its variables), the state variable self.v (assuming self.v refers to a state variable), 
all nested variables of the state component self.c (assuming self.c refers to a state 
component) and the local variable l. 

Every block-interface method implicitly limits all state entities whenever the method is 
entered and when it returns, except Startup(), which only limits on returning. The implicit 
semantic is: 

method Startup 
protected 
    ... 
algorithm 
    ... 
    // initialize stuff 
    ... 
    limit self; // Implicit by semantic of language. 
end Startup; 
 
method DoStep 
protected 
   ... 
algorithm 

https://www.agner.org/optimize/nan_propagation.pdf


   limit self; // Implicit by semantic of language. 
   ... 
   // compute stuff 
   ... 
   limit self; // Implicit by semantic of language. 
end DoStep; 
 
method Recalibrate 
protected 
   ... 
algorithm 
   limit self; // Implicit by semantic of language. 
   ... 
   // compute stuff 
   ... 
   limit self; // Implicit by semantic of language. 
end Recalibrate; 

Every function implicitly limits its inputs whenever the function is entered and its outputs 
when it returns. 

[Implicit limitation at the very beginning and end of block-interface methods means, that from 
the perspective of the runtime environment ranged state variables are effectively saturated at 
their defined ranges; the block as such is saturated and guarantees operation within its limits 
(except for state variables with qNaN values that need special error handling). 

Production Code generators are free to optimize and minimize limitation of variables. For 
example, limitation of constants, tunable parameters and dependent parameters will never be 
required in DoStep(), since such cannot be assigned new values and their limitation is already 
performed in Startup() and Recalibrate() respectively. Limitation of inputs is only 
needed at the very beginning of DoStep() code, because inputs are not changed afterwards. 
Limitation of outputs is only needed at the end of the DoStep() code. Limitation of states needs 
to be performed only at the end of Startup() and the end of DoStep(), because the states 
are just passed between DoStep() calls and then it is guaranteed that a state that is limited at 
the end of the previous DoStep() call remains limited at the very beginning of the next 
DoStep() call. Furthermore, interval arithmetic analyses can be used to conclude that a 
variable will never be outside of its valid range, such that limitation code for it can be avoided. 

The rationale why limitation is not implicitly performed on every assignment to a ranged 
variable (i.e., why GALEC has no strict saturation arithmetic) is, that numerical algorithms and 
particularly integration typically fail if values are not continuous over time. For example, an 
integration algorithm such as a Runge-Kutta method of order 4 may not work as expected, if 
states are limited during one step because the smoothness requirements of the integration 
method are violated. Furthermore, limitations in the middle of computations often inadvertently 
break algebraic characteristics like distributivity and commutativity that are essential for 
symbolic processing and optimization. These pitfalls of limitation are however not violated by 
the implicit limitations at the very start and end of block-interface methods; the block as such —
 its interface — is saturated from the perspective of the runtime environment. Throughout the 
execution of a block-interface method however, variables may very-well get values assigned 
outside of their defined ranges. ] 

Error Handling Recommendations 

In practice it is typically required that all control-outputs are guaranteed to never be qNaN 
and always be within their defined ranges. To that end, the following actions are 
recommended: 

• Provide min/max values for state variables, particularly control-inputs, -outputs and 
tunable parameters. Implicit limitation will guarantee, that the state variables are in their 
defined ranges when a block-interface method returns, or the variable values are qNaN. 



• Before leaving DoStep(), check that none of the control-outputs is qNaN and that the 
error signal is not NAN. If one of these conditions does not hold, take appropriate actions, 
for example restore the state from the previous sample instant, compute the control-
outputs with a backup algorithm (e.g. P-controller) that does not produce qNaN values, or 
provide a default control-output, e.g. zero. In any case, the returned outputs should never 
be qNaN. 

• Use the safe_?_⊕ builtin functions (see below) if this is possible, in order that qNaN 
values are not generated. 

• Often problematic is the /-operator. A general approach to handle division in a 
meaningful way for all possible circumstances seems impossible. However, in many cases 
the time-varying denominator is guaranteed to not change sign; examples are: dividing by 
density, mass fraction, gear efficiency or slip. In such cases, the built-in operator 
safe_posdiv(num, den, eps) should be used that provides a meaningful 
approximation of num / den without generating qNaN values, if it is guaranteed that 
den >= 0. 

4.2.6. Built-in Functions 

In this section the built-in functions are defined. If the built-in function is also defined in IEEE 
754, the semantic of the built-in function is according to this standard. 

Any function that has Real input and Real output arguments can usually return qNaN, 
because an input argument might be qNaN that is typically propagated to one or more 
outputs. Whenever a function can return qNaN (either because it is generated inside the 
function or a qNaN input can be propagated to an output), this is explicitly mentioned and also 
in which situation this occurs. For many built-in functions ?⊕ that can generate qNaN, there is 
also a function safe_?_⊕ that approximates ?⊕ so that no qNaN is generated, in case this 
approximation is useful (but of course such a function can still return qNaN if the input is 
qNaN). 

A built-in function only returns an error signal if explicitly mentioned in its definition below; 
most builtin functions do not signal any errors and instead rely on qNaN propagation. 

Overview 

In the following table, an overview of the built-in functions is given (the follow-up sub-section 
contains the precise definition of the built-in functions): 

Function-Name Description 

Properties of Integer 

minInteger() Target-specific smallest Integer. 

maxInteger() Target-specific largest Integer. 

Properties of Real 



Function-Name Description 

minReal() 
Target-specific smallest Real r <> 
minusInfinite(). 

maxReal() Target-specific largest Real r <> plusInfinite(). 

r := posMinReal() Target-specific smallest Real r > 0.0. 

r := epsReal() 
Target-specific largest Real r > 0.0 such that 1.0 + 
r == 1.0. 

nan() 
Target-specific quiet not-a-number representation 
(qNaN). 

isNaN(x) 
true if x is the target-specific qNaN representation; 
otherwise false. 

minusInfinite() Target-specific -8-∞ representation. 

plusInfinite() Target-specific +8+∞ representation. 

isInfinite(x) true if x is -8-∞ or +8;+∞; otherwise false. 

isFinite(x) 
true if x is finite (neither -8-∞ nor +8+∞ nor qNaN); 
otherwise false. 

Multi-dimensional properties of Real 

hasNaN1D(x) 
true if at least one element of vector x is qNaN; 
otherwise false. 

hasNaN2D(x) 
true if at least one element of matrix x is qNaN; 
otherwise false. 

Numeric type conversions 



Function-Name Description 

real(i) Convert Integer i to Real. 

integer(r) 

Convert Real r to Integer by truncation 
(roundTowardsZero(r)). 
Signals NAN if r is qNaN in which case 0 is returned. 
Signals OVERFLOW if r can not be represented as 
Integer, in which case 0 is returned. 

Direct Real rounding 

roundDown(r) 
Round r towards -8-∞ (also known as floor). 
Returns qNaN if r is qNaN. 

roundUp(r) 
Round r towards +8+∞ (also known as ceil). 
Returns qNaN if r is qNaN. 

Nearest Real rounding (using a tie-breaking rule) 

roundHalfToEven(r) 
Also known as convergent rounding, statistician’s 
rounding, Dutch rounding. 
Returns qNaN if r is qNaN. 

Division of Integers using rounding 

divisionTowardsZero(
i1, i2) 

Divide i1 by i2, rounding the result towards zero. Same 
as div(i1, i2) in C99. 

Remainder of Integers using rounding 

remainderTowardsZero
(i1, i2) 

i1 divided by i2 and the quotient rounded towards 
zero. Same as rem(i1, i2) in C99. 

Remainder of Reals using rounding 

realRemainderTowards
Zero(r1, r2) 

Real remainder with rounding towards zero (r1 - r2 
* roundTowardsZero(r1 / r2)). 
Returns qNaN if r1 or r2 are qNaN. 



Function-Name Description 

Relational Integer functions 

imin(i1, i2) Minimum of i1 and i2. 

imax(i1, i2) Maximum of i1 and i2. 

Relational Real functions 

min(r1, r2) 
Minimum of Real variables r1 and r2. 
Returns qNaN if r1 or r2 are qNaN. 

max(r1, r2) 
Maximum of Real variables r1 and r2. 
Returns qNaN if r1 or r2 are qNaN. 

Mathematical Real constants and functions 

euler() 
Target-specific, most-precise representation of Euler’s 
number eℯ (= 2.71828…). 

y := sign(x) 
Sign of x (if x is positive: y == 1.0, negative: y == -
1.0, zero: y == 0.0). 
Returns qNaN if x is qNaN. 

absolute(x) 
Absolute value of Real variable x. 
Returns qNaN if x is qNaN. 

fractional(x) 
Fractional part of Real variable x. 
Returns qNaN if x is qNaN. 

sqrt(x) 
Square root of x. 
Returns qNaN if x is qNaN or x < 0.0. 

exp(x) Natural base exponential of x. 

ln(x) 
Natural logarithm of x. 
Returns qNaN if x is qNaN or x < 0.0. 



Function-Name Description 

log10(x) 
Logarithm of x to base 10. 
Returns qNaN if x is qNaN or x < 0.0. 

safe_posdiv(xn, xd, 
eps) 

qNaN-free division of xn by xd if eps > 0.0: xn / 
(if xd >= eps then xd else eps). 
Returns qNaN if xn or xd is qNaN or if eps == 0.0 
and xn == 0.0 and xd == 0.0. 

 

safe_sqrt(x) 

qNaN-free square root of x: sqrt(if x >= 0.0 
then x else 0.0). 
Returns qNaN if x is qNaN. 

 

safe_log(x) 

qNaN-free natural logarithm of x: log(if x >= 0.0 
then x else 0.0). 
Returns qNaN if x is qNaN. 

 

safe_log10(x) 

qNaN-free logarithm to base 10 of x: log10(if x >= 
0.0 then x else 0.0). 
Returns qNaN if x is qNaN. 

 

Trigonometric Real constants and functions 

pi() 
Target-specific, most-precise representation of pπ (= 
3.14159…), 
the ratio of a circle’s circumference to its diameter. 

sin(x) 
Sine of x. 
Returns qNaN if x is qNaN, -8-∞ or +8.+∞. 

cos(x) 
Cosine of x. 
Returns qNaN if x is qNaN, -8-∞ or +8.+∞. 



Function-Name Description 

tan(x) 

Tangent of x. 
Returns qNaN if x is qNaN, -8, +8-∞, +∞ or 
isInfinite(sin(x) / cos(x)) (x is an odd 
multitude of pπ/2). 

y := asin(x) 
Inverse of sin(x) in the range -pπ/2 =≤ y = p≤ π/2. 
Returns qNaN if x is qNaN, x < -1.0 or x > 1.0. 

y := acos(x) 
Inverse of cos(x) in the range 0 =≤ y = p≤ π. 
Returns qNaN if x is qNaN, x < -1.0 or x > 1.0. 

y := atan(x) 
Inverse of tan(x) in the range -pπ/2 < y < pπ/2. 
Returns qNaN if x is qNaN; -pπ/2 if x is -8; p-∞; π/2 if x 
is +8.+∞. 

z := atan2(y, x) 

Inverse two-argument tangent in the range -pπ < z = p≤ 
π (angle in the Euclidean plane, given in radians, 
between the positive x axis and the ray to the point (x, 
y)). 
Returns qNaN if y or x are qNaN or y == 0.0 and x 
== 0.0. 

sinh(x) 
Hyperbolic sine of x. 
Returns qNaN if x is qNaN. 

cosh(x) 
Hyperbolic cosine of x. 
Returns qNaN if x is qNaN. 

tanh(x) 
Hyperbolic tangent of x. 
Returns qNaN if x is qNaN. 

safe_tan(x) 

qNaN-free tangent of x: if x = p≥ π/2 then 8∞ 
elseif x = -p≤ -π/2 then -8-∞ else 
tan(x). 
Returns qNaN if x is qNaN. 

 

safe_asin(x) 
qNaN-free inverse sine of x: asin(if x > 1.0 then 
1.0 elseif x < -1.0 then -1.0 else x). 
Returns qNaN if x is qNaN. 



Function-Name Description 

 

safe_acos(x) 

qNaN-free inverse cosine of x: acos(if x > 1.0 
then 1.0 elseif x < -1.0 then -1.0 else 
x). 
Returns qNaN if x is qNaN. 

 

Systems of linear equations 

x := 
solveLinearEquations
(A, b) 

Solution x for linear equations system A*x=b. 
Signals SOLVE_LINEAR_EQUATIONS_FAILED if no 
unique solution exists or hasNaN2D(A) == true or 
hasNaN1D(b) == true, in which case 
allNaN1D(x) == true. 

(LU, pivots) := 
luFactorize(A) 

LU decomposition with partial pivoting of square matrix 
A. 
Signals SOLVE_LINEAR_EQUATIONS_FAILED if no 
unique solution exists or hasNaN2D(A) == true, in 
which case allNaN2D(LU) == true. 

x := luSolve(LU, 
pivots, b) 

Solution x for LU-factorized linear equations system 
L*U*x = b[pivots], with LU == L*U. 
Signals SOLVE_LINEAR_EQUATIONS_FAILED if no 
unique solution exists or hasNaN2D(LU) == true 
or hasNaN1D(pivots) == true or 
hasNaN1D(b) == true, in which case 
allNaN1D(x) == true. 

Interpolation in 1D/2D/3D 

interpolation1D(x1, 
x1_data, nx1, 
y_data, ipo, expo) 

Constant/linear interpolation in 1D with extrapolation. 

interpolation2D(x1, 
x2, x1_data, nx1, 
nx2_data, nx2, 
y_data, ipo, expo) 

Constant/linear interpolation in 2D with extrapolation. 



Function-Name Description 

interpolation3D(x1, 
x2, x3, x1_data, 
nx1, nx2_data, nx2, 
nx3_data, nx3, 
y_data, ipo, expo) 

Constant/linear interpolation in 3D with extrapolation. 

Precise Definitions 

S-2.9 (builtin functions / Syntactical-structure, terminology): Let Cbuiltin = Cbuiltin1 ∀ Cbuiltin2 ∀ 
Cbuiltin3 ∀ Cbuiltin4 where each Cbuiltinn with n?{∀{1,2,…,4} is a sequence of characters defined in the 
following and ∀ is the left-to-right concatenation of sequences of characters. Cbuiltin is implicitly 
appended to each program; its functions are called builtin. Functions that are not builtin are 
called user-defined. 

In Appendix TODO further built-in functions are defined that are not yet part of the eFMI 
standard but likely will be added in the future. Therefore, the names and functionality of these 
functions are reserved. The following definition of built-in functions may refer to functions 
defined in the appendix. 

Cbuiltin1 is the following sequence of characters: 

/* 
    Note: We distinguish integer and Integer. Integer with 
uppercase first letter is the type 
          Integer -- a target-specific data-type -- whereas 
integer with lowercase first 
          letter is the mathematic term for numbers without 
fractional component. Likewise, 
          we distinguish real and Real. 
*/ 
 
/****************************************************************
***************************** 
 Properties of Integer: 
*****************************************************************
****************************/ 
 
function minInteger 
    output Integer i; 
algorithm /* 
    i := target-specific smallest Integer; 
*/ end minInteger; 
 
function maxInteger 
    output Integer i; 
algorithm /* 
    i := target-specific largest Integer; 
*/ end maxInteger; 
 
/****************************************************************
***************************** 
 Properties of Real: 
*****************************************************************
****************************/ 



 
function minReal 
    outputs Real r; 
algorithm /* 
    r := target-specific smallest, not -8-∞ representing, Real; 
*/ end minReal; 
 
function maxReal 
    outputs Real r; 
algorithm /* 
    r := target-specific largest, not +8+∞ representing, Real; 
*/ end maxReal; 
 
function posMinReal 
    output Real r; 
algorithm /* 
    r := target-specific smallest Real > 0.0; 
*/ end posMinReal; 
 
function epsReal 
    output Real r; 
algorithm /* 
    r := target-specific largest Real r > 0.0 such that 1.0 + r 
== 1.0; 
*/ end epsReal; 
 
function nan 
    output Real r; 
algorithm /* 
    r := target-specific not-a-number representation; 
*/ end nan; 
 
function isNaN 
    input  Real x; 
    output Boolean b; 
algorithm /* 
    b := true if x is target-specific not-a-number 
representation, false otherwise; 
*/ end isNaN; 
 
function minusInfinite 
    output Real r; 
algorithm /* 
    r := target-specific -8-∞ representation; 
*/ end minusInfinite; 
 
function plusInfinite 
    output Real r; 
algorithm /* 
    r := target-specific +8+∞ representation; 
*/ end minusInfinite; 
 
function isInfinite 
    input  Real x; 
    output Boolean b; 
algorithm /* 
    b := x == minusInfinite() or x == plusInfinite(); 
    if signal in NAN then 
        b := false; 
    end if; 
*/ end isInfinite; 
 
function isFinite 
    input  Real x; 



    output Boolean b; 
algorithm /* 
    b := not(isNaN(x)) and not(isInfinite(x)); 
*/ end isFinite; 
 
/****************************************************************
***************************** 
 Multi-dimensional properties of Real: 
*****************************************************************
****************************/ 
 
function hasNaN1D 
    input  Real x[:]; 
    output Boolean result; 
algorithm /* 
    result := false; 
    for i in 1:size(x, 1) 
        if isNaN(x[i]) 
            result := true; 
        end if; 
    end for; 
*/ end hasNaN1D; 
 
function hasNaN2D 
    input  Real x[:, :]; 
    output Boolean result; 
algorithm /* 
    result := false; 
    for i in 1:size(x, 1) 
        for j in 1:size(x, 2) 
            if isNaN(x[i, j]) 
                result := true; 
            end if; 
        end for; 
    end for; 
*/ end hasNaN2D; 
 
/****************************************************************
***************************** 
    Numeric type conversions: 
*****************************************************************
****************************/ 
 
function real 
    input  Integer i; 
    output Real r; 
algorithm /* 
    r := target-specific Real representation of i; 
*/ end real; 
 
function integer 
    signals NAN, OVERFLOW; 
    input Real r; 
    output Integer i; 
protected 
    Real tmp; 
algorithm /* 
    i := 0; 
    tmp := roundTowardsZero(r); // Returns qNaN if r is qNaN. 
    if tmp < real(minInteger()) or tmp > real(maxInteger()) then 
        signal OVERFLOW; 
    elseif signal in NAN then 
        signal NAN; // tmp was qNaN. 
    else 



        i := target-specific Integer representation of tmp; 
    end if; 
*/ end integer; 
 
/****************************************************************
***************************** 
    Direct Real rounding: 
*****************************************************************
****************************/ 
 
function roundDown 
    input Real r; 
    output Real i; 
algorithm /* 
    // Also known as: flooring, round towards -8.-∞. 
    if isNaN(r) then 
        i := nan(); 
    else 
        i := target-specific greatest integer =≤ r; 
    end if; 
*/ end roundDown; 
 
function roundUp 
    input Real r; 
    output Real i; 
algorithm /* 
    // Also known as: ceiling, round towards +8.+∞. 
    if isNaN(r) 
        i := nan(); 
    else 
        i := target-specific least integer >= r; 
    end if; 
*/ end roundUp; 
 
/****************************************************************
***************************** 
    Nearest Real rounding (using a tie-breaking rule): 
*****************************************************************
****************************/ 
 
function roundHalfToEven 
    input Real r; 
    output Real i; 
algorithm /* 
    // Also known as: convergent rounding, statistician's 
rounding, Dutch rounding, 
    //   Gaussian rounding, oddevenodd–even rounding, bankers' 
rounding. 
    i := (if roundHalfDown(r) < roundHalfUp(r) 
        then (if (r + 0.5 is even) then r + 0.5 else r - 0.5) 
        else roundHalfDown(r)); 
    if signal in NAN or isNaN(r) then 
        i := nan(); 
    end if; 
*/ end roundHalfToEven; 
 
/****************************************************************
***************************** 
    Relational Integer functions: 
*****************************************************************
****************************/ 
 
function imin 
    input  Integer u1; 



    input  Integer u2; 
    output Integer y; 
algorithm /* 
    y := (if u1 < u2 then u1 else u2); 
*/ end imin; 
 
function imax 
    input  Integer u1; 
    input  Integer u2; 
    output Integer y; 
algorithm /* 
    y := (if u1 > u2 then u1 else u2); 
*/ end imax; 
 
/****************************************************************
***************************** 
    Relational Real functions: 
*****************************************************************
****************************/ 
 
function min 
    input  Real u1; 
    input  Real u2; 
    output Real y; 
algorithm /* 
    y := (if u1 < u2 then u1 else u2); 
    if signal in NAN then 
        y := nan(); 
    end if; 
*/ end min; 
 
function max 
    input  Real u1; 
    input  Real u2; 
    output Real y; 
algorithm /* 
    y := (if u1 > u2 then u1 else u2); 
    if signal in NAN then 
        y := nan(); 
    end if; 
*/ end max; 
 
/****************************************************************
***************************** 
    Mathematical Real constants and functions: 
*****************************************************************
****************************/ 
 
function euler 
    output Real r; 
algorithm /* 
    r := target-specific, most-precise representation of eℯ; 
*/ end euler; 
 
function sign 
    input  Real r; 
    output Real i; 
algorithm /* 
    i := (if r > 0.0 then 1.0 elseif r < 0.0 then -1.0 else 0.0); 
    if signal in NAN then 
        i := nan(); 
    end if; 
*/ end sign; 
 



function fractional 
    input  Real x; 
    output Real y; 
algorithm /* 
    y := x - roundTowardsZero(x); 
*/ end fractional; 
 
function absolute 
    input  Real x; 
    output Real y; 
algorithm /* 
    y := sign(x) * x; 
*/ end absolute; 
 
function sqrt 
    input  Real x; 
    output Real y; 
algorithm /* 
    if x < 0.0 then 
        y := nan(); 
    elseif signal in NAN then 
        y := nan(); 
    else 
        y := x^0.5; 
    end if; 
*/ end sqrt; 
 
function exp 
    input  Real x; 
    output Real y; 
algorithm /* 
    y := euler()^x; 
*/ end exp; 
 
function ln 
    input  Real x; 
    output Real y; 
algorithm /* 
    if x < 0.0 then 
        y := nan(); 
    elseif signal in NAN then 
        y := nan(); 
    else 
        y := natural logarithm of x; 
    end if; 
*/ end ln; 
 
function log10 
    input  Real x; 
    output Real y; 
algorithm /* 
    if x < 0.0 then 
        y := nan(); 
    elseif signal in NAN then 
        y := nan(); 
    else 
        y := logarithm to base 10 of x; 
    end if; 
*/ end log10; 
 
function safe_posdiv 
    input  Real xn; 
    input  Real xd; 
    input  Real eps(min = posMinReal()); 



    output Real y; 
algorithm /* 
    y := xn / (if xd >= eps then xd else eps); 
*/ end isinf; 
 
function safe_sqrt 
    input  Real x; 
    output Real y; 
algorithm /* 
    y := sqrt(if x < 0.0 then 0.0 else x); 
*/ end safe_sqrt; 
 
function safe_log 
    input  Real x; 
    output Real y; 
algorithm /* 
    y = log(if x < 0.0 then 0.0 else x); 
*/ end safe_log; 
 
function safe_log10 
    signals NAN; 
    input  Real x; 
    output Real y; 
algorithm /* 
    y = log10(if x < 0.0 then 0.0 else x) 
*/ end safe_log10; 
 
/****************************************************************
***************************** 
    Trigonometric Real constants and functions: 
*****************************************************************
****************************/ 
 
function pi 
    output Real r; 
algorithm /* 
    r := target-specific, most-precise representation of pπ; 
*/ end pi; 
 
function sin 
    input Real x; 
    output Real y; 
algorithm /* 
    if not(isFinite(x)) then 
        y := nan(); 
    else 
        y := sine of x; 
    end if; 
*/ end sin; 
 
function cos 
    input Real x; 
    output Real y; 
algorithm /* 
    if not(isFinite(x)) then 
        y := nan(); 
    else 
        y := cosine of x; 
    end if; 
*/ end cos; 
 
function tan 
    input Real x; 
    output Real y; 



algorithm /* 
    if not(isFinite(x)) then 
        y := nan(); 
    else 
        y := sin(x) / cos(x); 
    end if; 
    if isInfinite(y) then 
        y := nan(); 
    end if; 
*/ end tan; 
 
function asin 
    input  Real x; 
    output Real y; 
algorithm /* 
    if -1.0 <= x and x <= 1.0 then 
        y := inverse of sin(x) in the range -pπ/2 =≤ y = p≤ π/2; 
    elseif signal in NAN or true then 
        y := nan(); 
    end if; 
*/ end asin; 
 
function acos 
    input  Real x; 
    output Real y; 
algorithm /* 
    if -1.0 <= x and x <= 1.0 then 
        y := inverse of cos(x) in the range 0 =≤ y = p≤ π; 
    elseif signal in NAN or true then 
        y := nan(); 
    end if; 
*/ end asin; 
 
function atan 
    input Real x; 
    output Real y; 
algorithm /* 
    if isNaN(x)) then 
        y := nan(); 
    elseif isInfinite(x) then 
        y := sign(x) * pi() / 2.0; 
    else 
        y := inverse of tan(x) in the range -pπ/2 < y < pπ/2; 
    end if; 
*/ end atan; 
 
function atan2 
    input  Real y; 
    input  Real x; 
    output Real z; 
algorithm /* 
    z := (if     x > 0.0              then atan(y / x) 
          elseif x < 0.0 and y >= 0.0 then atan(y / x) + pi() 
          elseif x < 0.0 and y <  0.0 then atan(y / x) - pi() 
          elseif y > 0.0              then  pi() / 2.0 
          elseif y < 0.0              then -pi() / 2.0 
          else                             nan()); 
    if signal in NAN then 
        z := nan(); 
    end if; 
*/ end atan2; 
 
function sinh 
    input Real x; 



    output Real y; 
algorithm /* 
    y := (euler()^x - euler()^-x) / 2.0; 
*/ end sinh; 
 
function cosh 
    input Real x; 
    output Real y; 
algorithm /* 
    y := (euler()^x + euler()^-x) / 2.0; 
*/ end cosh; 
 
function tanh 
    input Real x; 
    output Real y; 
algorithm /* 
    y := sinh(x) / cosh(x); 
*/ end tanh; 
 
function safe_tan 
    signals NAN; 
    input  Real x; 
    output Real y; 
algorithm /* 
    y := (if x >= pi() / 2.0 then plusInfinite() 
        elseif x <= -pi() / 2.0 then minusInfinite() 
        else tan(x)); 
    if signal in NAN then 
        signal NAN; 
        y := nan(); 
    end if; 
*/ end safe_tan; 
 
function safe_asin 
    signals NAN; 
    input  Real x; 
    output Real y; 
algorithm /* 
    y := asin(if x > 1.0 then 1.0 elseif x < -1.0 then -1.0 else 
x) 
*/ end safe_asin; 
 
function safe_acos 
    input  Real x; 
    output Real y; 
algorithm /* 
    y := acos(if x > 1.0 then 1.0 elseif x < -1.0 then -1.0 else 
x) 
*/ end safe_acos; 
 
/****************************************************************
***************************** 
    Systems of linear equations: 
*****************************************************************
****************************/ 
 
function solveLinearEquations 
    signals SOLVE_LINEAR_EQUATIONS_FAILED; 
    input  Real A[:, size(A,1)]; 
    input  Real b[size(A,1)]; 
    output Real x[size(A,1)]; 
algorithm /* 
    Solve system of linear equations A*x = b for x. Hereby it is 
assumed that matrix A is 



    regular. Typically, the function implements a direct Gaussian 
elimination with partial 
    pivoting. If A is singular, SOLVE_LINEAR_EQUATIONS_FAILED is 
signaled 
    and at least on element of x is set to qNaN. 
*/ end solveLinearEquations; 
 
function luFactorize 
    signals SOLVE_LINEAR_EQUATIONS_FAILED; 
    input  Real    A[:, size(A, 1)]; 
    output Real    LU[:, size(A, 1)]; 
    output Integer pivots[size(A, 1)]; 
    /* 
    The function returns the LU decomposition with partial 
pivoting of the square, 
    matrix A: P*L*U = A where P is the permutation matrix 
(implicitely defined by vector 
    pivots), L is a lower triangular matrix with unit diagonal 
elements and U is an upper 
    triangular matrix. Matrices L and U are stored in matrix LU 
on return (the diagonal of 
    L is not stored). With the companion function luSolve, the 
factorization is used to 
    solve the linear system L*U*x = b[pivots] with different 
right hand side vectors b. 
 
 If A is singular, SOLVE_LINEAR_EQUATIONS_FAILED is signaled. 
 
 The algorithm below is "conceptual". A more efficient 
implementation uses 
 BLAS functions, see, e.g., LAPACK function DGETRF. 
    */ 
protected 
    Integer n; 
    Integer p; // Pivot index. 
    Integer pk; 
    Real temp; 
    Real eta; 
    Real d; 
    Real d_max; 
    Real di; 
    Real di_abs; 
algorithm 
    n := size(A,1); 
    LU := A; 
 p := 1:n; 
    if n < 1 then 
       return; 
    end if; 
 
    for k in 1:n-1 loop 
       // Find pivot 
       p :=k; 
       d := LU[k,k]; 
       d_max :=absolute(d); 
       for i in k+1:n loop 
          di := LU[i,k]; 
          di_abs := abs(di); 
          if di_abs > d_max then 
             p     := i; 
             d     := di; 
             d_max := di_abs; 
          end if; 
       end for; 



 
       // Test pivot for singularity 
       if d == 0 then 
          signals SOLVE_LINEAR_EQUATIONS_FAILED; 
       else 
          // Swap LU[k,j] and LU[p,j], for j = 1,....,n 
          // as well as pivots[k] and pivots[p] 
          if k <> p then 
             for j in 1:n loop 
                temp :=LU[k, j]; 
                LU[k,j] :=LU[p, j]; 
                LU[p,j] :=temp; 
             end for; 
             pk :=pivots[k]; 
             pivots[k] :=pivots[p]; 
             pivots[p] :=pk; 
          end if; 
 
          // LU factors 
          for i in k+1:n loop 
             eta :=LU[i,k]/d; 
             LU[i,k] :=eta; 
 
             for j in k+1:n loop 
                LU[i,j] :=LU[i,j] - eta*LU[k,j]; 
             end for; 
          end for; 
    end if; 
    end for; 
end luFactorize; 
 
function luSolve 
    signals SOLVE_LINEAR_EQUATIONS_FAILED; 
    input  Real    LU[:, size(LU, 1)];  // Returned from 
luFactorize. 
    input  Integer pivots[size(LU, 1)]; // Returned from 
luFactorize. 
    input  Real    b[size(LU, 1)]; 
    output Real    x[size(LU, 1)]; 
    /* 
    The function returns the solution x of the linear system of 
equations: 
        L*U*x = b[pivots] 
    where L*U and pivots are computed by the companion function 
luFactorize. 
    If a unique solution cannot be computed (i.e., U is 
singular), 
 SOLVE_LINEAR_EQUATIONS_FAILED is signaled and at least one 
element of x is qNaN. 
 
 The algorithm below is "conceptual". A more efficient 
implementation uses 
 BLAS functions, see, e.g., LAPACK function DGETRS. 
 */ 
protected 
    Integer n=size(LU,1); 
    Real y[size(LU,1)]; 
algorithm 
    if n < 1 then 
       return; 
    end if; 
 
    // Forward elimination 
    for i in 1:n loop 



       y[i] := b[pivots[i]]; 
       for j in 1:i-1 loop 
          y[i] :=y[i] - LU[i, j]*y[j]; 
       end for; 
    end for; 
 
    // Backward substitution 
    for i in n:-1:1 loop 
       x[i] :=y[i]; 
       for j in i+1:n loop 
          x[i] := x[i] - LU[i,j]*x[j]; 
       end for; 
       x[i] := x[i]/LU[i,i]; 
    if isNaN(x[i]) 
     signals SOLVE_LINEAR_EQUATIONS_FAILED; 
    end 
    end for; 
end luSolve; 
 
 
/****************************************************************
***************************** 
    Interpolation in 1D/2D/3D: 
 
    In all functions the following options are used: 
    - interpolation = 1: constant bottom interpolation 
                    = 2: linear interpolation 
    - extrapolation = 1: hold last value 
                    = 2: linear extrapolation through last two 
boundary points 
 
    A production code generator would typically trigger an error, 
if the folloing 
    conditions are not fulfilled when calling one of the 
interpolation functions: 
    - The values in x1_data[1:nx1], x2_data[1:nx2], 
x3_data[1:nx3] are 
      strict monotonically increasing. 
    - The data arguments (x1_data, x2_data, x3_data, nx1, nxs2, 
nx3) are parameters. 
    - The option arguments (interpolation, extrapolation) are 
literal constants. 
 
    The production code generator decides which "search" method 
to use to find the 
    respective interval, or whether it can be directly found 
because there is an 
    equidistant grid. 
*****************************************************************
****************************/ 
 
function interpolation1D 
    input  Real    x1; 
    input  Real    x1_data[:];               // strict 
monotonically increasing values 
    input  Integer nx1;                      // 2 =≤ nx1 =≤ 
size(x1_data, 1) 
    input  Real    y_data[size(x1_data, 1)]; 
    input  Integer interpolation; 
    input  Integer extrapolation; 
    output Real    y; 
algorithm /* 
    Constant or linear interpolation in [x1_data[1:nx1], 
y_data[1:nx1]] 



    given the abszissa value x1. 
*/ end interpolation1D; 
 
function interpolation2D 
    input  Real    x1; 
    input  Real    x2; 
    input  Real    x1_data[:];              // strict 
monotonically increasing values 
    input  Integer nx1;                     // 2 =≤ nx1 =≤ 
size(x1_data, 1) 
    input  Real    x2_data[:];              // strict 
monotonically increasing values 
    input  Integer nx2;                     // 2 =≤ nx2 =≤ 
size(x2_data, 1) 
    input  Real    y_data[size(x1_data, 1), size(x2_data, 1)]; 
    input  Integer interpolation; 
    input  Integer extrapolation; 
    output Real    y; 
algorithm /* 
    Constant or linear interpolation with x1_data[1:nx1], 
x2_data[1:nx2] 
    abszissa values and y_data[1:nx1, 1:nx2] ordinate values, 
given the abszissa value x1, x2. 
*/ end interpolation2D; 
 
function interpolation3D 
    input  Real    x1; 
    input  Real    x2; 
    input  Real    x3; 
    input  Real    x1_data[:];              // strict 
monotonically increasing values 
    input  Integer nx1;                     // 2 =≤ nx1 =≤ 
size(x1_data, 1) 
    input  Real    x2_data[:];              // strict 
monotonically increasing values 
    input  Integer nx2;                     // 2 =≤ nx2 =≤ 
size(x2_data, 1) 
    input  Real    x3_data[:];              // strict 
monotonically increasing values 
    input  Integer nx3;                     // 2 =≤ nx3 =≤ 
size(x3_data, 1) 
    input  Real    y_data[size(x1_data, 1), size(x2_data, 1), 
size(x3_data, 1)]; 
    input  Integer interpolation; 
    input  Integer extrapolation; 
    output Real    y; 
algorithm /* 
    Constant or linear interpolation with x1_data[1:nx1], 
x2_data[1:nx2], x3_data[1:nx3] 
    abszissa values and y_data[1:nx1, 1:nx2, 1:nx3] ordinate 
values, 
    given the abszissa value x1, x2, x3. 
*/ end interpolation3D; 

Cbuiltin2 defines builtin functions for Integer division: 

function divisionTowardsZero 
    input Integer dividend; 
    input Integer divisor; 
    output Integer quotient; 
algorithm /* 
    quotient := integer(roundTowardsZero(real(dividend) / 
real(divisor))); 



*/ end divisionTowardsZero; 
 
function remainderTowardsZero 
    input Integer dividend; 
    input Integer divisor; 
    output Integer remainder; 
algorithm /* 
    remainder := dividend - divisor * 
divisionTowardsZero(dividend, divisor); 
*/ end remainderTowardsZero; 

Cbuiltin3 defines builtin functions for Real division, where the quotient is forced to be an integer 
according to a rounding strategy: 

function realRemainderTowardsZero 
    input Real dividend; 
    input Real divisor; 
    output Real remainder; 
algorithm /* 
    remainder := dividend - divisor * roundTowardsZero(dividend / 
divisor); 
*/ end realRemainderTowardsZero; 

Cbuiltin4 lifts builtin functions with scalar in- and output parameters for usage with multi-
dimensions. For every function named aα of Cbuiltin1,…,Cbuiltin3 with a scalar input parameter 
 code>β and a scalar output parameter dδ of types T1,T3?{∀{Boolean, Integer, Real}/߻
respectively, Cbuiltin4 contains the character sequence: 

function a1Dα1D 

    input T1 ߛ:];β[:]; 

    output T3 dδ[size(߬ (β, 1)]; 
algorithm /* 

    for i in 1:size(߬ (β, 1) loop 

        dδ[i] := a(ߛiα(β[i]); 
    end for; 
*/ end a1Dα1D; 
 
function a2Dα2D 

    input T1 ߛ:,β[:, :]; 

    output T3 dδ[size(߬ (β, 1), size(߬ (β, 2)]; 
algorithm /* 

    for i in 1:size(߬ (β, 1) loop 

        for j in 1:size(߬ (β, 2) loop 

            dδ[i, j] := a(ߛiα(β[i, j]); 
        end for; 
    end for; 
*/ end a2Dα2D; 

For every function named aα of Cbuiltin1,…,Cbuiltin3 with two scalar input parameters ߻/code>β 
and ?γ and a scalar output parameter dδ of types T1,T2,T3?{∀{Boolean, Integer, Real} 
respectively, Cbuiltin4 contains the character sequence: 

function a1Dα1D 

    input T1 ߛ:];β[:]; 

    input T2 ?[γ[size(߬ (β, 1)]; 

    output T3 dδ[size(߬ (β, 1)]; 
algorithm /* 

    for i in 1:size(߬ (β, 1) loop 

        dδ[i] := a(ߛi], ?[α(β[i], γ[i]); 
    end for; 



*/ end a1Dα1D; 
 
function a2Dα2D 

    input T1 ߛ:,β[:, :]; 

    input T2 ?[γ[size(߬ (β, 1), size(߬ (β, 2)]; 

    output T3 dδ[size(߬ (β, 1), size(߬ (β, 2)]; 
algorithm /* 

    for i in 1:size(߬ (β, 1) loop 

        for j in 1:size(߬ (β, 2) loop 

            dδ[i, j] := a(ߛiα(β[i, j], ?(γ(i, j)); 
        end for; 
    end for; 
*/ end a2Dα2D; 

Above functions are in lexical order w.r.t. their names; they constitute Cbuiltin4 in its entirety. 

L-1 (semantic of builtin functions / Runtime-semantic): Cbuiltin defines the semantic of each 
builtin function in prose via the multi-line-comment part of it; the actual implementation is up 
to Production Code generators however (cf. L-2). 

The builtin functions divisionDown, divisionUp and divisionTowardsZero are also 
known as floored division, ceiled division and truncated division respectively. 

According to their definition, the remainder returned by remainderDown, 
remainderTowardsZero and remainderEuclidean is signed like the divisor, 
dividend or always positive respectively. 

R-1: Builtin functions are derived by the { function-declaration } factor of G-2.1 in 
the order of their definition in Cbuiltin and — because Cbuiltin is appended — follow user-defined 
functions. 

R-2: Builtin functions are without 6’th child, i.e., without statements and therefore 
implementation body. The motivation to implicitly append their signatures and thereby 
making them part of blocks as described in R-1 is to cover builtin functions under the umbrella 
of functions, such that the common syntactic and semantic rules for such apply for builtin as 
well as user-defined functions; only exceptional cases for either have to be additionally 
defined. In fact, S-2.9 already encapsulates all differences between builtin and user-defined 
functions. For example, according to S-2.5, functions must have unique names, implying that 
user-defined functions must not be named like a builtin function. And considering Cbuiltin and S-
2.3, all builtin functions are stateless. Likewise, according to S-2.10, builtin functions do not 
locally — and therefore neither transitively — call functions. 

L-2 (target-specific builtin function implementation; statically-evaluated builtin 
functions / Runtime-semantic): The actual implementation of builtin functions is up to 
Production Code generators, which are supposed to optimize such for the targeted runtime 
environment. The only restrictions are, that the execution of builtin functions must always 
terminate and be side-effect-free — i.e., not change or depend on the control-state. 

Optimizations include, for example, the implementation of builtin functions in terms of inlined 
code or even the replacement of builtin function calls and sequences thereof by target-



specific — but semantic-wise equivalent — hardware operations. The roundHalfToEven 
builtin function for example is the default rounding mode used in the IEEE 754-2019 standard 
for floating-point arithmetic and therefore likely hardware supported. Also integer is often 
provided as single CPU-instruction like CVTTSS2SI or CVTTSD2SI of Streaming SIMD 
Extensions 2 (SSE2); and roundDown, roundUp, roundTowardsZero and 
roundHalfToEven are provided by ROUNDSS and ROUNDSD of SSE4. Particularly the multi-

dimensions support of Cbuiltin4 likely can be much more efficient than the given naجميnaïve 

iterative solution; SSE4 for example provides for most single data instructions corresponding 
multiple data instructions (SIMD hardware operations: single instruction, multiple data). 

Builtin functions that are part of statically-evaluated expressions must be applied already for 
Production Code generation since they define dimensional-sizes, multi-dimension queries or 
loop iteration bounds which are subject to well-formedness constraints. The well-formedness 
and results of such statically-evaluated builtin function calls depend on the targeted runtime 
environment. For example, in a 32-bit environment integer(roundUp(2.0^31 - 
1.0)) likely is an error due to an integer overflow, which in turn would result in integer 
signaling OVERFLOW which is not permitted within statically-evaluated expressions (cf. S-
X:TODO:error-signal-freeness-of-statically-evaluated-expressions). 

E-1: The following block uses the builtin function solveLinearEquations to compute a 
control-output vector based on a single control-input: 

block TestSolveLinearEquations 
    input  Real u; 
    output Real y[2]; 
 
protected 
 
public 
    method Startup 
    protected 
    algorithm 
        self.y := {0.0, 0.0}; 
    end Startup; 
 
    method DoStep 
    protected 
    algorithm 
        self.y := solveLinearEquations( 
            { 
                {1.0       , 2.0*self.u}, 
                {4.0*self.u, 5.0} 
            }, 
            {-2.0      , 4.0*self.u}); 
        /* Rudimentary error handling */ 
        if signal or hasNaN(self.y) then 
            self.y = {0.0, 0.0} 
        end; 
    end DoStep 
end TestSolveLinearEquations; 

E-2: The following block uses luFactorize and luSolve to solve two systems of linear 
equations A*x = b for the same regular matrix A but varying b: 

block TestLuSolve 
    input  Real u; 



    output Real y[2]; 
 
protected 
 
public 
    method Startup 
    protected 
    algorithm 
        self.y := {0.0, 0.0}; 
    end Startup; 
 
    method DoStep 
    protected 
        Real LU[2,2]; 
        Real pivots[2]; 
    algorithm 
        (LU, pivots) := luFactorize( 
            { 
                {1.0,        2.0*self.u}, 
                {4.0*self.u, 5.0} 
            }); 
        self.y := luSolve( 
            LU, 
            pivots, 
            luSolve( 
                LU, 
                pivots, 
                {-2.0, 4.0*self.u}) 
            + {-3.0, 6.0*self.u}); 
        /* Rudimentary error handling */ 
        if signal or isNaN(self.y) then 
            self.y = {0.0, 0.0} 
        end; 
    end DoStep; 
end TestLuSolve; 

LU decomposition typically is more efficient than naجميlynaïvely using several 

solveLinearEquations calls, at least when A has more realistic sizes than the tiny 2x2 in 
above example which has been selected for demonstration purposes only. 

E-3: The following block interpolates in a vector of data points: 

block TestInterpolation 
    input  Real x; 
    output Real y; 
 
    parameter Real x_data[7];  // Define x-axis data points as 
tuneable parameter vector. 
    parameter Real y_data[7];  // Define y-axis data as tuneable 
parameter vector. 
    parameter Integer nx;      // Number of elements to 
interpolate (1 =≤ nx =≤ 7). 
 
protected 
 
public 
    method Startup 
    protected 
        Real x; 
    algorithm 



        x := 0.0; 
        self.nx := 4; 
        self.x_data := {1.0, 2.0, 3.0, 4.0 , 0.0, 0.0, 0.0}; 
        self.y_data := {1.0, 4.0, 9.0, 16.0, 0.0, 0.0, 0.0}; 
        self.y := interpolation1D(x, self.x_data, self.nx, 
self.y_data, 2, 2); 
    end Startup; 
 
    method DoStep 
    protected 
    algorithm 
        self.y := interpolation1D(2*self.x, self.x_data, self.nx, 
self.y_data, 2, 2); 
    end DoStep; 
end TestInterpolation; 

4.2.7. Example Application Scenarios 

Modelica-modeled PID-controller 

The following example has its origin in a Modelica model for a speed controller — a PID 
controller with output limitations — of a DC motor. The block diagram of the Modelica model 
has two input signals wLoadRef and wMotor. The input signal wLoadRef is the desired 
value of the speed of the motor load whereas wMotor is the current speed of the motor. The 
output of the controller is vMotor — the voltage to be applied to the DC motor. 

It follows one possible transformation of this Modelica model into an eFMI GALEC program. 
The discretization of the dynamic parts of the PID controller is realized by the Explicit Euler 
method. The respective eFMI GALEC program is: 

block PID_Controller 



    input  Real wLoadRef(min = -1.0e5, max = 1.0e5); 
    input  Real wMotor  (min = -1.0e5, max = 1.0e5); 
    output Real vMotor  (min = -1.0e7, max = 1.0e7); 
 
    // Tunable parameters (can be changed via recalibration): 
    parameter Real 'limiter.uMax'(min = 1.0, max = 1.0e5); 
    parameter Real gearRatio(min = 10.0, max = 500.0); 
    parameter Real Ti(min = 1.0e-7, max = 100.0); 
    parameter Real Td(min = 1.0e-7, max = 100.0); 
    parameter Real kd(min = 0.0, max = 1000.0); 
    parameter Real k(min = 0.0, max = 1000.0); 
    parameter Real stepSize // Can be local constant (if 
recalibration is not supported). 
        (min = 1.0e-10, max = 0.01 /* in physics-simulation 
tested sampling-range */ ); 
 
protected 
    // Dependent parameters: 
    parameter Real 'limiter.uMin'(min = -1.0e5, max = -1.0); 
 
    // Discrete states: 
    Real 'PID.I.x'; 
    Real 'PID.D.x'; 
    Real 'previous(feedback.y)'; 
    Boolean firstTick; 
 
public 
    method Startup 
    algorithm 
        // Initialize tunable parameters: 
        self.'limiter.uMax' := 400.0; 
        self.gearRatio := 105.0; 
        self.Ti := 0.1; 
        self.Td := 0.1; 
        self.kd := 0.1; 
        self.k := 10.0; 
        self.stepSize := 1e-3; 
 
        // Initialize dependent parameters: 
        self.'limiter.uMin' := -self.'limiter.uMax'; 
 
        // Initialize discrete states: 
        self.'PID.I.x' := 0.0; 
        self.'PID.D.x' := 0.0; 
        self.'previous(feedback.y)' := 0.0; 
        self.firstTick := true; 
 
        // Initialize outputs: 
        self.vMotor := 0.0; 
    end Startup; 
 
 
    method Recalibrate 
    algorithm 
        // Update dependent parameters: 
        self.'limiter.uMin' := -self.'limiter.uMax'; 
    end Recalibrate; 
 
 
    /* 
        Control-cycle function: Called at every clock tick. 
    */ 
    method DoStep 
    protected 



        Real 'gain.y'; 
        Real 'feedback.y'; 
        Real 'derivative(PID.I.x)'; 
        Real 'derivative(PID.D.x)'; 
        Real 'PID.D.y'; 
        Real 'PID.y'; 
    algorithm 
 
        if self.firstTick then 
            self.firstTick := false; 
        else 
            'derivative(PID.I.x)' := self.'previous(feedback.y)' 
/ self.Ti; 
            'derivative(PID.D.x)' := (self.'previous(feedback.y)' 
- self.'PID.D.x') / self.Td; 
 
            self.'PID.I.x'        := self.'PID.I.x' + 
self.stepSize * 'derivative(PID.I.x)'; 
            self.'PID.D.x'        := self.'PID.D.x' + 
self.stepSize * 'derivative(PID.D.x)'; 
        end if; 
 
        'gain.y'     := self.gearRatio * self.wLoadRef; 
        'feedback.y' := 'gain.y' - self.wMotor; 
 
        'PID.D.y' := self.kd * ('feedback.y' - self.'PID.D.x') / 
self.Td; 
        'PID.y'   := self.k * ('PID.D.y' + self.'PID.I.x' + 
'feedback.y'); 
 
        self.vMotor := ( 
            if 'PID.y' > self.'limiter.uMax' then 
                self.'limiter.uMax' 
            elseif 'PID.y' < self.'limiter.uMin' then 
                self.'limiter.uMin' 
            else 
                'PID.y' 
        ); 
 
        self.'previous(feedback.y)' := 'feedback.y'; 
    end DoStep; 
end PID_Controller; 

The manifest for the controller, just describing its interface, is: 

<?xml version="1.0" encoding="UTF-8"?> 
<Manifest 
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
    
xsi:noNamespaceSchemaLocation="../schemas/AlgorithmCode/efmiAlgor
ithmCodeManifest.xsd" 
    xsdVersion="0.1113.0" 
    kind="AlgorithmCode" 
    efmiVersion="1.0.0"    
    id="{1e111db5-90e6-4e17-b2e5-4e215dbbdd49}"  
    name="PID controller discretized by Explicit Euler method"   
    version="0.1" 
    generationDateAndTime="2020-11-10T12:33:22Z" 
    generationTool="Manual" 
    license="MIT"> 
 

    <ManifestReferences> 



        <ManifestReference id="ID_EquationCodeManifest" 
manifestRefId="{45e8177d-7d1b-4e0e-95d1-ab777bb508b0}" 
checksum="" origin="false"/> 
    </ManifestReferences> 
 
    <Files> 
        <File 
            name="Controller.alg" 
            id="FileID_1" 
            path="."="./" 
            needsChecksum="false" 
            role="Code"/> 
    </Files> 
 
    <Clock id="ID_Clock" variableRefId="ID_7"/> 
     
    <BlockMethods fileRefId="FileID_1" 
writeOutputs="AsSoonAsPossible"> 
        <BlockMethod id="ID_Startup" kind="Startup"/> 
        <BlockMethod id="ID_Recalibrate" kind="Recalibrate"/> 
        <BlockMethod id="ID_DoStep" kind="DoStep"/> 
    </BlockMethods> 
     
    <ErrorSignalStatus id="ID_ErrorSignalStatus"/> 
     
    <Variables>  
        <RealVariable 
            name="'limiter.uMin'" 
            id="ID_1" 
            blockCausality="dependentParameter" 
            start="-400.0" 
            min="-1.0e5" 
            max="-1.0"/> 
        <RealVariable 
            name="'limiter.uMax'" 
            id="ID_2" 
            blockCausality="tunableParameter" 
            start="400.0" 
            min="1.0" 
            max="1.0e5"/> 
        <RealVariable 
            name="Ti" 
            id="ID_3" 
            blockCausality="tunableParameter" 
            start="0.1" 
            min="1.0e-7" 
            max="100.0"/> 
        <RealVariable 
            name="Td" 
            id="ID_4" 
            blockCausality="tunableParameter" 
            start="0.1" 
            min="1.0e-7" 
            max="100.0"/> 
        <RealVariable 
            name="kd" 
            id="ID_5" 
            blockCausality="tunableParameter" 
            start="0.1" 
            min="0.0" 
            max="1000.0"/> 
        <RealVariable 
            name="k" 
            id="ID_6" 



            blockCausality="tunableParameter" 
            start="10.0" 
            min="0.0" 
            max="1000.0"/> 
        <RealVariable 
            name="stepSize" 
            id="ID_7" 
            blockCausality="tunableParameter" 
            start="1e-3" 
            min="1.0e-10" 
            max="0.01"/> 
        <RealVariable 
            name="gearRatio" 
            id="ID_8" 
            blockCausality="tunableParameter" 
            start="105.0" 
            min="10.0" 
            max="500.0"/> 
        <RealVariable 
            name="wLoadRef" 
            id="ID_9" 
            blockCausality="input" 
            start="0.0" 
            min="-1.0e5" 
            max="1.0e5"> 

            <ForeignVariableReference 
manifestReferenceRefId="ID_EquationCodeManifest" 
foreignRefId="wLoadRef"/> 
        </RealVariable> 
        <RealVariable 
            name="wMotor" 
            id="ID_10" 
            blockCausality="input" 
            start="0.0" 
            min="-1.0e5" 
            max="1.0e5"> 

            <ForeignVariableReference 
manifestReferenceRefId="ID_EquationCodeManifest" 
foreignRefId="wMotor"/> 
        </RealVariable> 
        <RealVariable 
            name="vMotor" 
            id="ID_11" 
            blockCausality="output" 
            start="0.0" 
            min="-1.0e7" 
            max="1.0e7"> 

            <ForeignVariableReference 
manifestReferenceRefId="ID_EquationCodeManifest" 
foreignRefId="vMotor"/> 
        </RealVariable> 
        <RealVariable 
            name="'PID.I.x'" 
            id="ID_12" 
            blockCausality="state" 
            start="0.0"/> 
        <RealVariable 
            name="'PID.D.x'" 
            id="ID_13" 
            blockCausality="state" 



            start="0.0"/> 
        <RealVariable 
            name="'previous(feedback.y)'" 
            id="ID_14" 
            blockCausality="state" 
            start="0.0"/> 
        <BooleanVariable 
            name="firstTick" 
            id="ID_15" 
            blockCausality="state" 
            start="true"/> 
    </Variables> 
 
</Manifest> 

Mathematical Example using builtin Functions 

The following example implements a linearly implicit second order differential equation 
system of the form M(x)*x'' = F(x,u), y = g(x) with an invertible matrix M(x) for a state vector x, 
inputs u and outputs y. The vector functions F and g describe the right hand sides of the 
dynamical system and the output equation respectively. 

The following implementation in eFMI GALEC code is based on a discretization by the Explicit 
Euler method. Further, there are several expressions in M and F that use builtin functions like 
sin, cos and exp. Additionally, the builtin function solveLinearEquations is used to 
solve the linear system of equations. The respective eFMI GALEC program is: 

block LinearEquationSystem 
    input Real u[4];] (min=-1.0e7, max=1.0e7); 
    output Real y[4]; 
 
protected 
    // Constants: 
    constant Real pi; 
    constant Real stepSize; 
 
    // Discrete states: 
    Real x[4]; 
    Real v[4]; 
    Real 'derivative(x)'[4]; 
    Real 'derivative(v)'[4]; 
     
 
public 
    /* 
        Startup function: Called once at startup to initialize 
the 
          internal memory of the block and return initial 
outputs. 
    */ 
    method Startup 
    algorithm 
        // Initialize constants 
        self.pi := 3.141592653589793; 
        self.stepSize := 1.0e-2; 
 
        // Initialize discrete states: 
        self.x := {-3.0, 7.0, 19.0, 1.0}; 
        self.v := {0.0, 0.0, 0.0, 0.0}; 
 
        // Initial values for derivatives: 
        self.'derivative(x)' := {0.0, 0.0, 0.0, 0.0}; 



        self.'derivative(v)' := {0.0, 0.0, 0.0, 0.0}; 
 
        // Return initial control-outputs: 
        self.y := {0.0, 0.0, 0.0, 0.0}; 
    end Startup; 
 
 
    method Recalibrate 
    algorithm 
    end Recalibrate; 
 
 
    /* 
        Control-cycle function: Called at every clock tick. 
    */ 
    method DoStep    
    protected 
        Real M[4,4]; 
        Real F[4]; 
        
    algorithm 
        self.x := self.x + self.stepSize * self.'derivative(x)'; 
        self.v := self.v + self.stepSize * self.'derivative(v)'; 
 
        self.y := { 
            sin(self.x[1]) + self.x[3], 
            -self.x[2], 
            self.pi * 2.0 * cos(self.x[4] - self.x[2]), 
            self.x[3] + self.x[1] / self.x[4] 
        }; 
 
        // Check for NaN, e.g. if there was no solution of the 
linear system in the previous call 
        if isNaN(self.y[1]) or isNaN(self.y[2]) or 
isNaN(self.y[3]) or isNaN(self.y[4]) then 
            // Re-initialize the whole system to its start state 
            self.x := {-3.0, 7.0, 19.0, 1.0}; 
            self.v := {0.0, 0.0, 0.0, 0.0}; 
            self.y := {0.0, 0.0, 0.0, 0.0}; 
        end if; 
 
        M := { 
            { 
                -sin(self.x[3] + self.x[4]), 
                self.x[4]^2 - self.x[2]^3, 
                -4.0 * exp(self.x[3] * self.x[1]), 
                cos(-self.x[2]) * self.x[3] 
            }, 
            { 
                (self.x[2] + 2.0 * self.x[4]) / self.x[1], 
                -self.x[1], 
                self.x[1] * self.x[2], 
                sin(self.x[1] * self.x[2] * self.x[3]) 
            }, 
            { 
                -self.x[4] + self.x[2] * self.x[1], 
                6.0 * self.pi * cos(self.x[2]), 
                -self.x[2], 
                2.0 * (self.x[1] + sin(self.x[3] * self.pi)) 
            }, 
            { 
                self.x[1]+cos(self.x[3]),     
                -2.0*self.x[3]*self.x[4], 
                -4.0 * self.x[3] * cos(self.x[2]), 



                self.x[4] - self.x[1] * self.x[2] 
            } 
        }; 
        F := { 
            self.u[1] - self.x[3]^2, 
            -self.u[4] + self.x[2] * cos(self.x[1]), 
            -self.u[4] + self.u[2] * self.x[4], 
            self.u[2] + self.u[3] 
        }; 
 
        self.'derivative(v)' := solveLinearEquations(M, F); 
        self.'derivative(x)' := self.v; 
 
    end DoStep; 
end LinearEquationSystem; 

The manifest summarising the controller’s interface is: 

<?xml version="1.0" encoding="UTF-8"?> 
<Manifest 
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
    
xsi:noNamespaceSchemaLocation="../schemas/AlgorithmCode/efmiAlgor
ithmCodeManifest.xsd" 
    efmiVersion="1.0.0" 
    xsdVersion="0.1113.0" 
    id="{351131cd-1e50-46d0-913a-240451d247c7}" 
    kind="AlgorithmCode" 
    name="Dynamic system discretized by Explicit Euler method" 
    generationDateAndTime="2020-10-15T16:49:20Z" 
    version="0.4.0" 
    generationTool="Manual" 
    license="MIT"> 
 

    <ManifestReferences> 
        <ManifestReference id="ID_MNFST_1" 
manifestRefId="{45e8177d-7d1b-4e0e-95d1-ab777bb508b0}" 
checksum="" origin="false"/> 
    </ManifestReferences> 
 
    <Files> 
        <File 
            name="Controller.alg" 
            id="FileID_1" 
            path="."="./" 
            needsChecksum="false" 
            role="Code"/> 
    </Files> 
 
    <Clock id="ID_Clock" variableRefId="ID_2"/> 
 
    <BlockMethods fileRefId="FileID_1" 
writeOutputs="AsSoonAsPossible"> 
        <BlockMethod id="ID_Startup" kind="Startup"/> 
        <BlockMethod id="ID_Recalibrate" kind="Recalibrate"/> 
        <BlockMethod id="ID_DoStep" kind="DoStep"/> 
    </BlockMethods> 
 
    <ErrorSignalStatus id="ID_ErrorSignal"/> 
 
    <Variables> 
        <RealVariable 



            name="pi" 
            id="ID_1" 
            blockCausality="constant" 
            start="3.141592653589793"/> 
        <RealVariable 
            name="stepSize" 
            id="ID_2" 
            blockCausality="constant" 
            start="1e-2"/> 
        <RealVariable  
            name="u" 
            id="ID_3" 
            blockCausality="input" 
            start="0.0 0.0 0.0 0.0">" 
            min="-1.0e7" 
            max="1.0e7"> 
            <Dimensions> 
                <Dimension number="1" size="4"/> 
            </Dimensions> 

            <ForeignVariableReference 
manifestReferenceRefId="ID_MNFST_1" foreignRefId="u"/> 
        </RealVariable> 
        <RealVariable 
            name="y" 
            id="ID_4" 
            blockCausality="output" 
            start="0.0 0.0 0.0 0.0"> 
            <Dimensions> 
                <Dimension number="1" size="4"/> 
            </Dimensions> 

            <ForeignVariableReference 
manifestReferenceRefId="ID_MNFST_1" foreignRefId="y"/> 
        </RealVariable> 
        <RealVariable 
            name="v" 
            id="ID_5" 
            blockCausality="state" 
            start="0.0 0.0 0.0 0.0"> 
            <Dimensions> 
                <Dimension number="1" size="4"/> 
            </Dimensions> 
        </RealVariable> 
        <RealVariable 
            name="x" 
            id="ID_6" 
            blockCausality="state" 
            start="-3.0 7.0 19.0 1.0"> 
            <Dimensions> 
                <Dimension number="1" size="4"/> 
            </Dimensions> 
        </RealVariable> 
        <RealVariable 
            name="'derivative(x)'" 
            id="ID_7" 
            blockCausality="state" 
            start="0.0 0.0 0.0 0.0"> 
            <Dimensions> 
                <Dimension number="1" size="4"/> 
            </Dimensions> 
        </RealVariable> 
        <RealVariable 



            name="'derivative(v)'" 
            id="ID_8" 
            blockCausality="state" 
            start="0.0 0.0 0.0 0.0"> 
            <Dimensions> 
                <Dimension number="1" size="4"/> 
            </Dimensions> 
        </RealVariable> 
    </Variables> 
 
</Manifest> 

Vehicle model with implicit integration method 

The following example presents a discretized vehicle model. The model equations and 
parameters are according to Section 6.8 Rollover Avoidance of the book J. Ackermann et al.: 
Robust Control, Springer 2002 with some further assumptions. The vehicle model is a single 
track model with roll augmentation. The discretization is realized by a linear implicit Runge-
Kutta method of order 1 (Rosenbrock method, linear implicit Euler method) suited for stiff 
systems. For such methods the input signals have to be differentiated, therefore the 
derivatives of the original input variables are added as inputs of the discretized model. 

The example demonstrates the use of for-loops, vectors and matrices as well as several builtin 
functions, particularly for solving linear equation systems. The eFMI GALEC program is: 

block VehicleModel 
    input Real u[2];](min=-1.0e7, max=1.0e7); 
    input Real 'derivative(u)'[2];](min=-1.0e7, max=1.0e7); 
    output Real x[8]; 
 
    // Tunable parameters (can be changed via recalibration): 
    parameter Real FdF; 
    parameter Real m; 
    parameter Real m2; 
    parameter Real h; 
    parameter Real lF; 
    parameter Real lR; 
    parameter Real g; 
    parameter Real Jx2; 
    parameter Real mu; 
    parameter Real cF; 
    parameter Real cR; 
    parameter Real Jz1; 
    parameter Real Jz2; 
    parameter Real Jy2; 
    parameter Real cphi; 
    parameter Real dphidot; 
    parameter Real b1; 
    parameter Real b2; 
    parameter Real stepSize; 
 
protected 
    // Dependent parameters: 
    parameter Real FlV; 
    parameter Real FzR; 
    parameter Real FzF; 
 
    // Discrete states: 
    Real q[4]; 
    Real dx[8]; 
 
public 



    /* 
        Startup function: Called once at startup to initialize 
the 
          internal memory of the block and return initial 
outputs. 
    */ 
    method Startup 
    algorithm 
        // Initialize tunable parameters 
        self.FdF := 15.0; 
        self.m := 14300.0; 
        self.m2 := 12487.0; 
        self.h := 1.15; 
        self.lF := 1.95; 
        self.lR := 1.54; 
        self.g := 9.81; 
        self.Jx2 := 24201.0; 
        self.mu := 1.0; 
        self.cF := 582.0e+3; 
        self.cR := 783.0e3; 
        self.Jz1 := 3654.0; 
        self.Jz2 := 34917.0; 
        self.Jy2 := 3491.7; 
        self.cphi := 457.0e+3; 
        self.dphidot := 100.0e3; 
        self.b1 := 0.2; 
        self.b2 := 0.1; 
        self.stepSize := 1.0e-2; 
 
        // Initialize dependent parameters 
        self.FlV := self.FdF; 
        self.FzR := self.m*self.g*self.lF/(self.lR + self.lF); 
        self.FzF := self.m*self.g - self.FzR; 
 
        // Initialize inputs 
        // u = {0.0, 0.0}; 
        // 'derivative(u)' = {0.0, 0.0}; 
 
        // Initialize states and outputs 
        self.q := {0.0, 0.0, 0.0, 0.0}; 
        self.dx := {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; 
        self.x := {0.0, 0.0, 0.0, 0.0, 10.0, 0.0, 0.0, 0.0}; 
    end Startup; 
     
    /* 
        Recalibration function: Called to change tunable 
parameters 
          during operation. 
    */ 
    method Recalibrate 
    algorithm 
        // Update dependent parameters: 
        self.FlV := self.FdF; 
        self.FzR := self.m*self.g*self.lF/(self.lR + self.lF); 
        self.FzF := self.m*self.g - self.FzR; 
    end Recalibrate;     
     
    /* 
        Control-cycle function: Called at every clock tick. 
    */ 
    method DoStep 
    protected 
        Real sx; 
        Real sy; 



        Real psi; 
        Real phi; 
        Real vx; 
        Real vy; 
        Real r; 
        Real phidot; 
        Real delta; 
        Real FyD; 
        Real q1; 
        Real q2; 
        Real q3; 
        Real q4; 
        Real deltadot; 
        Real FyDdot; 
 
        Real FdF; 
        Real FlV; 
        Real m; 
        Real m2; 
        Real h; 
        Real lF; 
        Real lR; 
        Real g; 
        Real Jx2; 
        Real mu; 
        Real cF; 
        Real cR; 
        Real Jz1; 
        Real Jz2; 
        Real Jy2; 
        Real FzR; 
        Real FzF; 
        Real cphi; 
        Real dphidot; 
        Real b1; 
        Real b2; 
 
        Real G[4,4]; 
 
        Real rs2[4]; 
        Real dx1[4]; 
 
        Real help1; 
        Real help2; 
        Real help3; 
 
    algorithm 
 
        for i in 1:8 loop 
            self.x[i] := self.x[i] + self.dx[i]; 
        end for; 
 
        for i in 1:4 loop 
            self.q[i] := self.dx[4+i]/self.stepSize; 
        end for; 
 
        sx     := self.x[1]; 
        sy     := self.x[2]; 
        psi    := self.x[3]; 
        phi    := self.x[4]; 
        vx     := self.x[5]; 
        vy     := self.x[6]; 
        r      := self.x[7]; 
        phidot := self.x[8]; 



 
        delta  := self.u[1]; 
        FyD    := self.u[2]; 
 
        q1     := self.q[1]; 
        q2     := self.q[2]; 
        q3     := self.q[3]; 
        q4     := self.q[4]; 
 
        deltadot := self.'derivative(u)'[1]; 
        FyDdot   := self.'derivative(u)'[2]; 
 
        FdF := self.FdF; 
        FlV := self.FlV; 
 
        m   := self.m; 
        m2  := self.m2; 
        h   := self.h; 
        lF  := self.lF; 
        lR  := self.lR; 
        g   := self.g; 
        Jx2 := self.Jx2; 
 
        mu := self.mu; 
        cF := self.cF; 
        cR := self.cR; 
 
        Jz1     := self.Jz1; 
        Jz2     := self.Jz2; 
        Jy2     := self.Jy2; 
        FzR     := self.FzR; 
        FzF     := self.FzF; 
        cphi    := self.cphi; 
        dphidot := self.dphidot; 
 
        b1 := self.b1; 
        b2 := self.b2; 
 
        help1 := sqrt(vx^2 + vy^2); 
        help2 := (vx^2 + vy^2)^1.5; 
        help3 := h^2*m2 + Jy2 - Jz2; 
 
        G[1,1] := 
            ( 
                  mu*(lF*r*vx + 
help1*vy)*self.stepSize*cF*sin(delta) 
                + help2*m 
            ) 
            / (help2*self.stepSize); 
        G[1,2] := 
            -( 
                   mu*(-lF*r*vy + help1*vx)*cF*sin(delta) 
                + help2*r*m 
            ) 
            / help2; 
        G[1,3] := 
            ( 
                  2.0*h*m2*phidot*cos(phi)*self.stepSize*help1 
                - mu*cF*lF*sin(delta)*self.stepSize 
                + h*m2*sin(phi)*help1 
                - m*vy*self.stepSize*help1 
            ) 
            / (self.stepSize*help1); 
        G[1,4] := 



            h*m2*( 
                  -2.0*sin(phi)*phidot*r*self.stepSize 
                + cos(phi)*q3*self.stepSize 
                + 2.0*r*cos(phi) 
            ); 
        G[2,1] := 
            ( 
                  (-cos(delta)*cF*mu*vy - cR*mu*vy + 
m*r*(vx^2+vy^2))*help1 
                - r*mu*vx*(cos(delta)*cF*lF - cR*lR) 
            ) 
            / help2; 
        G[2,2] := 
            ( 
                  (cos(delta)*cF*mu*vx*self.stepSize + 
cR*mu*vx*self.stepSize + m*(vx^2 + vy^2))*help1 
                - self.stepSize*r*mu*vy*(cos(delta)*cF*lF - 
cR*lR) 
            ) 
            / (help2*self.stepSize); 
        G[2,3] := 
            ( 
                  2.0*h*m2*r*sin(phi)*help1 
                + mu*cF*lF*cos(delta) 
                + m*vx*help1 
                - mu*cR*lR 
            ) 
            / help1; 
        G[2,4] := 
            m2*( 
                  (-1.0 + (phidot^2 + 
r^2)*self.stepSize^2)*cos(phi) 
                + self.stepSize*sin(phi)*(q4*self.stepSize + 
2.0*phidot) 
            ) 
            * (h/self.stepSize); 
        G[3,1] := 
            ( 
                ( 
                      -cos(delta)*cF*lF*mu*vy*self.stepSize 
                    + h*m2*(vx^2 + vy^2)*sin(phi) 
                    + cR*lR*mu*vy*self.stepSize 
                ) * help1 
                - self.stepSize*r*mu*vx*(lF^2*cF*cos(delta) + 
lR^2*cR) 
            ) 
            / (help2*self.stepSize); 
        G[3,2] := 
            -( 
                  (-cos(delta)*cF*lF*mu*vx + h*r*m2*(vx^2 + 
vy^2)*sin(phi) + cR*lR*mu*vx)*help1 
                + vy*r*mu*(lF^2*cF*cos(delta) + lR^2*cR) 
            ) 
            / help2; 
        G[3,3] := 
            2.0*( 
                ( 
                      (-0.5*h^2*m2 - 0.5*Jy2 + 
0.5*Jz2)*cos(phi)^2 
                    + 
phidot*self.stepSize*sin(phi)*help3*cos(phi) 
                    - 0.5*sin(phi)*h*m2*vy*self.stepSize 
                    + 0.5*h^2*m2 
                    + 0.5*Jy2 



                    + 0.5*Jz1 
                ) * help1 
                + 0.5*mu*self.stepSize*(lF^2*cF*cos(delta) + 
lR^2*cR) 
            ) 
            / (help1*self.stepSize); 
        G[3,4] := 
              4.0*phidot*self.stepSize*r*help3*cos(phi)^2 
            + (2.0*help3*(q3*self.stepSize + r)*sin(phi) - 
h*self.stepSize*m2*(r*vy - q1))*cos(phi) 
            - 2.0*phidot*self.stepSize*r*help3; 
        G[4,1] := -h*m2*r*cos(phi); 
        G[4,2] := -h*m2*cos(phi) / self.stepSize; 
        G[4,3] := -2.0*(help3*r*sin(phi) + 0.5*h*m2*vx)*cos(phi); 
        G[4,4] := 
            ( 
                  -2.0*self.stepSize^2*r^2*help3*cos(phi)^2 
                - cos(phi)*g*h*m2*self.stepSize^2 
                + self.stepSize^2*h*m2*(r*vx + q2)*sin(phi) 
                + (help3*r^2 + cphi)*self.stepSize^2 
                + dphidot*self.stepSize 
                + h^2*m2 
                + Jx2 
            ) 
            / self.stepSize; 
 
        rs2[1] := 
            2.0*( 
                ( 
                      -0.5*self.stepSize*(cF*mu*(delta - 
atan2(vy, vx))*cos(delta) + sin(delta)*(cF*mu + FlV))*deltadot 
                    + 0.5*atan2(vy, vx)*sin(delta)*cF*mu 
                    - 0.5*sin(delta)*cF*delta*mu 
                    - 0.5*h*m2*phidot*(q3*self.stepSize + 
2.0*r)*cos(phi) 
                    + 0.5*FlV*cos(delta) 
                    + r*(sin(phi)*h*m2*phidot^2*self.stepSize + 
0.5*m*vy) 
                ) * help1 
                + 
0.5*cF*lF*mu*r*(deltadot*cos(delta)*self.stepSize + sin(delta)) 
            ) 
            / help1; 
        rs2[2] := 
            -( 
                ( 
                    ( 
                          mu*cF*(delta - atan2(vy, 
vx))*sin(delta) 
                        - cos(delta)*(cF*mu + FlV) 
                    ) * (self.stepSize*deltadot) 
                    - FyDdot*self.stepSize 
                    + mu*(cos(delta)*cF + cR)*atan2(vy, vx) 
                    - cos(delta)*cF*delta*mu 
                    + h*m2*(phidot*q4*self.stepSize + 
phidot^2+r^2)*sin(phi) 
                    + h*phidot*self.stepSize*m2*(phidot^2 + 
r^2)*cos(phi) 
                    + m*r*vx 
                    - FlV*sin(delta) 
                    - FyD 
                ) * help1 
                - mu*r*(self.stepSize*sin(delta)*deltadot*cF*lF - 
cos(delta)*cF*lF + cR*lR) 



            ) 
            / help1; 
        rs2[3] := 
            -2.0*( 
                ( 
                      0.5*lF*(mu*cF*(delta - atan2(vy, 
vx))*sin(delta) - cos(delta)*(cF*mu + 
FlV))*self.stepSize*deltadot 
                    - 0.5*FyDdot*b1*self.stepSize 
                    + 0.5*mu*(cos(delta)*cF*lF - cR*lR)*atan2(vy, 
vx) 
                    + 
2.0*r*phidot^2*self.stepSize*help3*cos(phi)^2 
                    + phidot*(help3*(q3*self.stepSize + 
r)*sin(phi) + 0.5*h*self.stepSize*m2*(-r*vy + q1))*cos(phi) 
                    - 0.5*sin(phi)*h*m2*r*vy 
                    - 0.5*cos(delta)*cF*delta*lF*mu 
                    - 0.5*FlV*sin(delta)*lF 
                    - r*phidot^2*self.stepSize*help3 
                    - 0.5*b1*FyD 
                ) * help1 
                - 
0.5*r*mu*(deltadot*sin(delta)*cF*lF^2*self.stepSize - 
lF^2*cF*cos(delta) - lR^2*cR) 
            ) 
            / help1; 
        rs2[4] := 
              self.stepSize*b2*FyDdot 
            + 2.0*phidot*self.stepSize*r^2*help3*cos(phi)^2 
            + (r^2*help3*sin(phi) + h*m2*(g*phidot*self.stepSize 
+ r*vx))*cos(phi) 
            + (-phidot*(r*vx+q2)*self.stepSize + g)*h*m2*sin(phi) 
            - phidot*(help3*r^2 + cphi)*self.stepSize 
            - cphi*phi 
            - dphidot*phidot 
            + b2*FyD; 
 
        dx1 := solveLinearEquations(G, rs2); 
        for i in 1:4 loop 
            self.dx[4+i] := dx1[i]; 
            self.dx[i] := self.stepSize*(self.x[4+i]+dx1[i]); 
        end for; 
 
        // Check for NaN, caused by e.g. a failed solution of the 
linear system 
        if isNaN(self.x[1]) or isNaN(self.x[2]) or 
isNaN(self.x[3]) or isNaN(self.x[4]) or  
           isNaN(self.x[5]) or isNaN(self.x[6]) or 
isNaN(self.x[7]) or isNaN(self.x[8]) then 
           self.q := {0.0, 0.0, 0.0, 0.0}; 
           self.dx := {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; 
           self.x := {0.0, 0.0, 0.0, 0.0, 10.0, 0.0, 0.0, 0.0}; 
        end if; 
 
    end DoStep; 
end VehicleModel; 

The resulting manifest is: 

<?xml version="1.0" encoding="utf-8"?> 
<Manifest efmiVersion="1.0.0" 
          generationDateAndTime="2020-10-15T16:52:13Z" 
          generationTool="Manual" 



          id="{e3eae104-6417-4783-8c05-7c14e6fab8a6}" 
          kind="AlgorithmCode" 
          license="MIT" 
          name="Vehicle model discretized by Linearly implicit 
Euler method" 
          version="0.2" 
          xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
          xsdVersion="0.1113.0" 
          
xsi:noNamespaceSchemaLocation="../schemas/AlgorithmCode/efmiAlgor
ithmCodeManifest.xsd"> 

  <ManifestReferences> 
    <ManifestReference id="ID_MNFST_1" manifestRefId="{45e8177d-
7d1b-4e0e-95d1-ab777bb508b0}" checksum="" origin="false"/> 
  </ManifestReferences> 
  <Files> 
    <File 
          id="FileID_1" 
          name="Controller.alg" 
          needsChecksum="false" 
          path="."="./" 
          role="Code" /> 
  </Files> 
  <Clock id="ID_Clock" variableRefId="ID_1" /> 
  <BlockMethods fileRefId="FileID_1" 
writeOutputs="AsSoonAsPossible"> 
    <BlockMethod id="ID_Startup" kind="Startup" /> 
    <BlockMethod id="ID_DoStep" kind="DoStep" /> 
    <BlockMethod id="ID_Recalibrate" kind="Recalibrate" /> 
  </BlockMethods> 
  <ErrorSignalStatus id="ID_ErrorSignal"/> 
  <Variables> 
    <RealVariable blockCausality="tunableParameter" 
          id="ID_1" 
          name="stepSize" 
          start="1e-2" /> 
    <RealVariable blockCausality="tunableParameter" 
          id="ID_2" 
          name="FdF" 
          start="15.0" /> 
    <RealVariable blockCausality="dependentParameter" 
          id="ID_3" 
          name="FlV" 
          start="15.0" /> 
    <RealVariable blockCausality="tunableParameter" 
          id="ID_4" 
          name="m" 
          start="14300.0" /> 
    <RealVariable blockCausality="tunableParameter" 
          id="ID_5" 
          name="m2" 
          start="12487.0" /> 
    <RealVariable blockCausality="tunableParameter" 
          id="ID_6" 
          name="h" 
          start="1.15" /> 
    <RealVariable blockCausality="tunableParameter" 
          id="ID_7" 
          name="lF" 
          start="1.95" /> 
    <RealVariable blockCausality="tunableParameter" 
          id="ID_8" 
          name="lR" 



          start="1.54" /> 
    <RealVariable blockCausality="tunableParameter" 
          id="ID_9" 
          name="g" 
          start="9.81" /> 
    <RealVariable blockCausality="tunableParameter" 
          id="ID_10" 
          name="Jx2" 
          start="24201.0" /> 
    <RealVariable blockCausality="tunableParameter" 
          id="ID_11" 
          name="mu" 
          start="1.0" /> 
    <RealVariable blockCausality="tunableParameter" 
          id="ID_12" 
          name="cF" 
          start="582e3" /> 
    <RealVariable blockCausality="tunableParameter" 
          id="ID_13" 
          name="cR" 
          start="783e3" /> 
    <RealVariable blockCausality="tunableParameter" 
          id="ID_14" 
          name="Jz1" 
          start="3654.0" /> 
    <RealVariable blockCausality="tunableParameter" 
          id="ID_15" 
          name="Jz2" 
          start="34917.0" /> 
    <RealVariable blockCausality="tunableParameter" 
          id="ID_16" 
          name="Jy2" 
          start="3491.7" /> 
    <RealVariable blockCausality="dependentParameter" 
          id="ID_17" 
          name="FzR" 
          start="0.0" /> 
    <RealVariable blockCausality="dependentParameter" 
          id="ID_18" 
          name="FzF" 
          start="0.0" /> 
    <RealVariable blockCausality="tunableParameter" 
          id="ID_19" 
          name="cphi" 
          start="457.0e+3" /> 
    <RealVariable blockCausality="tunableParameter" 
          id="ID_20" 
          name="dphidot" 
          start="100.0e3" /> 
    <RealVariable blockCausality="tunableParameter" 
          id="ID_21" 
          name="b1" 
          start="0.2" /> 
    <RealVariable blockCausality="tunableParameter" 
          id="ID_22" 
          name="b2" 
          start="0.1" /> 
    <RealVariable blockCausality="input" 
          id="ID_23" 
          name="u" 
          start="0.0 0.0">      " 
          min="-1.0e7" 
          max="1.0e7"> 
      <Dimensions> 



        <Dimension number="1" 
                   size="2" /> 
      </Dimensions> 

      <ForeignVariableReference 
manifestReferenceRefId="ID_MNFST_1" foreignRefId="u"/> 
    </RealVariable> 
    <RealVariable blockCausality="input" 
          id="ID_24" 
          name="&#39;derivative(u)&#39;" 
          start="0.0 0.0">" 
          min="-1.0e7" 
          max="1.0e7"> 
      <Dimensions> 
        <Dimension number="1" 
                   size="2" /> 
      </Dimensions> 

      <ForeignVariableReference 
manifestReferenceRefId="ID_MNFST_1" 
foreignRefId="'derivative(u)'"/> 
    </RealVariable> 
    <RealVariable blockCausality="output" 
          id="ID_25" 
          name="x" 
          start="0.0 0.0 0.0 0.0 10.0 0.0 0.0 0.0"> 
      <Dimensions> 
        <Dimension number="1" 
                   size="8" /> 
      </Dimensions> 

      <ForeignVariableReference 
manifestReferenceRefId="ID_MNFST_1" foreignRefId="x"/> 
    </RealVariable> 
    <RealVariable blockCausality="state" 
          id="ID_26" 
          name="q" 
          start="0.0 0.0 0.0 0.0"> 
      <Dimensions> 
        <Dimension number="1" 
                   size="4" /> 
      </Dimensions> 
    </RealVariable> 
    <RealVariable blockCausality="state" 
          id="ID_27" 
          name="dx" 
          start="0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0"> 
      <Dimensions> 
        <Dimension number="1" 
                   size="8" /> 
      </Dimensions> 
    </RealVariable> 
  </Variables> 
</Manifest> 

5. Production Code Model Representation 

5.1. Introduction 



A Production Code Model Representation of an eFMU container contains the actual sources 
that implement the algorithm expressed in Algorithm Code Model Representation of the same 
eFMU container. 

As mentioned before an eFMU container can contain any number of Production Code Model 
Representations. 

 

The following code parts may be present inside each Production Code Model Representation: 

• Production Code: This section contains the actual Production Code running on the 
embedded device. In later development steps it shall be compiled and linked to be 
integrated on the target embedded device. 

• [optional] Simulation Code: This code is used to simulate the target environment of the 
Production Code. It may provide stub functions for communication with other software 
functions. 

• [optional] Tool Specific Code: Tool Specific Code may help tools to integrate the 
Production Code in their (execution) environment. 

• [optional] FMU container: This FMU container may be extracted and copied to the 
surrounding FMU Data to be consumed by FMI compatible tools directly. 

The structure of the Model Representation is organized in a folder structure, but not 
standardized. Instead, the actual structure of the Model Representations’s content, e.g. code at 
least as far as interfaces and externally accessible parts are concerned, is formally described in 
the manifest file of the Model Representation. The Model Representation is "registered" in the 
"__content.xml" registry of the eFMU container. 



The manifest itself references to a manifest of a Algorithm Code Model Representation for 
more detailed information. 

For each different target - the combination of compiler and processor - there exist a dedicated 
Production Code section inside an eFMU container. A special target is the generic one, where 
the included C code doesn’t contain target specific parts, e.g. assember code sections or code 
assuming a certain hardware platform. Such a generic C code is therefore portable, i.e. 
compilable on an ARM architecture as well as on a i86 architecture. This flexibility allows for 
including an FMU into the Production Code Model Representation, that uses the generated 
Production Code and a FMI compatible interface. 

 

An example use case for the FMU container is an early back-to-back test while 

already using the target datatypes: After modelling an controller, developers can 

easily check the resulting Production Code using FMI compatible tools.  

A generic target allows for testing and simulating the Production Code in an environment 
other than the target embedded device, which may require additional software parts to 
interface with the environment. These software parts can simulate parts of an operating 
system of the microcontroller, create stubs to represent other software functions that interact 
with the software-under-test or handle inputs, outputs and the execution. 

 Testing a Production Code Model Representation in a Processor-in-the-Loop 

scenario, tools using their own execution frame on the targed board. To support 



these use-cases this kind of code can be stored as Tool Specific Code inside the 

Production Code Model Representation. The name of the tool and its version have 

to be specified in the manifest file referencing the code.  

5.2. Production Code Manifest 

The Production Code manifest follows the general guidelines as pertaining to all manifests, 
including the listing of relevant manifests and files. In addition it describes the content of the 
"Code Files": 

On the top level, the schema consists of the following elements: 

Name Description 

attributes 
The attributes of the top-level element are the same for all 
manifest kinds and are defined in section Section 2.3.1. 
Current kind-specific values: kind = 
"ProductionCode", xsdVersion (value is the current 



Name Description 

xsd version of the schema for the Algorithm Code model 
manifest). 

ManifestReferences 

Reference to the manifest of the Algorithm Code on which 
this Production Code manifest is based on. This element is 
the same for all manifest kinds and is defined in section 
Section 2.3.4.3. 

Files 
List of files referenced in this model representation. This 
element is the same for all manifest kinds and is defined in 
section Section 2.3.3. 

CodeContainer 
Defines the details of the production code. For details see 
Section 5.2.2. 

Annotations 
Additional data that a vendor might want to store and that 
other vendors might ignore. For details see Section 2.3.4.5. 

The Production Code manifest describes the structure of the contained "Production Code". 
Languages for the producion code include the "C" language and the "C++" language. The 
manifest will give more detailed information on the exact requirements on the Production 
Code language to integrate the code into an actual ECU software content. 

 

The Production Code manifest focusses on aspect directly tied to the Production 

Code itself in particular the technical aspects. Relevant aspect relating to the 

algorithm or the "logical" concepts are referred to from the Algorithm Code 

manifest (e.g. whether an object is a state or calibration parameter, input or output 

etc.).  

The Production Code manifest is an xml file with structured information about the Production 
Code. It contains two sections: 

• Production code description section: This section contains all information directly 
pertaining to the code itself, i.e. the "technical realisation". 

• Mapping section: this section contains all information relating to mapping the elements of 
the technical realistion (aka. the C-code) to the logical elements of the Algorithm Code. 

This distinction into logical (as e.g. described in the Algorithm Code) and technical parts is 
crucial and is shown in one example here. 

Example: Suppose a (logical) function f that computes outputs y1 and y2 from inputs x1 and 
x2 and a state s1 using parameters p1 and p2. This logical function could be implemented in 
several ways, e.g.: 



• f1 working on global variables only. In this case the (technical) function signature is that 
of a void void function and the expressions directly access the elements. 

void f1() { 

    ... 

    s1 = ...  // update of state s1 

    y1 = ...  // y1 expression 

    y2 = ...  // y2 expression 

} 

• f2 that takes the inputs as arguments and returns output y1 as return value and y2 via a 
pointer. Access to state and parameters is through global variables 

float f2(float x1, float x2, float *y2) { 

    ... 

    s1 = ...  // update of state s1 

    *y2 = ...  // y2 expression 

    return ...;  // y1 expression 

} 

• f3 that that works like f2 but takes the states as a struct with two elements 

… typedef struct { float s; float t; } states; 

… 

float f3(float x1, float x2, states myStates, float *y2) { … myStates.s = … // update of state s1 
*y2 = … // y2 expression return …; // y1 expression } 

• f4: In this example the parameter and the state are coupled in a data structure (e.g. a 
spring with parameter being the rigidity of the spring and the state being the deflection). 
As both are not in the same memory (one is in ROM the other in RAM), the one value is 
referenced per pointer. The C function itselfs takes as input an array with the two pairs. 

... 
typedef struct { 
   float *deflection; 
   float rigidity; 
} spring; 
 
.... 
 
float f4(float x1, float x2, spring[] springs, float *y2) { 
    ... 
    springs[0].deflection = ....  // update of state s1 
    *y2 = ...  // y2 expression 
    return ...;  // y1 expression 
} 

As can be easily seen by these example, there is a big difference between the logical variables 
on which a function operates, and the representation of these in code. As the last two 
examples show, this can even go so far that the code structure contains elements that do not 
directly appear in the Algorithm Code. 

Wheras the technical description part of the manifest relates solely to the technical 
(realisation) aspects of the C Code, the mapping section is dedicated to bridge the gap 
between the two levels of abstraction: the Algorithm Code and the Production Code. 

5.2.1. Technical description of Production Code 



The technical description part of the Production Code manifest specifies the following aspects 
of the code: 

• the underlying language including detailed information on the version of the language 

o any restrictions / specification on the target (e.g. HW) for which the code is intended 
for 

o any restrictions / specification on the compilers to be used included specifics on 
compiler versions and configuration 

• Definition of the type (numeric) type system on the target. This section maps the 
standardized (eFMI-) types onto the target types available on that specific target. These 
may depend on the compiler (e.g. some compilers use "int" for 32 bit and "long" for 64 bit, 
others use "long" for 32 bit and "long long" for 64 bit). 

• Definition of the code itself. The code is thereby grouped in "Modules" which contain 
source files (for the language "C" normally a module contains a ".c" and a ".h" file). 

For each file the content (as far as relevant and accessible) is described. This includes: 

• references ("includes") to other files (defined in the Production Code manifest). 

• defined types in that file (refering to the defined and standardized target types). Usually 
these are specifically defined names for the type like e.g. "uint8" that are used in the 
actual Production Code. These defined types also contain definitions for structured types 

• defined macros (if any) 

• defined variables in the file 

• defined functions in the file. 

For Production Code Model Representations that contain e.g. AUTOSAR Classic or Adaptive 
code, there exist additional so-called description files, describing the technical aspects of the 
code. Those description files must be listed in the Code Container and are the alternative to 
the above mentioned details in the manifest and must be use instead. 

5.2.2. Code Container 

The code container groups the actual Production Code Model Representaion content, and 
gives specification for the following details: 



Descript

ion 



Name 

language 

Languag
e to be 
used. 
Currentl
y, the 
following 
values 



are 
possible: 
"C" or 
"C++". 

standard 

Relevant 
language 
standard 
to be 
used. 

platform 

The 
target 
platform. 
Currentl
y, the 
following 
values 
are 
possible: 
"Legac
y" (= 
xxx) 
"Class
ic" (= 
xxx) 
"AUTOS
AR" (= 
xxx) 
"Adapt
ive 
AUTOSA
R" (= 
xxx) 

floatPrecision 

Floating 
point 
precision 
of the 
target 
platform. 
Currentl
y, the 
following 
values 
are 
possible: 
"32-
bit" or 
"64-
bit". 

description 
Optional 
descripti
on 



Target 

Unique 
identifier
, if the 
producti
on code 
uses 
target-
speciic 
code 
parts, for 
example 
assemble
r op 
codes; 
otherwis
e the 
identifier 
is the 
default 
Generi
c. 

CompilerOptions 

List of 
Compiler 
Options 
for 
Producti
on or 
Binary 
Code. 
For more 
details, 
see 
section 
Section 
5.2.2.1. 

LinkerOptions 

List of 
Linker 
Options 
for 
Producti
on or 
Binary 
Code. 
For more 
details, 
see 
section 
Section 
5.2.2.4. 

TargetTypes 

Defines 
which 
kind of 
data type 
(kind) in 
the eFMI 



specifica
tion is 
mapped 
to a 
certain 
platform 
type. 
Usually 
all kinds 
are listed 
although 
they are 
not used 
in the 
producti
on code 
containe
r. E.g. a 
kind 
"Bool" 
may be 
mapped 
to 
unsigned 
char in 
case of 
C89; and 
using 
C99, the 
kind 
shall be 
mapped 
to _Bool. 
For each 
coded 
type, 
there 
exists a 
unique 
TargetTy
pe in 
order to 
abstract 
from the 
platform 
types. 
For more 
details, 
see 
section 
Section 
5.2.2.7. 

CodeFiles 

List of 
files in 
model 
represen
tation, 
i.e. 
source 
file 



and/or 
header 
file 
including 
any 
informat
ion 
needed 
to 
integrate 
the code 
in an 
environ
ment. 
For more 
details, 
see 
section 
Section 
5.2.3. 

DescriptionFiles 

List of 
files in 
model 
represen
tation; 
files 
containi
ng 
descripti
ve 
content, 
e.g. 
AUTOSA
R files 
(.arxml). 
For more 
details, 
see 
section 
Section 
5.2.4. 

TechnicalInformationLookUps 

Facilitate
s a quick 
access to 
informat
ion in the 
manifest 
and the 
associate
d C files. 
For more 
details, 
see 
section 
Section 
5.2.5. 



LogicalData 

Defines 
how the 
logical 
elements 
(variable
s, 
functions 
etc.) are 
mapped 
to the 
actual 
data 
structure
s and 
elements 
of 
functions 
and 
defined 
variables
. For 
more 
details, 
see 
section 
Section 
5.2.6. 



Compiler Options 

Name 

Descript

ion 

compileRoot 

Director
y where 
compilati
on 
should 
be 
perform
ed. 

CompilerSwitch 

Compiler 
switch, 
see 
Section 
5.2.2.2. 



Name 

Descript

ion 

PreprocessorDefinition 

Preproce
ssor 
definitio
n, see 
Section 
5.2.2.2. 

AdditionalIncludeDirectory 

Addition
al 
include 
directory
, see 
Section 
5.2.2.2. 

OptionReferenceCompilerOptionReference Referenc
e to 



Name 

Descript

ion 

option in 
another 
manifest 
file, see 
Section 
5.2.2.3. 

Compiler Option Type 



Name 

Descripti

on 



id 
Id of 
option. 

name 
Name of 
option. 

value 
Value of 
option. 

description 

Optional 
descriptio
n of 
option. 

optional 

Definition 
of option 
is 
optional. 
Possible 
values: 
"false" 
(default) 
or 
"true". 



Compiler Option Reference 

Name 

Descript

ion 

index 

Index of 
the 
linker 
option 
reference 
in the list 
of 
options 
(first 
linker 
option = 
1, second 
linker 
option = 



Name 

Descript

ion 

2, etc). 
The 
indices of 
the 
choice 
elements 
of each 
'LinkerO
ptions' 
must be 
consecuti
ve, 
unique 
and one 
element 
must 
have 



Name 

Descript

ion 

index 
1referen
ces. 

id 

Id of 
option 
reference
. 

manifestReferenceRefId If of 
foreign 



Name 

Descript

ion 

manifest 
file. 

foreignRefId 

Id of 
option in 
foreign 
manifest 
file. 

Linker Options 



Name 

Description 

LinkerSwitch 

The linker 
switches of 
type 
[LinkerOptionT
ype]. 

Library 
Library of type 
[LinkerOptionT
ype]. 

AdditionalLibraryDirectory 

Additional 
library 
directory of 
type 
[LinkerOptionT
ype]. 

OptionReferenceLinkerOptionReference 

A list of option 
references, see 
[OptionReferen
ce]. 

Linker Option Type 

Linker Option Type 



Name 

Description 



Name 

Descripti

on 

id 
Id of 
option. 

name 
Name of 
option. 

value 
Value of 
option. 

description 

Optional 
descriptio
n of 
option. 

optional 

Definition 
of option 
is 
optional. 
Possible 
values: 
"false" 
(default) 
or 
"true". 



Linker Option Reference 

Name 

Descript

ion 

Name 

Descrip

tion 

index 

Index of 
the 
option 
referenc
e in the 
list of 
option 
referenc
es. 



Name 

Descrip

tion 

id 

Id of 
option 
referenc
e. 

manifestReferenceRefId If of foreign manifest file. 

manifestReferenceRefId Id of foreign manifest file. 

foreignRefId Id of option in foreign manifest file. 

Target Types 

Target types define which kind of data type (kind) in the eFMI specification is mapped to a 
certain platform type. Usually all kinds are listed although they are not used in the production 
code container. E.g. a kind "Bool" may be mapped to unsigned char in case of C89; and using 
C99, the kind shall be mapped to _Bool. For each coded type, there exists a unique TargetType 
in order to abstract from the platform types. 



Name 

Description 

id 
The unique id of 
the target type. 

kind 

The kind of the 
target type. The 
value must be 
one of the 
predefined kinds 
from the 
following list: 
"efmiInteger
8", 
"efmiUnsigne
dInteger8", … 
, 
"efmiUnsigne
dInteger64", 
"efmiFloat32
", 
"efmiFloat64
", 
"efmiFloat12
8, 



Name 

Description 

"efmiBoolean
", "efmiVoid". 

codedType 

The actual 
Production Code 
type to be used, 
e.g. "unsigned 
char". 

Example: 

<TargetType id="TT_float64" kind="efmiFloat64" 
codedType="double"/> 

5.2.3. Code Files 

The code file section describes the actual content of a (production) code file. It refers to one of 
the files listed in the "Files" section, so it is clear which file’s content it actually species 



Description 



Name 

id Unique id. 

fileType 

Type of the 
file. Allowed 
values: 
"Producti
onCode", 



"Simulati
onCode", 
"ToolSpec
ificCode"
. 

codeType 

Type of the 
code. 
Allowed 
values: 
"SourceFi
le", 
"HeaderFi
le". 

FileReferece 

Reference to 
a file 
element in 
this manifest 
file, see 
Section 
2.3.4.2. 

Includes 

Definition of 
include files, 
see Section 
5.2.3.1. 

Typedefs 

Definition of 
typedefs, see 
Section 
5.2.3.2. 

Macros 

Definition of 
macros, see 
Section 
5.2.3.2.3. 

Variables 

Definition of 
variables, 
see Section 
4.1.6. 

Functions 

Definition of 
functions, 
see Section 
5.2.3.2.5. 



Example: 

<CodeFile id="C_1" fileType="ProductionCode" 
codeType="SourceFile"> 
   <FileReference fileRefId="F_22" kind="code"/> 
   ..... 
</CodeFile> 

Includes 

Includes represent include preprocessor statements. Linker dependencies to certain libraries 
are part of the linker sections of the BuildInformation. 

Name 

Descript

ion 

codeFileRefId 

id of the 
included 
file. This 
attribute 
might be 
empty if 
the 
include 
is of a 
library. 

Example: 

 <Include codeFileRefId="F_1"/> 

Typedefs 

Typdefs are used to either define structured types, array types or alias types (of predefined 
types). 



Descript

ion 



Name 

id 
Unique 
id of 
typedef. 

name 
name of 
the type 

Alias 

Alias 
means 
renamin
g of 
types, 
e.g. 
"typed
ef 



unsign
ed 
char 
MyUint
8_t;". 
Therefor
e the 
target
TypeRe
fId is 
always 
set and 
referenc
es the 
certain 
TargetTy
pe in the 
target 
type list 
and in 
cases of 
cascaded 
Typedefs
, also the 
typeDe
fRefId 
is set. 
Usually, 
a 
TargetTy
pe is 
referenc
ed by a 
most one 
Typedef 
statemen
t. If a 
basetype 
is 
renamed 
(e.g. 
Int16 → 
MyInt16) 
or a user 
type 
based on 
an 
existing 
type is 
defined, 
two or 
more 
Typedef 
statemen
ts may 
point to 
a single 
TargetTy
pe. 



Pointer 

Declares 
a type 
that is a 
pointer 
to 
another 
type. 
This type 
can be 
any 
other 
defined 
type. 

Components 

Definitio
n of a 
struct. 
Structs 
in structs 
are 
allowed 
but 
Dimensi
ons have 
to be 
specified 
at 
variable 
definitio
ns only. 
For 
details 
see 
Section 
5.2.3.2.1. 

EnumerationItems 

Definitio
n of an 
enum. 
For 
details 
see 
Section 
5.2.3.2.2. 



The following is an example of a simple alias declaration 

Example: 

  <Typedef name="Float32" id="TD_F32"> 
      <Alias targetTypeRefId="TT_float32" /> 
  </Typedef> 

The more complex data structure of function spring of the fourth example would be 
described by the following snipppet: 

  <Typedef name="spring" id="TD_spring"> 
      <Components> 
        <Component id="C_1" name="deflection" typeRefId="TD_F32" 
pointer="true"> 
        <Component id="C_2" name="rigidity" typeRefId="TD_F32"> 
      <Components> 
      <Alias targetTypeRefId="TT_float64" /> 
  </Typedef> 

Components (struct) 

Components declare a structure and are a list of Component: 



Name 

Descrip

tion 

id 
Unique 
id. 

Name Name of 
the field. 



Name 

Descrip

tion 

Must be 
unique 
within 
one 
<Compo



Name 

Descrip

tion 

nents> 
tag. 

typeDefRefId Referenc
e of the 



Name 

Descrip

tion 

type of 
the field. 

pointer Boolean 
flag on 



Name 

Descrip

tion 

whether 
the field 
is a 
referenc
e or not 



Name 

Descrip

tion 

(optiona
l field). 

Each field can be an array. This is indicated with the subelement <Dimensions> that 
contains a list of <Dimension> elements, each with the following attributes: 



Name Description 

number The index of the dimension. 

size The size (number of elements) of that dimension. 

valueMacroRefId 
Instead of the size a reference to the value macro defining the 
size. 

Enumeration Items (enum) 



<EnumerationItems> declares an enumeration type with the list of enumeration items. 
Each <EnumerationItem> has the following fields 

Name Description 

id Unique id. 

name 
Name of the enumeration literal. This name must be unique within an 
enumeration definition (`<EnumerationItems>) 

value Encoded value (this field is optional). 

Macros 

Here all macro definitions in the source and header file of the module are listed that are 
relevant to integrate the code. For example system constants used to define integration 
relevant vector variables must be part of the list, whereas macros in the code used as guards 
must not be part of the list. 

There are two kind of macros "ValueMacro" and "ParameterizedMacro". Both are contained as 
children in the "Macros" tag. 





A value macros defines a symbol and assigns a value to it. The value must be a number 

Name Description 

id Unique id. 



Name Description 

name Name of the macro variable. 

value Concrete value of the macro variable. 

Annotations 
Additional data that a vendor might want to store and that other 
vendors might ignore. For details see Section 2.3.4.5. 

A parameterized macro defines however only the signature of a macro with parameters. 
Thereby each parameter is given as a "Parameter" element with attrubtes for its name and its 
position (since xml is not guaranteed to be order-preserving). The positions must be the 
values 0 … n-1 where n is the number of parameters. 

Name Description 

name Name of the macro argument. 

Number Position of the macro argument. 

The following example shows the declaration of a value and a parametrized macro 

  <Macros> 
      <ValueMacro id="VM_1" name="num_Cyl" value="4"/> 
      <ParameterizedMacro id="PM_1" name="myMax"> 
        <Parameter name="a" number="0"> 
        <Parameter name="b" number="1"> 
      </ParameterizedMacro> 
  </Macros> 

Variables 

<Variable> elements are grouped in the <Variables> element. 











Each variable has the 

following attributes: 

Name Description 

id Unique id of the variable. 

name Name of the variable. 

typedefRefId id of the defined type of the variable. 

address Optional address. 

value 

Optional initial value of that variable that must be consistent which 
the initial value in Algorithm Code. Value might be different because 
of a decision to implement the Algorithm Code variable in a different 
datatype, for example Algorithm Code variable is Float64 and 
Production Code variable is Float32. 

min Optional minimum value (see value). 

max Optional maximum value (see value). 

const Optional Boolean value on whether the variable is constant. 

volatile Optional Boolean value on whether the variable is volatile. 

pointer 
Optional Boolean value whether the variable is a pointer of the type 
or a variable of that type. 



Name Description 

constPointer Optional Boolean value whether the variable is a const pointer. 

static Optional Boolean value on whether the variable is static. 

Similar like a field in a <Component> a <Variable> can also be multidimensional by 
adding the <Dimensions> element. The following example defines a 2x2 array of variables 
with name "T". 

  <Variable id="V_33" name="T" typeDefRefId="TD_F64" 
pointer="false" value="0.1" const="false" volatile="true" 
static="false"> 
     <Dimensions> 
        <Dimension number="0" size="2"> 
        <Dimension number="1" size="2"> 
     </Dimensions> 
   </Functions> 

Functions 

The described functions of (production) code files are grouped in the "Functions" tag. Each 
function has an "id" and a "name". In addition it has a subelement for the return parameter 
(if the function is void, the subelement is not present) and a list of "formal parameter". The 
return parameter (if present) and the formal parameters list. 













Example: 

<Functions> 
 <Function id="Func_1" name="doStep"> 
    <FormalParameters> 
   <FormalParameter id="V_33" name="T" number="0" 
typeDefRefId="TD_F64"> 



  </FormalParameters> 
   <Function/> 
   <Function id="Func_2" name="doStep2"> 
    <ReturnParameter id="Func_2_ret" 
typeDefRefId="TD_F64" pointer="false"> 
  <Function/> 
<Functions/> 

5.2.4. Description Files 

List of files containing descriptive content, for example AUTOSAR files (.arxml). Those files are 
the alternative to the detailed code description by e.g. typedefs, variables, etc. Usually all kinds 
of description files are allowed, but as they are used as alternative to the detailed description, 
elements that should be mapped to elements in the algorithm code manifest must be uniquely 
identifyable, e.g. they must have identifiers that are unique within a file, similar to identifiers 
used in manifests, or reachable by a given path expression. 



Technically, a DescriptionFile has a FileReference pointing to a file in the manifest’s file 
list and additional optional Properties as property value list. 

5.2.5. Technical Information Lookups 

Facilitates a quick access to information in the manifest and the associated C files. 



Name 

Desc

ripti

on 

DeclaredTypeDefs 

List 
of all 
typed
ef 
state
ment
s in C 
code 

GlobalAccessableDataElements 

List 
of all 
globa
l 
varia
bles 
and 
globa
l 
avail
able 
acces
s 
functi
ons 

Both lists consist of elements, DeclaredTypedef and 
GlobalAccessableDataElement respectively, that only have a reference attribute to a 
certain kind of element. 

Attribute of DeclaredTypedef: 



Name Description 

typeDefRefId Reference to a TypeDef element in the manifest. 

Attribute of GlobalAccessableDataElement: 

Name Description 

variableRefId Reference to a Variable element in the manifest. 

5.2.6. Logical Data 

Defines how the logical elements (variables, functions etc.) are mapped to the actual data 
structures and elements of functions and defined variables. 

The description in the code files basically describes only Production Code parts. As shown in 
the beginning of this section the mapping to the Algorithm Code is sometimes not obvious, for 
example because variables in the Algorithm Code do only appear as arguments or are may be 
part of structures or arrays. Therefore we describe this mapping explicitely. 

The mapping is given in the element LogicalData which contains the DataReferences 
and the FunctionReferences. 

A DataReference itself contains the following attributes and elements to identify the 
variable in the Production Code and the mapped variable in the Algorithm Code 



Description 



Name 

ForeignVariableReference 

Subelement of 
type 
ForeignRef
erence to the 
element in the 
Algorithm 
Code. 

GlobalVariable 

Reference to a 
declared 
global 
accessible 
variable in the 
current 
manifest. If the 
referenced 
variable is of a 



complex type, 
the 
componentI
dentifier 
gives the 
"path" within 
that complex 
variable. The 
"." is used as 
component 
separator, 
brackets are 
used for array 
index, e.g. 
"a.b[3].c" 
means that the 
refered 
variable has a 
field "a" that 
itself contains 
a field "b" 
which is an 
array of a 
complex type 
that contains a 
field "c". 

FormalParameter 

Reference to a 
formal 
parameter of a 
global 
accessible 
function by 
the 
formalPara
meterRefId 
attribute in 
the current 
manifest. If the 
referenced 
parameter is 
of a complex 
type, the 
componentI
dentifier 
gives the 
"path" within 
that complex 
parameter. 
The "." is used 
as component 
separator, 
brackets are 
used for array 
index, e.g. 
"a.b[3].c" 
means that the 
referred 
parameter has 
a field "a" that 
itself contains 



a field "b" 
which is an 
array of a 
complex type 
that contains a 
field "c". 

ExternalDefinitionReference 

Reference to 
an item by the 
qualifiedN
ame attribute 
inside a 
referenced 
description 
file by a 
descriptio
nFileRefId 
attribute. 



A FunctionReference is similar to the DataReferences mapping Algorithm Code functions, 
mainly the block interface functions, to functions in the Production Code. 



Name 

Description 



ForeignFunctionReference 

Subelement of 
type 
ForeignRef
erence to 
the element in 
the Algorithm 
Code. 

GlobalFunction 

Reference to a 
declared 
global 
accessible 
function in the 
current 
manifest by 
functionRe
fId attribute. 

ExternalDefinitionReference 

Reference to 
an item by the 
qualifiedN
ame attribute 
inside a 
referenced 
description 
file by a 
descriptio
nFileRefId 
attribute. 



5.3. Production Code Language 

A Production Code Model Representation includes code files that are modules in terms of the 
C or C++ programming language. 

The C programming language is descripteddescribed in [KR79] and in a destilled version in 
[CLangWiki]. A similar description of the C++ programming language gives [Str13] or as a 
destilled version [CPPLangWiki]. 

For both programming languages, the Motor Industry Software Reliability Association 
(MISRA) has published a set of guidelines to facilitate code safety, security, portability and 
reliability in the context of embedded software systems, see [MISRA12], [MISRA08]. In cases 
where the C code is not hand-coded but generated by a tool different guidelines [MISRA04] 
shall be fulfilled. 

An example is the calling of an algorithm to solve a scalar nonlinear function, where a function 
pointer and a void pointer for the context is passed. (This is necessary, as the function 
depends on the internal state of the model.) 

int solveOneNonlinearEquation (Real_t (*f_Nonlinear)(Real_t u, 

void* data), Real_t u_min, Real_t u_max, 

                               Real_t tolerance, Real_t *u, void 

*data) 

This could be called from C Code, e.g., by 

err = solveOneNonlinearEquation(my_f_Nonlinear, 1.0, 8.0, tol, 

&u, &mydata); 

where the function 'my_f_Nonlinear' is defined by 

 Real_t f_Nonlinear_3(Real_t u, void *data) { 

 myDataType *mydata = (myDataType*)data; 

 

    return  mydata->p[0] + log(mydata->p[1]*u) - u; 

} 

This is considered safe for the usage for auto-generated code, where the void pointer is passed 
together with a function pointer to the function that uses this void pointer as one of its 
arguments. 

For individual Production Code sections, compliance with Coding Guidelines like MISRA:2012 
is annotated in the manifest xml-File. 

Common for both languages is that especially for resource limited embedded systems a 
number of language features are limited or at least not available. For example: 

• dynamic memory handling 

• only compile-time fixed array sizes 

• functions typically offered by operating system 

• availability of mathematical functions 

• no runtime type information 



• … 

Both languages are standardized by the International Organization for Standardization (ISO) 
and the following table lists an excerpt of different standards and their informal name(s): 

Reference Name(s) 

ISO/IEC 9899:1990 ANSI C, ISO C, C89, C90 

ISO/IEC 9899/AMD1:1995 C95 

ISO/IEC 9899:1999 C99 

ISO/IEC 9899:2011 C11 

ISO/IEC 9899:2018 C18 

ISO/IEC 14882:1998 C++98 

ISO/IEC 14882:2003 C++03 

ISO/IEC 14882:2011 C++11, C++0x 

ISO/IEC 14882:2014 C++14, C++1x 

ISO/IEC 14882:2017 C++17, C++1z 

A Production Code Model Representation must indicate the actualactually used language and 
standard of the modules in the manifest file. 

6. Binary Code Model Representation 

6.1. Introduction 

The Binary Code Model Representation is intended to be a container to exchange software 
artifacts in binary form. Such binaries can be directly integrated with other embedded 
software running on an ECU. The main purpose of this format is the protection of intellectual 
property. Shareholders can exchange a software solution without revealing crucial 
implementation or algorithm details to the user of a particular solution. Beside the protection 
of intellectual property, the Binary Code Model Representation also provides protection of 
integrity of the solution. The software solution cannot be altered except for the intended 
interface such as calibration parameters. Furthermore the binary representation unitizes 



separate functionalities into dedicated binary files. These binary files can be used 
independently in different contexts. 

An eFMU container might consist of multiple Binary Model Representations which may 
originate from the same Production Code Model Represention. 

 

Figure 1. Structure of Binary Model Represention 

A Binary Code Model Representation consists at least of the following items: 

• Object files or static libraries in Executable and Linking Format (ELF) for the use for 
embedded devices or dynamic linked libraries for co-simulation purposes in Windows 
environments 

• Container manifest 

Furthermore, it might include a file containing information necessary for calibration, 
measurement and diagnosis purposes and a linker script that contains the necessary 
information in order to link the software for a particular target. 

6.2. Manifest 

Since a binary container is subject to an integration on a particular target ECU, its manifest has 
to provide any necessary information about 

• the components interface, 

• the compiler and its configuration, 

• the linker and its configuration, 

• the target 

Optionally, there might exists 

• information about the run time behavior 

• meta information regarding the source code (e.g. MISRA Compliance, Code Quality 
reports, etc.) 

• Calibration 

The Binary Code manifest is an XML file with structured information about the Binary Model 
Representation. 

 

Some of the above points are already available in the Production Code Model 

Representation. Such information (interface, MISRA Compliance) will be referenced 

by the Binary Code manifest from the Production Code manifest.  

6.2.1. Structure of the Manifest 



The Binary Code manifest: 

consists of the following elements: 

On the top level, the schema consists of the following elements: 

Name Description 

attributes The attributes of the top-level element are the same for all 
manifest kinds and are defined in section Section 2.3.1. 
Current kind-specific values: kind = "BinaryCode", 



Name Description 

xsdVersion (value is the current xsd version of the 
schema for the Binary Code model manifest). 

ManifestReferences 

Reference to the manifest of the Production Code on which 
this Binary Code manifest is based on. This element is the 
same for all manifest kinds and is defined in section Section 
2.3.4.3. 

Files 
List of files referenced in this model representation. This 
element is the same for all manifest kinds and is defined in 
section Section 2.3.3. 

BinaryContainer 
Defines the essential content of the actual container. For 
details see Section 6.2.2. 

Annotations 
Additional data that a vendor might want to store and that 
other vendors might ignore. For details see Section 2.3.4.5. 

The following subsections focus on the BinaryContainer element which represents the 
actual Binary Model Representation. 

6.2.2. Binary Container 

Element BinaryContainer 



consists of the following elements: 



Name Description 

BuildConfiguration 
The BuildConfiguration describes the actual build 
environment used to create the binary objects in the 
container. For more details see Section 6.2.2.1. 

Modules 

The Modules section describes all relevant binaries and 
source code references required or available for the binary 
model representation container. For more details see 
Section 6.2.3. 

BinaryContainerInfo 
The BinaryContainerInfo element contains 
additional and optional information relevant to the end 
user. For more details see Section 6.2.4. 

Each of the above listed elements has to exist exactly once in a BinaryContainer. 
Additionally, the the BinaryContainer has the following Attributes: 

Name Description 

toolVersion 
This attribute is used by the the generating tool to store its Name and 
Version. 

BuildConfiguration 

Element BuildConfiguration consists of all information related to the compilation and 
linking of the model representation: 



This element 

contains exactly one of each of the following elements: 

Name Description 

Compiler 
This element unambigously describes the compiler 
that has been used to create the binary artifacts. For 
details see Section 6.2.2.2. 

Linker 
This element unambigously describes the linker that 
has been used to create the binary artifacts. For details 
see Section 6.2.2.3. 

CompilerOptionSets 
This element stores all possible compiler settings used 
to create any binary element in the container. For 
details see Section 6.2.2.4. 

DefaultCompilerOptions 
This element refers to a CompilerOptionSet that 
has to be used to create the binary. For details see 
Section 6.2.2.5. 

LinkerOptionSet This element describes the relevant linker option for 
the above linker that has been used to create the 



Name Description 

binary object. For details see [definition-of-linker-
option-set]. 

CompileTarget 
This element describes the target platform, the binary 
has been compiled for. For details see [definition-of-
compile-target]. 

 

It is possible that a Binary Code Model Representation needs to be combined with 

some source from the Simulation Code, Tool-specific code of the Production Code 

model or even from external generators in order to analyze, integrate or test the 

model. In such cases additional sources need to be compiled and linked together. 

To support such a use case, the BuildConfiguration of a Binary Model 

Representation needs to provide all required information to be able to compile and 

link additional sources with the binary artifacts.  

Compiler 

In order to integrate the object code, it is required to have all relevant information about the 
compile process of a binary specified. Hence, the compiler is to be specified in the manifest as 
follows: 



All attributes are mandatory and are 

defined as follows: 

Name Description 

id 
A unique id that has to be referenced by any corresponding 
CompilerOptionSet. 

vendor 
The name of the Company/Vendor that has created or issued the 
compiler. 

name A unique, unambiguous name of the compiler or compiler suite. 

version 
The specific version of the above compiler that has been used to 
create the binary. 



Name Description 

executableName The name of the actual executable of the compiler (suite). 

The attributes vendor, name and version must clearly identify a particular compiler. 
Furthermore, it should be possible to use the value executableName together with a 
matching CompilerOptionSet to automatically compile a source file. 

 
The following example depicts a compiler configuration for a target compiler for 

the TriCore processor archtecture.  

<Compiler id="ID_1000001" vendor="Altium" 
          name="TASKING VX-toolset for TriCore: C compiler"  
version="v4.2r2" executableName="ctc"/> 

Linker 

Similar to the definition of the compiler infrastructure and options, the linker and link options 
have to be declared to be known to the integration engineer. 

All attributes are mandatory and 

defined as follows: 



Name Description 

vendor 
The name of the Company/Vendor that have created or issued the 
linker. 

name Unique, unambiguous name of the linker . 

version 
The specific version of the above linker that have been used to 
create the binary. 

executableName The name of the actual executable of the linker (suite). 

The attributes vendor, name and version must clearly identify a particular linker. 
Furthermore, it should be possible to use the value executableName together with the 
below defined LinkerOptionSet to automatically link object files together. 

 
The following example depicts an linker configuration for the TriCore processor 

architecture.  

<Linker id="ID_1000002" vendor="Altium" name="TASKING VX-toolset 
for TriCore: object linker" version="v4.2r2" 
executableName="ltc"/> 

CompilerOptionSets 

The CompilerOptionSets contains one or more CompilerOptionSet which defines 
settings and switches used to create at least one of the contained binary artifacts. 



Name 

Description 

id 

The unique 
identifier of 
the the 
CompilerO
ptionSet 
within the 
manifest. 

compilerRefId 

A reference 
to a 
configured 
compiler for 
the 
Compilers 
Section. 

CompilerOptions 

List of 
compiler 
options for 
Production 
or Binary 
Code, see 
[CompilerOp
tions] 

The CompilerOptions list is defined as:  



Name 

Description 

compileRoot 

Directory where 
compilation 
should be 
performed. 

CompilerSwitch 

The compiler 
switches of type 
[CompilerOption
Type]. 

PreprocessorDefinition 

Preprocessor 
definitions of 
type 
[CompilerOption
Type]. 



Name 

Description 

AdditionalIncludeDirectory 

Additional 
include directory 
of type 
[CompilerOption
Type]. 

OptionReferenceCompilerOptionReference 

A list of option 
references, see 
[CompilerOption
Reference]. 

The CompilerOptionType attributes are defined as:  



Name 

Description 

index 

Index of the 
compiler 
option in the 
list of options 
(first 
compiler 



Name 

Description 

option = 1, 
second 
compiler 
option = 2, 
etc). The 
indices of the 



Name 

Description 

choice 
elements of 
each 
'CompilerOpt
ions' must be 
consecutive, 



Name 

Description 

unique and 
one element 
must have 
index 1. 



Name 

Description 

id 
Unique id of 
compiler 
option. 



Name 

Description 

name 
Name of 
option. 



Name 

Description 

value 
Optional 
value of 
option. 



Name 

Description 

description 
Optional 
description of 
option. 



Name 

Description 

optional 

Optional 
Boolean with 
default 
false, 
defining 
whether the 



Name 

Description 

option is 
optional. 

The OptionReferenceCompilerOptionReference list is defined as:  



Name 

Descripti

on 

index 

Index of 
the 
compiler 
option in 
the list of 
options 
(first 
compiler 
option = 1, 



Name 

Descripti

on 

second 
compiler 
option = 2, 
etc). The 
indices of 
the choice 
elements 
of each 
'Compiler



Name 

Descripti

on 

Options' 
must be 
consecutiv
e, unique 
and one 
element 
must have 
index 1. 



Name 

Descripti

on 

id 
Unique id 
of option 
reference. 

ForeignOptionReference Reference 
to another 
manifest 



Name 

Descripti

on 

file of type 
ForeignRe
ference. 
For details 
see 
Section 
2.3.4.3. 



 

The following example depicts some of the options that have to be provided in 

order to compile code for the Infineon Tricore TC27x family. Most options are 

special to this compiler family.  

<CompilerOptionSets> 
  <CompilerOptionSet id="ID_1001" compilerRefId="ID_1000001"> 
    <CompilerOptions> 
      <CompilerSwitch> 
        <id>ID_100010</id> 
        <name>--iso</name> 
        <value>90</value> 
      </CompilerSwitch> 
      <CompilerSwitch> 
        <id>ID_100011</id> 
        <name>--align</name> 
        <value>4</value> 
      </CompilerSwitch> 
      <CompilerSwitch> 
        <id>ID_100012</id> 
        <name>--optimize</name> 
        <value>3</value> 
      </CompilerSwitch> 
      <CompilerSwitch> 
        <id>ID_100013</id> 
        <name>--tradeoff</name> 
        <value>4</value> 
      </CompilerSwitch> 
      <CompilerSwitch> 
        <id>ID_100014</id> 
        <name>--source</name> 
      </CompilerSwitch> 
      <CompilerSwitch> 
        <id>ID_100015</id> 
        <name>--error-file</name> 
      </CompilerSwitch> 
      <CompilerSwitch> 
        <id>ID_100016</id> 
        <name>--rename-sections=sect</name> 
      </CompilerSwitch> 
      <CompilerSwitch> 
        <id>ID_100017</id> 
        <name>--core</name> 
        <value>tc1.6.x> 
      </CompilerSwitch> 
      <CompilerSwitch> 
        <id>ID_100018</id> 
        <name>-Hsfr/regtc27x.sfr</name> 
      </CompilerSwitch> 
      <CompilerSwitch> 
        <id>ID_100019</id> 
        <name>--default-near-size</name> 
        <value>0</value> 
      </CompilerSwitch> 
<CompilerOptionSets> 

Default Compiler Options 

While each module might have its own compiler options referenced from the 
CompilerOptionsSets of the BinaryContainer, a default option set for the container 
can be defined. The default compiler options are used in any case where no other 
CompilerOptionsSet is provided. 



The DefaultCompilerOptions are specified as follows: 

Name 

Description 

compilerOptionsRefId 

Reference to a 
previously defined 
CompilerOption
Set to be used as 
default. 

 
The following example depicts an default option set that refers to the 

CompilerOptionSet defined in the parent BinaryContainer element.  

<DefaultCompilerOptions compilerOptionsRefId="ID_1001" /> 

LinkerOptionSet 

The LinkerOptionSet contains one LinkerOptions which defines linker settings and 
switches. 



Name 

Description 

LinkerOptions 

List of linker 
options for 
Production or 
Binary Code, 
see 
[LinkerOption
s] 

FileReference 

The linker 
script is 
referenced 
with a 
FileRefere
nce element. 

The LinkerOptions list is defined as:  



Name 

Description 

LinkerSwitch 

The linker 
switches of type 
[LinkerOptionTy
pe]. 

Library 
Library of type 
[LinkerOptionTy
pe]. 

AdditionalLibraryDirectory 

Additional library 
directory of type 
[LinkerOptionTy
pe]. 



Name 

Description 

OptionReferenceLinkerOptionReference 

A list of option 
references, see 
[LinkerOptionRef
erence]. 

The LinkerOptionType attributes are defined as:  



Name 

Descript

ion 

index 
Index of 
the 
option in 
the linker 



Name 

Descript

ion 

comman
d line. 



Name 

Descript

ion 

id 
Unique id 
of linker 
option. 



Name 

Descript

ion 

name 
Name of 
option. 



Name 

Descript

ion 

value 
Optional 
value of 
option. 



Name 

Descript

ion 

description 

Optional 
descripti
on of 
option. 



Name 

Descript

ion 

optional 

Optional 
Boolean 
with 
default 
false, 
defining 



Name 

Descript

ion 

whether 
the 
option is 
optional. 



The OptionReferenceLinkerOptionReference list is defined as:  

Name 

Descriptio

n 

index 

Index of 
the option 
in the 
linker 
command 
line. 



Name 

Descriptio

n 

id 
Unique id 
of option 
reference. 

ForeignOptionReference 
Reference 
to another 
manifest 
file of type 



Name 

Descriptio

n 

ForeignRef
erence. For 
details see 
Section 
2.3.4.3. 



 

The following example depicts some of the options that have to be provided in 

order to compile code for the Infineon Tricore TC27x family. Most options are 

special to this linker family.  

<LinkerOptionSet> 
  <LinkerOptions> 
    <LinkerSwitch> 
      <id>ID_100010</id> 
      <name>output</name> 
      <value>dummy.elf:ELF</value> 
    </LinkerSwitch> 
    <LinkerSwitch> 
      <id>ID_100011</id> 
      <name>no-warnings</name> 
    </LinkerSwitch> 
    <LinkerSwitch> 
      <id>ID_100012</id> 
      <name>incremental</name> 
    </LinkerSwitch> 
    <LinkerSwitch> 
      <id>ID_100013</id> 
      <name>lsl-file</name> 
      <value>TC277.lsl</value> 
    </LinkerSwitch> 
    <LinkerSwitch> 
      <id>ID_100014</id> 
      <name>map-file</name> 
      <value>mapfile.map</value> 
    </LinkerSwitch> 
  <LinkerOptions> 
  <FileReference fileRefId="ID_999915" kind="LinkerScript" /> 
</LinkerOptionSet> 

Target 

In order to decide whether a target ECU is (technically) suitable for a particular binary with 
respect to target optimization and assumptions done during Production Code generation 
regarding hardware, the manifest has to specify the following items: 



To define the target ECU 

the binary representation is compiled for, this section defines the following attributes: 

Name Description 

vendor 
The manufacturer of the the target 
platform/processor. 



Name Description 

targetName The name of the architecture. 

chipVersion 
The exact version of processor used in the 
architecture. 

instructionSetArchitecture 
A unique identifier for the instruction set used by 
the chip. 

endianess 
Describes whether the target uses Big-Endian or 
Little-Endian byte order. 

registerWidth Declares the bit width of the registers of the chip. 

addressWidth 
Declares the bit width of a memory address in 
the target. 

 
The following example depicts the target information needed for a TC277 

Processor within a TriCore embedded target.  

<CompileTarget id="ID_100001" vendor="Infineon" 
targetName="TriCore" chipVersion="TC277 C-Step" 
instructionSetArchitecture="TC1.6E" endianess="LITTLE" 
registerWidth="32" addressWidth="32"/> 

6.2.3. Modules 

The Modules section lists and describes all relevant binaries contained in the Binary Model 
Representation. Furthermore, it lists all source code references to the Production Code 
container that are provided with the binary files. 

The Modules section consist of a list of one or more BinaryModule items. 







A BinaryModule 

describes a binary object in the Binary Code Model Representation. It has the following 
attributes: 

Name Description 

id A unique identifier for further referencing. 

creator The creating tool or person. 

creationDate 
The date, the particular binary moduel has been 
created. 

compilerOptionSetRefId 
A reference to the CompilerOptionSet used for 
generation of the object file. 

A BinaryModule contains one ObjectFile element and zero or more 
SourceFileReference: 

Name Description 

ObjectFile 
The actual binary object in the container. There can be only 
one object file per Binary module. 

SourceFileReference 
Each element refers to a code file in production Code 
manifest. 



 

SourceFileReference elements refer to possibly required CodeFile elements 

from the Production Code Model. Those files are not part of the object file but 

might be necessary for further processing steps, e.g., a PiL simulation of th object 

file.  

Each ObjectFile has the following attributes: 

Name Description 

id A unique identifier for further referencing. 

Additionally, it consists of the following elements: 

Name Description 

FileReference 
Reference to the actual binary object file. The kind of the 
FileReference is either "RelocatableObjectFile" or 
"ExecutableObjectFile". This element is mandatory. 

SourceFileReference 

The SourceFileReference elements refer to 
CodeFile elements of the Production Code Model 
Representation which have been used to generate the 
binary object file. The presence of the actual source files in 
the Production code container is not required. The 
manifest information, however, needs to be available. 

The SourceFileReference element has the following attributes: 

Name Description 

id A unique identifier for further referencing. 

fileRefId 
Reference to the code Files in the Production Code manifest 
via a ForeignFile reference in the manifest Files 
section. 

CompilerOptionSetId 
If a CompilerOptionSetId is specified, it must be used 
for compiling this code artifact. Otherwise, the 
DefaultCompilerOptions must be used. 



Each ObjectFile has the following attributes: 

Name Description 

id A unique identifier for further referencing. 

Additionally, it consists of the following elements: 

Name Description 

FileReference 

Reference to the actual binary object file. The 
kind of the FileReference is either 
"RelocatableObjectFile" or "ExecutableObjectFile". 
This element is mandatory. 

ForeignSourceFileReference 

The ForeignSourceFileReference 
elements refer to CodeFile elements of the 
Production Code Model Representation which 
have been used to generate the binary object file. 
The presence of the actual source files in the 
Production code container is not required. The 
manifest information, however, needs to be 
available. 

 

The following example shows a snippet for a very simple model. It consists of one 

non-executable object file that have been generated from two ("Production Code") 

source files.  

<ForeignFile id="ID_999920"> 
  <ForeignReference foreignRefId="ID_9" 
manifestReferenceRefId="ID_0000001" /> 
</ForeignFile> 
<ForeignFile id="ID_999921"> 
  <ForeignReference foreignRefId="ID_10" 
manifestReferenceRefId="ID_0000001" /> 
</ForeignFile> 
<ForeignFile id="ID_999922"> 
  <ForeignReference foreignRefId="ID_5" 
manifestReferenceRefId="ID_0000001"/> 
</ForeignFile> 
<ForeignFile id="ID_999923"> 
  <ForeignReference foreignRefId="ID_1" 
manifestReferenceRefId="ID_0000001"  /> 
</ForeignFile> 
<ForeignFile id="ID_999924"> 
  <ForeignReference foreignRefId="ID_3" 
manifestReferenceRefId="ID_0000001"  /> 
</ForeignFile> 
[...] 
<Modules> 



  <BinaryModule id="ID_4" creator="JDoe" creationDate="2018-08-
09"> 
 <ObjectFile id="ID_10"> 
   <FileReference fileRefId="ID_01" kind="RelocatableObjectFile" 
/> 
   <SourceFileReference id="ID_02" fileRefId="ID_999920" /> 
   <SourceFileReference id="ID_03" fileRefId="ID_999921" /> 
 </ObjectFile> 
 <SourceFileReference id="ID_5"fileRefId="ID_999922" /> 
 <SourceFileReference id="ID_1" compilerOptionSetRefId="ID_46" 
fileRefId="ID_999923" /> 
 <SourceFileReference id="ID_3" compilerOptionSetRefId="ID_46" 
fileRefId="ID_999924" /> 
  </BinaryModule> 
</Modules> 

6.2.4. Binary Container Info (optional) 

The previously described elements of the manifest for the Binary Code Model Representation 
are mandatory. However, there is also information that might not be necessary to describe a 
binary but very helpful in the actual use cases for the Binary Code Model Representation such 
as integration or validation. 

To store and provide this information, the manifest contains the BinaryContainerInfo 
section. A BinaryContainerInfo element might contain a description for each of the 
following topics 

• mapping information (memory, registers, etc.) 

• run time behavior 

• calibration information 

• measurement information 

• information about the diagnosis interface 

The BinaryContainerInfo element is defined as follows: 



It contains the following elements: 

Name Description 

RunTimeComplianceInformation 
Information regarding run time behavior of 
the different functions provided by the Binary 
Code model representation. 

FileReference 

In addition to the run time information, it is 
also possible to provide reference to files that 
give further information regarding the above 
mentioned topics. The kind of the 
FileReference indicates which topic is 
tackled. 

Possible kinds are: MapFile, 
CalibrationInformationFile, 
MeasurementInformationFile, 
DiagnosisInformationFile, 
ValidationAndVerificationFile, 
ComplianceInformationFile, LicenseFile., 
ConfigurationFile. 

Mapping Information 

In order to provide the integration engineer with additional information about a binary file 
that has already has been linked, a map file can be specified in the MapFileReference 
element. 



 

The following example shows, how a map file can be provided using the 

combination of the File element declared for the Manifest and the actual 

FileReference with the kind="MapFile".  

<File id="ID_999913" path="/objects/" name="SpeedController.map" 
role="other" needsChecksum="true" 
       checksum="A43C0994FAD1247988C2AA8A90CCA2E241CF5687" /> 
[...] 
<BinaryContainerInfo> 
  <FileReference fileRefId="ID_999913" kind="MapFile" /> 
</BinaryContainerInfo> 

 

The map file can be used to easily inspect information about the memory mapping 

and, memory usage. Furthermore general information about estimated stack size 

and the overall link process can be provided here.  

Run Time Behavior 

In order to integrate a function defined in an eFMI into a binary for the target ECU, it is 
required to have information about the run time behavior to decide whether there are enough 
resources available in order to coexist with additional functions or tasks running on the same 
ECU. 

 
This information might help the integration engineer to identify possible 

bottlenecks before he starts the actual integration.  

Hence, the manifest can specify RunTimeComplianceInformation as additional, optional 
information. 

If RunTimeComplianceInformation is provided, it can specify the run time behavior for 
one or more functions as follows: 



It consists of one ForeignFunctionReference that refers to the function in the manifest 
of the Production Code model representation. The information about the run time behavior is 
described by the following attributes: 



Name Description 

id A unique identifier for further referencing. 

wcExecTime The maximum time consumed by the function in the worst case. 

wcStackSize The maximum stack size required by the function in the worst cas. 

wcMemSize The maximum memory consumed by the function in the worst case. 

Note that valid units have to be used for each attribute by the author. 

 
The following example shows how the RunTimeComplianceInformation can 

be defined for some function.  

<BinaryContainerInfo> 
  <RunTimeComplianceInformation> 
 <RunTimeCompliance id="ID_100301" wcExecTime="8.4ms" 
wcStackSize="70kb" wcMemSize="840kb"> 
   <ForeignFunctionReference foreignRefId="ID_41" 
manifestReferenceRefId="ID_0000001" /> 
 </RunTimeCompliance> 
  </RunTimeComplianceInformation> 
</BinaryContainerInfo> 

Calibration 

In order to be able to calibrate the binary object provided by the Binary Code Model 
Representation with common, widely used calibration tools, the manifest might specify one or 
more files containing calibration information. Calibration information is given using 
FileReference elements with the kind="CalibrationInformationFile". 

 The following code snippet shows how a calibration file can be provided.  

<File id="ID_999912" path="/" name="myFunction.a2l" role="other" 
checksum="0DC09613F414FFCE10865AF3AD3EC31D3ED61EA8" 
needsChecksum="true" /> 
[...] 
<BinaryContainerInfo> 
  <FileReference fileRefId="ID_999912" 
kind="CalibrationInformationFile" /> 
</BinaryContainerInfo> 

 An incomplete and optional A2L file provides the symbols used for calibration 

purposes. When the integrator performs the final linking, the memory addresses of 



all A2L files of the used software functions are updated. The resulting A2L files can 

be used by calibration tools to dynamically change parameters for example.  

Measurement 

In order to measure internal values of the controller software during the testing and 
validation phase, the manifest might specify one or more file containing measurement 
information. Measurement information is given using FileReference elements with the 
kind="MeasurmentInformationFile". 

 

The following code snippet shows how a measurement information file can be 

provided. Note that in this example, in case of an A2L-File, the same file might be 

used for calibration and measurement.  

<File id="ID_999912" path="/" name="myFunction.a2l" role="other" 
checksum="0DC09613F414FFCE10865AF3AD3EC31D3ED61EA8" 
needsChecksum="true" /> 
[...] 
<BinaryContainerInfo> 
  <FileReference fileRefId="ID_999912" 
kind="MeasurmentInformationFile" /> 
</BinaryContainerInfo> 

Diagnosis 

ECU software often provides some subroutines for diagnosis that is used for testing and 
maintenance. Hence, the manifest of a Binary Model representation can contain one or more 
files that provide information for diagnosis tools. Diagnosis information is given using 
FileReference elements with the kind="DiagnosisInformationFile". 

 
The following code snippet shows how a diagnosis information file can be 

provided.  

<File id="ID_999914" path="/" name="myFunction.cdd" role="other" 
checksum="E7A58CD816076EE26DE1D6BF2F13630000675FB2" 
needsChecksum="true" /> 
[...] 
<BinaryContainerInfo> 
  <FileReference fileRefId="ID_999914" 
kind="DiagnosisInformationFile" /> 
</BinaryContainerInfo> 

Compliance 

Since the main intention of the Binary Code container is the protection of intellectual 
property, the source code usually cannot be checked according to compliance to relevant 
standards. However, since this information might be of interest for the integrating company, 
an eFMI binary container shall have an optional section to define one or more files describing 
the components compliance. Diagnosis information is provided using FileReference 
elements with the kind="ComplianceInformationFile". 



 
The following code snippet shows how a compliance information file can be 

provided.  

<File id="ID_999910" path="/doc/" name="MISRA.doc" role="other" 
checksum="27D8D7BB69E1D7E98C7A278C5A48199CE7B65399" 
needsChecksum="true" /> 
[...] 
<BinaryContainerInfo> 
  <FileReference fileRefId="ID_999910" 
kind="ComplianceInformationFile" /> 
</BinaryContainerInfo> 

 

A FileReference can also point to a ForeignFile element and, hence, to an 

arbitrary file in the eFMU container. This means it can also point to a compliance 

information file from Production Code container.  

 

Note that the eFMI standard does not define how the integrity of the compliance 

information can be ensured. It is up to the software provider and the integrating 

company to ensure the validity and integrity of this compliance information.  

License Information 

In case that any third party licenses have to be shipped with the binary or to provide license 
information is provided using FileReference elements with the kind="LicenseFile". 

 The following code snippet shows how a licenese file can be provided.  

<File id="ID_999911" path="/license/" name="BSD.TXT" role="other" 
checksum="A7549D084CFD2F9C6DEFA940B9BD5DA402B8341D" 
needsChecksum="true" /> 
[...] 
<BinaryContainerInfo> 
  <FileReference fileRefId="ID_999910" kind="LicenseFile" /> 
</BinaryContainerInfo> 

Validation & Verification 

For Verification and Validation, additional files can be provide using one or more 
FileReference elements with the kind="ValidationAndVerificationFile". 

 

The following code snippet shows how some sumulationsimulation results (e.g., 

ASAM MDF format) from a use case for back to back testing as well as some 

description of equivalence classes (e.g., properitary XML format) can be specified 

for th container.  

<File id="ID_999920" path="/v_n_v/" name="scenario1.mdf" 
role="other" checksum="DB1A8489D88604A5C896BAB2B35631314B257036" 
needsChecksum="true" /> 



<File id="ID_999921" path="/v_n_v/" name="equivalenceclasses.xml" 
role="other" checksum="F61E2D36002DD140653334E4871DEBE6EE3B721A" 
needsChecksum="true" /> 
[...] 
<BinaryContainerInfo> 
  <FileReference fileRefId="ID_999910" 
kind="ValidationAndVerificationFile" /> 
</BinaryContainerInfo> 

Configuration of Runtime 

Certain binary files require additional information on runtime. The Binary Code container 
provides the possibility to link such information via FileReference elements with the 
kind="ConfigurationFile". 

 
The following code snippet shows how a SOME/IP stack configuration for Adaptive 

AUTOSAR application is referenced.  

<File id="ID_999910" path="/adaptive/" name="someip.json" 
role="other" checksum="DB1A8489D88604A5C896BAB2B35631314B257036" 
needsChecksum="true" /> 
[...] 
<BinaryContainerInfo> 
  <FileReference fileRefId="ID_999910" kind="ConfigurationFile" 
/> 
</BinaryContainerInfo> 

6.3. Binary Format 

The Binary Code Model Representation contains object files and libraries in binary format. 

For deployment on a target architecture the object file or library must be provided as a binary 
file ELF format [ELFLinux]. 

 

Hence, an ELF file should be be target specific (e.g., for a specific ECU) and, 

optionally, may be executable. Executable ELF files will be used in PiL Simulation 

and can contain dedicated frame code. PiL-simulation tools may also create their 

own harness for PiL simulation. Non-executable ELF files (relocatable ELF) can be 

used for the integration on the embedded target.  

For Windows-based co-simulation a Binary Code Model Representation might also contain 
Windows-compatible object files or dynamic link libraries [DLLWin]. 

 

For the (co-)simulation use case the binary artifacts support multiple use cases. On 

the one hand, it may be a DLL, shared library or object file for general purpose 

code for a general purpose platform (e.g., Windows or Linux) that can be used in a 

Software-in-the-Loop simulation.  

Additionally, the Binary Code Model Representation can refer to the following Production 
Code Model Represention items: 

file:///D:/otter/_gitlab/EMPHYSIS_Specification.git/5000_prod_code.html%23bookmark-5300_code_fragments
file:///D:/otter/_gitlab/EMPHYSIS_Specification.git/5000_prod_code.html%23bookmark-5300_code_fragments


• Simulation Code that might be necessary/used for a standalone SiL or PiL simulation of 
the eFMU. 

• Tool specific code that might be required to use simulation features of a particular tool. 

 

An example for the tool specific code might be a TargetLink S-Function frame used 

for a SiL Simulation or an TargetLink TSM-Frame used for PiL simulation. Another 

example migth be a minimal stub for debugging purposes on the target 

architecture.  

Beside the actual binary format the Binary Code Model Representation might contain also files 
including information for calibration, measurement and diagnosis purposes. 

 

An example format for the description of calibration, measurement and diagnosis is 

the ASAM A2L format. This might be an incomplete A2L since the absolute memory 

addresses will be updated after the final link process is completed.  

An eFMI Binary Model Represention might make use of service functions which do not 
necessarily have to be contained in the binary files. Especially for the use case of ECU 
integration these service functions might be provided by the ECU environment. 

 

[] Tool Interface Standard (TIS) Executable and Linking Format (ELF) Specification. 
http://refspecs.linuxfoundation.org/elf/elf.pdf, last visited 2019-03-28. 

[] Dynamic-Link Libraries. https://docs.microsoft.com/en-
us/windows/desktop/Dlls/dynamic-link-libraries, last visited 2019-03-29. 

7. Acronyms 

Name Description 

AA Adaptive AUTOSAR Application 

AlgC Algorithm Code 

AlgCL Algorithm Code Language 

ARXML Classic AUTOSAR interface description file 

AST Abstract Syntax Tree 

http://refspecs.linuxfoundation.org/elf/elf.pdf
https://docs.microsoft.com/en-us/windows/desktop/Dlls/dynamic-link-libraries
https://docs.microsoft.com/en-us/windows/desktop/Dlls/dynamic-link-libraries


Name Description 

Bin Code Binary Code 

DAE Differential Algebraic Equation system 

ECU Embedded Control Unit 

eFMI FMI for embedded systems 

eFMU FMU for embedded systems 

ELF Executable and Linking Format 

EqC Equation Code 

EqCL Equation Code Language 

FFT Fast Fourier Transform 

FMI Functional Mock-Up interface 

FMI-CS FMI for Co-Simulation 

FMU Functional Mock-Up unit 

GPL GNU General Public License 

LPV Linear Parameter-Varying (control / controller) 

LTI Linear Time-Invariant 

LTV Linear Time-Varying 



Name Description 

ML Machine Learning 

MPC Model Predictive Control 

NMPC Nonlinear Model Predictive Control 

NN Neural Network 

ODE Ordinary Differential Equations 

PID Proportional-Integral-Derivative (control / controller) 

PiL Processor-in-the-Loop 

Prod Code Production Code 

SiL Software-in-the-Loop 

SOA Service-oriented Architecture 

SW Software 

SWC Classic AUTOSAR Software Component 

V&V Validation & Verification 

8. Glossary 

• Calibration Parameter - Value equals the start value and can be changed anytime during 
evaluation of the system by an external source [Req_4.1.09, Req_5.1.13]. 

• Calibration Variables - Constant for all execution steps, but changeable by eeprom-update 
[Req_6.2.05]. 

• Code - Formal specification of the model behavior. 



o Production Code - Code intended for the execution on an embedded system. 

o Target Specific Code - Production Code with specific instructions for a certain target. 

• ECU software content - Pre-existing software into which the Production Code has to be 
integrated. 

• eFMU - Container of model representations and other artefacts according to the eFMI 
standard. 

• Manifest - Meta information in an extendable form describing an associated artefact. 

o eFMU Manifest - Manifest describing the available model representations of the eFMU 
container and how to get access to them, plus other general meta information. 

o Code Manifest - Manifest describing the model interface of the associated code and 
providing additional meta information on how to access and utilize the code. 

• Model Representation - Compound of Code + Code Manifest representing the model in 
one particular standardized form. 

• Parameter - Value equals the start value and can be changed only before initialization of 
the system. 

• State Machine - A (finite) state machine is used to model a system fluctuating between a 
fixed number of states. Transitions rules between one state to another are defined 
through entry and exit actions. 

• State-Space Representation - A mathematical model describing the dynamics of a system 
with a set of first order differential equations. Inputs, outputs and internal state variables 
are related by A, B, C, D matrices. 

• System constants - Values that are constant for a specific configuration of a software 
system under test (a specific variant of software and hardware components), but might 
be changed if the component is used for a slightly different configuration (e.g. number of 
battery cells available). 

• Target - The intended productive execution environment of the software function that is 
encapsulated in the eFMU. The eFMU target is characterized by the controller hardware 
(processor, )…) and software (compiler, runtime environment, software architecture). 

9. Tool Support 

This eFMI version was evaluated with prototypes of the following tools (alphabetical list): 

Tool Vendor eFMI support 

AUTOSAR 
Builder 

Dassault Syst譥
sSystèmes 

Generation of Adaptive AUTOSAR from 
eFMI Production and eFMI Binary Code 



Tool Vendor eFMI support 

Astr饼
/strong>Astrée 

AbsInt 
Angewandte 
Informatik GmbH 

Verification of eFMI Production Code 

CSD Siemens NV 
Test of eFMI Production Code with eFMI 
Behavioral Model; integration in existing 
code and verification of code 

Dymola 
Dassault Syst譥
sSystèmes 

Generation of eFMI Algorithm Code and 
eFMI Behavioral Model (reference results) 
from Modelica model 

ESP 
Dassault Syst譥
sSystèmes 

Generation of eFMI Production Code from 
eFMI Algorithm Code; Generation of eFMI 
Binary Code from eFMI Production Code 

Simcenter 
Amesim 

Siemens Digital 
Industries 
Software 

Generation of eFMI Algorithm Code from 
neural network approximation of Amesim 
model 

SCODE CONGRA ETAS GmbH 

Generation of eFMI Production Code from 
eFMI Algorithm Code; test of eFMI 
Production Code with eFMI Behavioral 
Model 

SimulationX ESI ITI GmbH 
Generation of eFMI Algorithm Code from 
Modelica model 

TargetLink dSPACE GmbH 

Generation of eFMI Production Code from 
eFMI Algorithm Code; test of eFMI 
Production Code with eFMI Behavioral 
Model 

TPT PikeTec GmbH 
Test of eFMI Production Code with eFMI 
Behavioral Model 
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Version Date Release Status Notes 

1.0.0-
alpha.1 

Nov. 
12, 
2020 

EMPHYSIS 
internal + shared 
with FMI group 

Draft of specification. 

1.0.0-
alpha.2 

Jan. 26, 
2021 

EMPHYSIS 
internal + shared 
with FMI group 

Status before Equation Code Model 
representation was moved to appendix 

1.0.0-
alpha.3 

Jan. 27, 
2021 

Publicly available 

Equation Code Model representation moved 
to appendix. 
New section Tool Support. 
License of document changed to Creative 
Commons Attribution-ShareAlike 4.0 
International and of accompanying code 
and data to 2-Clause BSD License. 

1.0.0-
alpha.4 

Feb. 
22, 
2021 

Publicly available 

Remaining Equation Code references 
removed. 
Images of schema files updated. 
License of accompanying code and data 
changed to 
3-Clause BSD License. 
Minor improvements of some descriptions. 

Version 1.0.0 

Contributors of Specification 

The eFMI specification was developed within the ITEA EMPHYSIS project 
(https://itea3.org/project/emphysis.html) that was initiated and organized by Oliver Lenord, 
Christian Bertsch (Robert Bosch GmbH), PacMagninPacôme Magnin (Siemens) and Martin 
Otter (DLR-SR). 

The development of the eFMI specification was headed and managed by Oliver Lenord 
(Robert Bosch GmbH). The essential part of the design of this version was performed by the 
following core development groups that closely worked together (alphabetical listings in the 
respective subgroups) and that utilized feedback and input from Benchmark Test Cases, Tool 
Assessment, as well as Demonstrators: 

• Behavorial Model 
Yuri Durodi頨Durodié (Siemens NV) 
Andreas Pfeiffer (DLR-SR) 
Robert Reicherdt (PikeTec) 

• Rudimentary Equation Code 
Andreas Pfeiffer (DLR-SR) 
Robert Reicherdt (PikeTec) 

https://itea3.org/project/emphysis.html


• Algorithm Code 
Christoff BrgerBürger (Dassault Syst譥sSystèmes AB) 
Martin Otter (DLR-SR) 
Andreas Pfeiffer (DLR-SR) 

• Production Code 
JNiereJörg Niere (dSPACE GmbH) 
Michael Hussmann (dSPACE GmbH) 
Kai Werther (ETAS GmbH) 

• Binary Code 
David Brenken (EFS) 
Pierre Le Bihan (Dassault Syst譥sSystèmes) 
Robert Reicherdt (PikeTec) 

Benchmark Test Cases 



The 

specification was assessed with benchmark tests cases provided in the Modelica library 
EMPHYSIS_TestCases and with Simcenter Amesim models. The EMPHYSIS_TestCases library 
was managed by Andreas Pfeiffer (DLR-SR) and Christoff BrgerBürger (Dassault Syst譥
sSystèmes AB). 

The benchmark test cases have been developed by: 

• Robert Bosch GmbH 
Siva Sankar Armugham 
Christian Bertsch 
Oliver Lenord 
Naresh Mandipalli 
Jonathan Neudorfer 
Christian Potthast 
Vishnupriya Veeraragavan 



• DLR-SR 
Jonathan Brembeck 
Ricardo de Castro 
Michael Fleps-Dezasse 
Martin Otter 
Andreas Pfeiffer 
Jakub Tobolar 

• Siemens Digital Industries Software 
J鲴me Andr鼯p> Jérôme André 

Tool Assessment 

The eFMI specification was assessed by implementing eFMI support in various tools whose 
interoperability as a tool chain was evaluated. To that end, more than a hundred test models 
and variants of the benchmark test cases provided by the EMPHYSIS_TestCases library have 
been used to validate tool interoperability and correctness. 

The developed and bechmarked tools are, in alphabetic order: 

AUTOSAR Builder (Dassault Syst譥sSystèmes) 

• Production and Binary Code → Adaptive AUTOSAR 

• Developers: Fabien Aillerie 

Astr饼/strong>Astrée (AbsInt Angewandte Informatik GmbH) 

• Verification of Production Code 

• Developers: Reinhold Heckmann 

CSD (Siemens NV) 

• Test of Production Code with Behavioral Model, integration in existing code and verification of code 

• Developers: Jishnu Jayaram 

Dymola (Dassault Syst譥sSystèmes AB) 

• Modelica → Algorithm Code 

• Modelica → Behavioral Model 

• Developers: Christoff BrgerBürger 

ESP (Dassault Syst譥sSystèmes) 

• Algorithm Code → Production Code 

• Production Code → Binary Code 

• Developers: Samuel Devulder, Pierre Le Bihan, Laurent Le Goff 



SCODE CONGRA (ETAS GmbH) 

• Algorithm Code → Production Code 

• Test of Production Code with BehavioralModel 

• Developers: Kai Werther 

Behavioral Model Scripts (DLR-SR) 

• Generation of Behavioral Model 

• Developers: Andreas Pfeiffer 

Simcenter Amesim (Siemens Digital Industries Software) 

• Amesim model → neural network approximation as Algorithm Code 

• Developers: J鲴me Andr鼯p> Jérôme André 

SimulationX (ESI ITI GmbH) 

• Modelica → Algorithm Code 

• Developers: Gerd Kurzbach 

TargetLink (dSPACE GmbH) 

• Algorithm Code → Production Code 

• Test of Production Code with Behavioral Model 

• Developers: Michael Hussmann, JNiereJörg Niere 

TPT (PikeTec) 

• Test of Production Code with Behavioral Model 

• Developers: Robert Reicherdt 

Demonstrators 

The eFMI specification and the developed tools have 
been assessed by industrial demonstrators: 

Performance assessment (Robert Bosch GmbH) 

Comparing generated Production Code of nine benchmark test cases of the EMPHYSIS_TestCases library 
with manually developed code. This includes comparison of execution performance on the Bosch ECU 
MDG1. 

• Tooling: Performance Test Environment 

• Developer: Vishnupriya Veeraragavan 



Powertrain vibration reduction (Robert Bosch 
GmbH) 

Generate a controller with a nonlinear inverse model on the Bosch ECU MDG1 to reduce vibrations in a 
powertrain. 

• Tooling: Dymola, SCODE-CONGRA, TPT, Astr饠Astrée and eFMI2AUTOSAR (Robert Bosch GmbH) 

• Contributors: Oliver Lenord, Kai Werther, Siva Sankar Armugham 

Model-based diagnosis of thermo systems 
(Robert Bosch GmbH) 

Generate diagnosis functions on the Bosch ECU MDG1. 

• Tooling: OpenModelica (www.openmodelica.org), SCODE-CONGRA, ECU Test Environment 

• Contributors: Oliver Lenord, Christian Potthast 

Virtual sensor for hybrid drivetrain 
(Siemens) 

Generate virtual sensor by approximating a dynamic model by means of a neural network. 

• Tooling: Simcenter Amesim and TargetLink 

• Contributors: 

o J鲴me Andr頨Jérôme André (Siemens Digital Industries Software) 

o Alexander Van Bellinghen (Siemens NV) 

o Yuri Durodi頨Durodié (Siemens NV) 

o Jishnu Jayaram (Siemens NV) 

o Jorg Niere (dSPACE GmbH) 

Semi-active damping controller and 
observer (DLR-SR) 

Generate a controller (with a nonlinear inverse model) and a prediction model (nonlinear extended 
Kalman Filter or nonlinear unscented Kalman Filter) on a pre-development ECU from EFS and on an ECU 
of KW automotive. The implementation with the KW automotive ECU has been tested in real driving tests. 

• Tooling: Dymola and TargetLink 

• Contributors: 

o Florian Bitter (EFS) 

o Jonathan Brembeck (DLR-SR) 

o Daniel Baumgartner (DLR-SR) 



o Christoff BrgerBürger (Dassault Syst譥sSystèmes AB) 

o David Brenken (EFS) 

o Dario Celan (EFS) 

o Georg Hofstetter (EFS) 

o Michael Hussmann (dSPACE GmbH) 

o Konrad Krauter (EFS) 

o Severin Kirpal (EFS) 

o Jorg Niere (dSPACE GmbH) 

o Andreas Pfeiffer (DLR-SR) 

o Raik Ritter (EFS) 

o Julian Ruggaber (DLR-SR) 

o Christina Schreppel (DLR-SR) 

o Jakub Tobolar (DLR-SR) 

o Johannes Ultsch (DLR-SR) 

o Christoph Winter (DLR-SR) 

Dual-clutch use case (Daimler AG) 

Standardized, parameterized, reusable module for a simplified dual clutch transmission model with state 
events. The model extensively uses typically stiff components of the Modelica Standard Library 
(modelica.org) like clutches with friction and non-linear springs, resulting in a stiff, mixed eqution system 
with discontinous states due to gear shifts. The objective is to demonstrate the portability of the 
generated module to hardware-in-the-loop (HiL) systems and to a pre-development transmission 
controller unit. 

• Tooling: 

o Model development and eFMU generation: Dymola and TargetLink 

o Software-in-the-loop tests: Dymola 

o Hardware-in-the-loop tests: TargetLink, ConfigurationDesk (dSPACE GmbH) and PROVEtech 
(Akka Technologies) 

• Contributors: 

o Zdenek Husar (Daimler AG) 

o Jan RRöper (Daimler AG) 

o Emmanuel Chrisofakis (Daimler AG) 



o Klaus Riedl (Daimler AG) 

o Christoff BrgerBürger (Dassault Syst譥sSystèmes AB) 

o Hans Olsson (Dassault Syst譥sSystèmes AB) 

Transmission model as virtual 
sensor (Volvo Cars) 

Virtual sensor for electric machine control based on a Modelica transmission model. The virtual sensor 
provides vehicle state estimation used to mitigate, e.g., backlash in the electric driveline, and thereby 
increase the overall performance of the whole electric driveline. 

• Tooling: Dymola and TargetLink 

• Contributors: 

o Sarah Bellis (Volvo Cars) 

o Martin Johnsson (Volvo Cars) 

o Jart Hageman (Volvo Cars) 

o Sabina Linderoth (Volvo Cars) 

o Edvin Eriksson Johannsson (Volvo Cars) 

o David KastolvoKastö (Volvo Cars) 

o Aditya Naronikar (Volvo Cars) 

o Ottilia Wahlgren (Volvo Cars) 

o Emma Kroon (Volvo Cars) 

o Johannes Emilsson (Volvo Cars) 

o Joachim H䲳jolvoHärsjö (Volvo Cars) 

o Per Jacobsson (Volvo Cars) 

o Johan Bergeld (Volvo Cars) 

o Christoff BrgerBürger (Dassault Syst譥sSystèmes AB) 

AEBS: Advanced Emergency 
BreakingBraking System 
(Dassault Syst譥sSystèmes) 

Emergency breakingAdvanced emergency braking controller derived from industrial Simulink 
(MathWorks) model with enabled subsystems and signal locks. For correct handling of the side-effects of 
enabled subsystems Modelica state machines are used; the signal locks are modeled using previous of 
Modelica synchronous. The final objective is the generation and validation of an AUTOSAR Adaptive 
Platform component starting from the Modelica model via a seamless tool chain based on eFMI. 



• Tooling: 

o Model development and Algorithm Code generation: Dymola 

o Production and Binary Code generation: ESP 

o AUTOSAR Adaptive Platform component generation: AUTOSAR Builder 

• Contributors: 

o Christoff BrgerBürger (Dassault Syst譥sSystèmes AB) 

o Samuel Devulder (Dassault Syst譥sSystèmes) 

o Fabien Aillerie (Dassault Syst譥sSystèmes) 

pNMPC controller for 
semi-active suspension 
(GipsaGIPSA-lab) 

Generate a model based controller (parameterized Nonlinear Model Predictive Controller from Gipsa-lab 
+ a neural network model from Simcenter Amesim) for semi-active suspension regulation. 

Model-based controller for semi-active suspension regulation with hardware-in-the-loop (HiL) test via 
the INOVE vehicle suspension test rig. The controller is a parameterized nonlinear model predictive 
controller (pNMPC) from GIPSA-lab using a neural network model to predict the future behavior of the 
car like the response of chassis and wheel to a given road profile and suspension parameter. The 
suspension control is realized by means of this simulated prediction. A Simcenter Amesim physics model 
of the whole car including suspension, chassis and wheels is used to derive and train the neural network 
model, for which in turn an implementation as eFMI GALEC code is generated (all within Simcenter 
Amesim). Respective eFMI production code is generated using TargetLink. The final solution is deployed 
on a dSPACE MicroAutoBox II ECU, based on GIPSA-lab’s pNMPC module and a S-function block wrapping 
the production code. 

• Tooling: pNMPC_CODEGEN, Simcenter Amesim and TargetLink 

• Contributors: 

o Olivier Sename (Gipsa Lab) 

o Rattena Tang (Gipsa Lab) 

o Suzanne De Conti (Gipsa Lab) 

o Karthik Murali Madhavan Rathai (Gipsa Lab) 

o Thanh-Phong Pham (Gipsa Lab) 

o Manh-Hung Do (Gipsa Lab) 

o Marc Alirand (Siemens Digital Industries Software) 

o J鲴me Andr頨Jérôme André (Siemens Digital Industries Software) 

o Joerg Niere (dSPACE GmbH) 



Appendix B: 

Reserved 

Built-in 

Functions 

This section lists already 
designed built-in 
functions that are not yet 
part of the efmi standard 
but might be added to it 
in the future. Therefore, 
the names and 
functionality of these 
functions are reserved: 

Overview of the 

reserved built-

in functions 

Function-

Name 

Descri

ption 

Round Real r to an 
Integer 

roundTo
wardsZe
ro(r) 

Round 
towar
ds 
zero 
(also 
known 
as 
trunca
tion). 

roundAw
ayZero(
r) 

Round 
towar
ds 
infinit
y. 

roundHa
lfDown(
r) 

Round 
half 
towar
ds 
negati
ve 



Function-

Name 

Descri

ption 

infinit
y. 

roundHa
lfUp(r) 

Round 
half 
towar
ds 
positiv
e 
infinit
y. 

roundHa
lfTowar
dsZero(
r) 

Round 
half 
towar
ds 
zero 
(also 
known
s as: 
round 
half 
aways 
from 
infinit
y). 

roundHa
lfAwayZ
ero(r) 

Round 
half 
away 
zero 
(also 
known 
as: 
round 
half 
towar
ds 
infinit
y) 

roundHa
lfToOdd
(r) 

Round 
half 
towar
ds odd 
numbe
r. 

Division of Integer 
variables i1, i2 



Function-

Name 

Descri

ption 

with rounding to an 
integer 

divisio
nDown(i
1,i2) 

intege
r( 
round
Down(
i1/i2) 
). 

divisio
nUp(i1,
i2) 

intege
r( 
round
Up(i1/
i2) ). 

divisio
nAwayZe
ro(i1,i
2) 

intege
r( 
round
AwayZ
ero(i1
/i2) ). 

divisio
nHalfDo
wn(i1,i
2) 

intege
r( 
round
HalfDo
wn(i1
/i2) ). 

divisio
nHalfUp
(i1,i2) 

intege
r( 
round
HalfUp
(i1/i2) 
). 

divisio
nHalfTo
wardsZe
ro(i1,i
2) 

intege
r( 
round
HalfTo
wards
Zero(i
1/i2) 
). 



Function-

Name 

Descri

ption 

divisio
nHalfAw
ayZero(
i1,i2) 

intege
r( 
round
HalfA
wayZe
ro(i1/i
2) ). 

divisio
nHalfTo
Even(i1
,i2) 

intege
r( 
round
HalfTo
Even(i
1/i2) 
). 

divisio
nHalfTo
Odd(i1,
i2) 

intege
r( 
round
HalfTo
Odd(i1
/i2) ). 

divisio
nEuclid
ean(i1,
i2) 

Euclid
ean 
divisio
n of 
two 
intege
rs. 

Integer remainder 
of division of 
Integer variables 
i1, i2 

remaind
erDown(
i1,i2) 

Intege
r 
remai
nder 
of 
round
Down(
i1/i2). 



Function-

Name 

Descri

ption 

remaind
erUp(i1
,i2) 

Intege
r 
remai
nder 
of 
round
Up(i1/
i2). 

remaind
erAwayZ
ero(i1,
i2) 

Intege
r 
remai
nder 
of 
round
AwayZ
ero(i1
/i2). 

remaind
erHalfD
own(i1,
i2) 

Intege
r 
remai
nder 
of 
round
HalfDo
wn(i1
/i2). 

remaind
erHalfU
p(i1,i2
) 

Intege
r 
remai
nder 
of 
round
HalfUp
(i1/i2)
. 

remaind
erHalfT
owardsZ
ero(i1,
i2) 

Intege
r 
remai
nder 
of 
round
HalfTo
wards
Zero(i
1/i2). 



Function-

Name 

Descri

ption 

remaind
erHalfA
wayZero
(i1,i2) 

Intege
r 
remai
nder 
of 
round
HalfA
wayZe
ro(i1/i
2). 

remaind
erHalfT
oEven(i
1,i2) 

Intege
r 
remai
nder 
of 
round
HalfTo
Even(i
1/i2). 

remaind
erHalfT
oOdd(i1
,i2) 

Intege
r 
remai
nder 
of 
round
HalfTo
Odd(i1
/i2). 

remaind
erEucli
dean(i1
,i2) 

Intege
r 
remai
nder 
of 
Euclid
ean 
divisio
n. 

Remainder of 
division of Real 
variables r1, r2 

realRem
ainderD

Real 
remai
nder 
of 
round



Function-

Name 

Descri

ption 

own(r1,
r2) 

Down(
r1/r2)
. 

realRem
ainderU
p(r1,r2
) 

Real 
remai
nder 
of 
round
Up(r1
/r2). 

realRem
ainderA
wayZero
(r1,r2) 

Real 
remai
nder 
of 
round
AwayZ
ero(r1
/r2). 

realRem
ainderH
alfDown
(r1,r2) 

Real 
remai
nder 
of 
round
HalfDo
wn(r1
/r2). 

realRem
ainderH
alfUp(r
1,r2) 

Real 
remai
nder 
of 
round
HalfUp
(r1/r2
). 

realRem
ainderH
alfTowa
rdsZero
(r1,r2) 

Real 
remai
nder 
of 
round
HalfTo
wards
Zero(r
1/r2) 



Function-

Name 

Descri

ption 

realRem
ainderH
alfAway
Zero(r1
,r2) 

Real 
remai
nder 
of 
round
HalfA
wayZe
ro(r1/
r2) 

realRem
ainderH
alfToEv
en(r1,r
2) 

Real 
remai
nder 
of 
round
HalfTo
Even(r
1/r2) 

realRem
ainderH
alfToOd
d(r1,r2
) 

Real 
remai
nder 
of 
round
HalfTo
Odd(r
1/r2) 

Definition of 

the reserved 

built-in 

functions 

The following functions 
are appended to Cbuiltin1: 

/****************
*****************
*****************
*****************
*****************
********* 
    Direct 
rounding to an 
integer: 
*****************
*****************
*****************
*****************



*****************
********/ 
 
function 
roundTowardsZero 
    input  Real 
r; 
    output Real 
i; 
algorithm /* 
    Also known 
as: truncation, 
round away from 
infinity. 
    i := (if r >= 
0.0 then 
roundDown(r) else 
roundUp(r)); 
*/ end 
roundTowardsZero; 
 
function 
roundAwayZero 
    input  Real 
r; 
    output Real 
i; 
algorithm /* 
    Also known 
as: round towards 
infinity. 
    i := (if r <= 
0.0 then 
roundDown(r) else 
roundUp(r)); 
*/ end 
roundAwayZero; 
 
/****************
*****************
*****************
*****************
*****************
********* 
    Rounding to 
the nearest 
integer (using a 
tie-breaking 
rule): 
*****************
*****************
*****************
*****************
*****************
********/ 
 
function 
roundHalfDown 
    input  Real 
r; 
    output Real 
i; 
algorithm /* 



    Also known 
as: round half 
towards negative 
infinity. 
    i := 
roundUp(r - 0.5); 
*/ end 
roundHalfDown; 
 
function 
roundHalfUp 
    input  Real 
r; 
    output Real 
i; 
algorithm /* 
    Also known 
as: round half 
towards positive 
infinity. 
    i := 
roundDown(r + 
0.5); 
*/ end 
roundHalfUp; 
 
function 
roundHalfTowardsZ
ero 
    input  Real 
r; 
    output Real 
i; 
algorithm /* 
    Also known 
as: round half 
away from 
infinity. 
    i := 
roundAwayZero(r - 
sign(r) * 0.5); 
*/ end 
roundHalfTowardsZ
ero; 
 
function 
roundHalfAwayZero 
    input  Real 
r; 
    output Real 
i; 
algorithm /* 
    Also known 
as: round half 
towards infinity. 
    i := 
roundTowardsZero(
r + sign(r) * 
0.5); 
*/ end 
roundHalfAwayZero
; 
 



function 
roundHalfToOdd 
    input  Real 
r; 
    output Real 
i; 
algorithm /* 
    i := (if 
roundHalfDown(r) 
< roundHalfUp(r) 
          then 
(if 
integer(remainder
(r + 0.5, 2.0)) 
== 0 then r - 0.5 
else r + 0.5) 
          else 
roundHalfDown(r))
; 
*/ end 
roundHalfToOdd; 
 
/****************
*****************
***** END OF 
LISTING 
*****************
*****************
****/ 

The following functions 
redefine Cbuiltin2, which 
defines builtin functions 
for Integer division. For 
every function named 
roundaroundα of Cbuiltin1 
with aα an arbitrary 
sequence of characters, 
Cbuiltin2 contains the 
character sequence: 

/****************
*****************
**** BEGIN OF 
LISTING 
*****************
*****************
***/ 
 
function 
divisionadivision
α 
    input Integer 
dividend; 
    input Integer 
divisor; 
    output 
Integer quotient; 
algorithm /* 
    quotient := 
integer(roundarou
ndα(real(dividend



) / 
real(divisor))); 
*/ end 
divisionadivision
α; 
 
function 
remainderaremaind
erα 
    input Integer 
dividend; 
    input Integer 
divisor; 
    output 
Integer 
remainder; 
algorithm /* 
    remainder := 
dividend - 
divisor * 
divisionadivision
α(dividend, 
divisor); 
*/ end 
remainderaremaind
erα; 
 
/****************
*****************
***** END OF 
LISTING 
*****************
*****************
****/ 

Further, Cbuiltin2 contains 
the following character 
sequence: 

/****************
*****************
**** BEGIN OF 
LISTING 
*****************
*****************
***/ 
 
function 
divisionEuclidean 
    input Integer 
dividend; 
    input Integer 
divisor; 
    output 
Integer quotient; 
algorithm /* 
    quotient := 
integer((if 
divisor > 0 
        then 
roundDown(real(di
vidend) / 
real(divisor)) 



        else 
roundUp(real(divi
dend) / 
real(divisor)))); 
*/ end 
divisionEuclidean
; 
 
function 
remainderEuclidea
n 
    input Integer 
dividend; 
    input Integer 
divisor; 
    output 
Integer 
remainder; 
algorithm /* 
    remainder := 
dividend - 
divisor * 
divisionEuclidean
(dividend, 
divisor); 
*/ end 
remainderEuclidea
n; 
 
/****************
*****************
***** END OF 
LISTING 
*****************
*****************
****/ 

Above functions are in 
lexical order w.r.t. their 
names; they constitute 
Cbuiltin2 in its entirety. 

The following functions 
redefine Cbuiltin3, which 
defines builtin functions 
for Real division, where 
the quotient is forced to 
be an integer according 
to a rounding strategy. 
For every function named 
roundaroundα of Cbuiltin1 
with aα an arbitrary 
sequence of characters, 
Cbuiltin3 contains the 
character sequence: 

/****************
*****************
**** BEGIN OF 
LISTING 
*****************
*****************
***/ 



 
function 
realRemainderarea
lRemainderα 
    input Real 
dividend; 
    input Real 
divisor; 
    output Real 
remainder; 
algorithm /* 
    remainder := 
dividend - 
divisor * 
round_aα(dividend 
/ divisor); 
*/ end 
realRemainderarea
lRemainderα; 
 
/****************
*****************
***** END OF 
LISTING 
*****************
*****************
****/ 

Above functions are in 
lexical order w.r.t. their 
names; they constitute 
Cbuiltin3 in its entirety. 

Appendix C: 

Equation 

Code Model 

Representati

on 

This section describes 
rudimentary support for 
the planned Equation 
Code model. It is not part 
of the eFMI standard, 
because the development 
is not yet finalized. This 
appendix summarizes the 
status of the 
development. An 
improved version might 
be added to a future 
version of the eFMI 
standard. 

Introduction 



The Equation Code model 
shall describe the 
mathematical model of 
the acausal, continuous-
time physical system with 
a standardized, 
intermediate language (a 
subset of the Modelica 
language 
(https://www.modelica.o
rg/modelicalanguage), 
often also referred to as 
Flat Modelica). 

Conceptually, the 
Equation Code model 
representation depicts 
the earliest stage of the 
model analyses. Here any 
language specific 
analyses, e.g. such as 
syntax checks are already 
done. However, the 
model is still acausal, i.e. 
the inputs and outputs 
are not yet fixed, the 
states not yet selected 
and the equations are not 
yet sorted and 
discretized. 

This representation form 
is currently under 
developement and is not 
yet defined in this 
specification, with 
exception of a very 
rudimentary manifest file 
that is needed to connect 
Behavioral Model and 
Algorithm Code 
representations. 

Manifest 

schema 

The rudimentary 
manifest file of the 
Equation Code model 
representation is an 
instance of an XML 
schema definition and 
defines the names and 
types of the variables that 
are used in the interface 
of the model. 

Definition of an 

eFMU Equation 

Code 

https://www.modelica.org/modelicalanguage
https://www.modelica.org/modelicalanguage


(efmiEquationCode

Manifest.xsd) 

On the top level, the 
schema consists of the 
following elements: 

Name 
Descripti

on 

attri
butes 

The 
attributes 
of the top-
level 
element 
are the 
same for 
all 
manifest 
kinds and 
are 
defined in 
section 
Section 
2.3.1. 



Name 
Descripti

on 

Current 
kind-
specific 
values: 
kind = 
"Equati
onCode", 
xsdVers
ion 
(value is 
the 
current 
xsd 
version of 
the 
schema 
for the 
Equation 
Code 
model 
manifest). 

Files 

List of 
files 
reference
d in this 
model 
represent
ation. 
Currently, 
no Files 
are 
defined. 
This 
element is 
the same 
for all 
manifest 
kinds and 
is defined 
in section 
Section 
2.3.3. 

Varia
bles 

A list of 
the 
discrete-
time 
interface 
variables 
of the 
model. A 
variable 
might be a 



Name 
Descripti

on 

scalar or 
an array 
of an 
elementar
y type. For 
details see 
Definition 
of an 
Equation 
Code 
Variable 
(efmiEqVa
riable.xsd
). 

Annot
ation
s 

Additional 
data that a 
vendor 
might 
want to 
store and 
that other 
vendors 
might 
ignore. 
For 
details see 
Section 
2.3.4.5. 

Definition of an 

Equation Code 

Variable 

(efmiEqVariable.xsd) 

An Equation Code defines 
a set of Variables. A 
Variable is defined in the 
following way: 





The schema consists of 
the following elements: 

Name 
Descrip

tion 

id 

The 
unique 
identific
ation of 
the 
variable 
with 
respect 
to the 
Equatio
nCode 
manifes
t file 
(can be 
referenc
ed from 
other 
manifes
t files). 



Name 
Descrip

tion 

name 

The full, 
unique 
name of 
the 
variable. 
Every 
variable 
is 
uniquel
y 
identifie
d within 
an eFMI 
Equatio
nCode 
instance 
by this 
name. 

type 

The 
base 
type of 
the 
variable. 
Valid 
values 
are: 
Real, 
Intege
r, 
Boolean
`. 

descri
ption 

An 
optional 
descript
ion 
string 
describi
ng the 
meanin
g of the 
variable. 

Dimens
ions 

If the 
variable 
is an 
array, 
then the 
fixed 
dimensi
ons of 
the 



Name 
Descrip

tion 

array 
are 
defined 
by this 
element. 
For 
every 
dimensi
on, the 
number 
defines 
the 
number 
of the 
dimensi
on 
(must 
be 
consecu
tive 
number
s 1, 2, …
) and 
size 
defines 
the fixed 
size of 
the 
dimensi
on 
(must 
be >= 
1). 

Annota
tions 

Additio
nal data 
of the 
variable, 
e.g., for 
the 
dialog 
menu or 
the 
graphic
al 
layout. 
For 
details 
see 
Section 
2.3.4.5. 

 

 



1. I.e., after detecting 

an error, normal 

program execution is 

suspended until the 

error is handled and 

the current control-

cycle terminated with 

the error signaled  

2. Only the bounded-

iteration rule has loop-

iterator-declaration 

within its definition-list.  

 


