
Functional Mock-upUp Interface for Embedded

Systemsembedded systems (eFMI)
version 1.0.0-alpha.34 (Draft), January 27February 22, 2021

Contents

• Preamble

o .1. CopyRight and License

o .2. Release Notes

▪ .2.1. Version 1.0.0-alpha.2

▪ .2.1. Version 1.0.0-alpha.4

o .3. Abstract

o .4. Overview

o .5. Introduction

• 1. General concepts

o 1.1. Comparing FMI with eFMI

o 1.2. FMI compliance

o 1.3. Functions in eFMI

▪ 1.3.1. Block methods

▪ 1.3.2. Built-in functions

▪ 1.3.3. Local functions

• 2. eFMU container architecture

o 2.1. Content description (efmiContainerManifest.xsd)

o 2.2. Structure of Model Representations

o 2.3. Model Representation Manifests

▪ 2.3.1. Attributes of manifest files (efmiManifestAttributes.xsd)

▪ 2.3.2. Listing of relevant other manifest files (efmiManifestReferences.xsd)

▪ 2.3.3. Listing of files belonging to the model representation (efmiFiles.xsd)

▪ 2.3.4. Referencing

▪ 2.3.5. Checksum calculation

▪ 2.3.6. FMU File References

• 3. Behavioral Model Representation

o 3.1. Introduction

o 3.2. Behavioral Model Manifest

▪ 3.2.1. Definition of an eFMU Behavioral Model (efmiBehavioralModelManifest.xsd)

▪ 3.2.2. Definition of a Scenario (efmiScenarios.xsd)

▪ 3.2.3. Definition of Variables (efmiVariable.xsd)

▪ 3.2.4. Definition of CsvData (efmiCsvData.xsd)

▪ 3.2.5. Comparison of signals

o 3.3. Behavioral Model Data

• 4. Algorithm Code Model Representation

o 4.1. Manifest

▪ 4.1.1. Definition of an eFMU Algorithm Code (efmiAlgorithmCodeManifest.xsd)

▪ 4.1.2. Definition of Clock

▪ 4.1.3. Definition of BlockMethods

▪ 4.1.4. Definition of ErrorSignalStatus

▪ 4.1.5. Definition of Units

▪ 4.1.6. Definition of Variables

o 4.2. GALEC: The Programming Language for Algorithm Code Containers' Source Code

▪ 4.2.1. Language-design Overview

▪ 4.2.2. Notation Conventions

▪ 4.2.3. Block-interface and life-cycle

▪ 4.2.4. General Syntactic and Semantic Rules

▪ 4.2.5. Error handling

▪ 4.2.6. Built-in Functions

▪ 4.2.7. Example Application Scenarios

• 5. Production Code Model Representation

o 5.1. Introduction

o 5.2. Production Code Manifest

▪ 5.2.1. Technical description of Production Code

▪ 5.2.2. Code Container

▪ 5.2.3. Code Files

▪ 5.2.4. Description Files

▪ 5.2.5. Technical Information Lookups

▪ 5.2.6. Logical Data

o 5.3. Production Code Language

• 6. Binary Code Model Representation

o 6.1. Introduction

o 6.2. Manifest

▪ 6.2.1. Structure of the Manifest

▪ 6.2.2. Binary Container

▪ 6.2.3. Modules

▪ 6.2.4. Binary Container Info (optional)

o 6.3. Binary Format

• 7. Acronyms

• 8. Glossary

• 9. Tool Support

• Literature

• Appendix A: eFMI Revision History

o Version 1.0.0

▪ Contributors of Specification

▪ Benchmark Test Cases

▪ Tool Assessment

▪ Demonstrators

• Appendix B: Reserved Built-in Functions

o Overview of the reserved built-in functions

o Definition of the reserved built-in functions

• Appendix C: Equation Code Model Representation

o Introduction

o Manifest schema

▪ Definition of an eFMU Equation Code (efmiEquationCodeManifest.xsd)

▪ Definition of an Equation Code Variable (efmiEqVariable.xsd)

Preamble

.1. CopyRight and License

This document and accompanying code copyright © 2017-2021 EMPHYSIS partners.
This document released under Attribution-ShareAlike 4.0 International.
Source code or other data, such as XML-schema files, that accompany thethis specification document, are released
under the 23-Clause BSD License.

.2. Release Notes

.2.1. Version 1.0.0-alpha.24

Disclaimer

This alpha release is a draft version of the eFMI standard (= Functional MockupMock.Up Interface for Embedded
Systemsembedded systems). It is planned to standardize a potentially improved version by the Modelica
Association.

.3. Abstract

The eFMI (FMI for embedded systems) standard specified in this document aims to extend the scope of FMI
(https://fmi-standard.org) from simulation towards software development. The eFMI standard is intended as
exchange format for workflows and tool chains from physical models to embedded software. It is defined as a
layered approach built upon the FMI for Co-Simulation standard (any version). The effect is An eFMI component,
that is an eFMU (Functional MockupMock-Up Unit for embedded systems)), can be packed in different formats.
Especially, an eFMU can be packed as FMU and can then be simulated with anany FMI compliant tool (https://fmi-
standard.org/tools) to perform Software-in-the-loop (SiL) testing. Code generation for an embedded device
requires however dedicated tool support for eFMI.

This effort is motivated by the fact that especially the development of advanced control functions and diagnosis
functions can benefit from physical models. As of today the realization of such model-based functions
incorporating physical models, in the following refered to as physics-based functions, is very involved. The
expertise from the physical modeling domains, control design and numerics for real time applications are required
as well as implementation knowledge in terms of rules & regulations for embedded software have to be taken into
account in order to supply an industry grade function on an embedded device.

The eFMI standard describes a container format that will allow to exchange models in a variety of different types
of model representations:

•

https://creativecommons.org/licenses/by-sa/4.0/
https://opensource.org/licenses/BSD-3-Clause
https://fmi-standard.org/
https://fmi-standard.org/tools
https://fmi-standard.org/tools

The Algorithm Code representation describes the mathematical model in a target and implementation
independent fashion with a standardized intermediate language. This intermediateas input/output, sampled
data block with one fixed or variable sample time using the standardized intermediate language GALEC
(Guarded Algorithmic Language for Embedded Control) developed for this purpose. GALEC is based on a small
subset of Modelica functions together with changes and extensions as needed for embbeded real-time systems.
GALEC code can be scrambled to provide a certain degree of Intellectual Property protection. Physical
modeling tools should be able to generate this representation with reasonable effort.

• The Production Code representations allow to ship C or C++ code within the same container, either as nearly
target-independent generic code and/or as highly optimized target specific code. Contrary to FMI, there is no
standardized API (getX, setX, doStep, …), but a description of the actual code interface to allow the code to be
integrated into existing software architectures with minimal calling overhead. When an eFMI is packed as
FMU, an FMU wrapper is added to a selected code representation. Software development tools should be able
to provide the transformation from an Algorithm Code to one or more Production Code representations with
reasonable effort.

• The Binary Code representations provide target specific executable codes. These code representations
naturally provide the best Intellectual Property protection.

• The Behavioral Model representation provides references results for different scenarios to allow automatic
tests of the Production and Binary Code representations. In the future this representation might be extended
to include the original model from which the eFMI representations are derived, or computable scenarios
might be added in form of FMUs.

By means of aone global content XML description of all parts of an eFMU and modelby one XML manifest file for
every eFMI representation specific model description filesshipped in an eFMU, a highly flexible and extensible
mechanism is provided that allow to integrate eFMUs into arbitrary software architectures being deployed to any
kinds of execution environment, including for example AUTOSAR or adaptive AUTOSAR.

.4. Overview

This document specifies the eFMI (FMI for embedded systems standard) with references to the FMI (Functional
Mock-upUp Interface) standard (https://fmi-standard.org/)

In section Section .5 the development of the eFMI standard and its intended usage is motivated.

The technical key concepts with reference to the current FMI standard are explained in section Chapter 1 for the
better understanding of the later sections.

Thereafter the eFMI standard is specified starting with the description of the overall container structure of an
eFMU (Functional Mock-upUp Unit for embedded systems) in section Chapter 2.

The following sections Chapter 3, Chapter 4, Chapter 5, Chapter 6 are dedicated to the different types of model
representations supported by eFMI. Each description consists of an introductory section followed by the
specifications of the corresponding meta data and language:

• The Behavioral Model representation provides reference results to allow automatic verification of the
Production and Binary Code representations.

• The Algorithm Code representation describes the mathematical model of discrete-time, sampled data,
input/output blocks in a target and implementation independent fashion with the standardized intermediate
language GALEC (Guarded Algorithmic Language for Embedded Control - a small subset of the Modelica
language (https://www.modelica.org/modelicalanguage) with extensions as needed for embbeded systems).

• The Production Code representation defines one or more mappings of an Algorithm Code representation to C
or C++ Code (for example 32-bit and/or 64-bit representation of floating point numbers, generic ANSI C-Code
and/or code specialized to a particular target environment like AUTOSAR and/or specific target processors).

https://fmi-standard.org/
https://www.modelica.org/modelicalanguage

• The Binary Code representation provides one or more target specific executable codes for one production code
representation.

In the following image an overview of the eFMI representations is given, together with examples for potential tool
chains:

This standard document is accompanied by the following open source codes and files to allow tools to more easily
support the eFMI standard:

• XML schema files for all xml manifest files defined in this document.

• An eFMI compliance checker in form of a Python library, to check compliance of eFMUs (Functional Mockup
Units for embedded systems) with this specification.

• The eFMI_TestCases Modelica package providing > 20 dedicated Modelica models and variants of them to test
eFMI tool chains.

• The eFMI Modelica package providing all eFMI builtin-functions as Modelica functions with a Modelica
implementation, in order that Modelica models can use these functions.

• ReferenceResults for the models of the eFMI_TestCases library in form of > 50 csv files.

• eFMUs for the eFMI_TestCases library generated with various tools.

.5. Introduction

The goal of the eFMI standard (FMI for embedded Systems) is to enhance Production Code of embedded control
systems by physics-based models in an automated way. This shall improve the performance of the underlying
systems, reduce the maintenance costs and increase the productivity of software development for embedded
systems.

Embedded software is commonly used on ECUs (Electronic Control Units) to control or monitor a system. In these
cases it is beneficial to incorporate knowledge of the system behavior into the function. Physical models aim to
describe the behaviour of the system for a given range of operation. These models are well described by
differential- and algebraic equations or can be approximated by projection on a neural network.

Physical models can be utilized to achieve a significantly better performance of the system in applications such as:

• observers/virtual sensors (e.g. extended and unscented Kalman filters, moving horizon estimation),

• model-based diagnosis (e.g. signal based fault detectors, linear/nonlinear residual generators),

• feedback and feedforward controllers (e.g. linear controllers with gain scheduling, nonlinear inverse models,
nonlinear dynamic inversion, feedback linearization, linear/nonlinear model-predictive control),

• neural networks to approximate physical models and/or the above applications.

These types of functions are typically hand-coded software implemented and tested in an elaborate and time-
consuming fashion. The eFMI standard aims to provide model exchange capabilities that allow to transfer physical
models created in dedicated modeling and simulation tools to embedded code generating tools for ECU software.
This enables an end to end workflow from physical modeling to the deployment of the software function on an
embedded device.

The eFMI standard is an open standard based on the FMI standard (Functional Mock-upUp Interface, https://fmi-
standard.org/). eFMI components are able to interoperate with software components according to the automotive
embedded system standards AUTOSAR (https://www.autosar.org/standards/classic-platform/) and Adaptive
AUTOSAR (https://www.autosar.org/standards/adaptive-platform/). Generated code shall refer to typical safety
measures and coding guidelines, e.g. in the Automotive industry the ISO 26262 and MISRA-C 2012 for Autocode
(https://www.misra.org.uk/Activities/MISRAAutocode/tabid/72/Default.aspx).

Different types of model representation shall allow to separate the concerns of deriving a proper computation
algorithm and its compliant implementation for an embedded device. The container architecture and rich meta
information, extending the FMI model description, support the integration in existing development processes and
tool chains.

1. General concepts

This section describes the general concepts of the eFMI standard

The goal of the standard is to extend the existing FMI standard to the embedded domain. The FMI standard is
focused on simulation of models and model parts, on few standardized execution platforms (Windows, Linux) with
well known tool chains. With this context in mind, the FMI standard does not consider any constraints with respect
to resource consumption or run time characteristics of the model.

In contrast there is a considerable diversity of embedded platforms, each with their own constraints with respect
to runtime performance, memory limits or available compiler support. Given these additional constraints the goal
of the FMI standard "Compile once, run everywhere" is neither feasible nor desirable.

A further aspect is the use of models not only for the sake of simulation but in a broad application range, from
advanced control strategies like model predictive control to model based diagnosis. The eFMI standard must
consider these aspects and is therefore designed as an extension to the FMI standard as described in the following.

1.1. Comparing FMI with eFMI

A major enhancement of the eFMI standard in comparison to the FMI standard is the introduction of different
abstraction levels. The FMI standard is based on an executable C Code with an interface of fixed and well defined
functions (like getX, setX and doStep). This approach is well suited for the purpose of simulation on a standardized
platform (either Windows or Linux).

https://fmi-standard.org/
https://fmi-standard.org/
https://www.autosar.org/standards/classic-platform/
https://www.autosar.org/standards/adaptive-platform/
https://www.misra.org.uk/Activities/MISRAAutocode/tabid/72/Default.aspx

However, such an approach is not very suitable for (deeply) embedded code due to the following reasons:

• Support of a diverse number of execution targets.

• Support of a diverse number of compilers.

• Integration of the code into existing code structures (in the following we will call this the "Software context")
with minimum overhead in data passing and function calling.

For this reason one fixed C Code (or one fixed executable) representing the implementation is not sufficient.
Instead the eFMI supports the concept of several C Code implementations (or also binary implementations),
each with a description of the interface of the C Code. These descriptions are defined in so-called manifest files
and are bundled with the corresponding code files into a Production code container. More details on these
manifest files can be found in the section on Production Code manifests (Section 5.2). Here you will also find
examples demonstrating the influence of the software context onto the generated code and manifest descriptions.

An FMU represents exactly one model (implemented by the C Code or executable). The same shall be true also for
an eFMU despite of the fact that it may contain any number of C Code implementations, and additionally, it shall be
easily possible to add further implementations (e.g. for different targets or software contexts) into the eFMU at any
time.

This requirement is enabled by adding a higher level abstraction to the eFMU, namely the "Algorithm Code".

The Algorithm Code contains an abstracted description of the function(s) to be computed, and serves as the input
to generate the C Code implementations. The functions are described in a pseudo programming language (majorly
influenced by "Modelica"), functions), and the meta data is also given in a manifest file. The Algorithm Code is a
solution to a causalization of this system by specifying

• Causalization: the input/output behaviour of the system.

• Discretization: discretization of differential equations (use of solver, time discretization).

The Algorithm Code is organized in code containers in the eFMU, similar to the Production Code container. For
more details on the organization of these containers to form a valid eFMU, please see the section on container
architecture (Chapter 2).

The following table summarizes the differences between FMI and eFMI.

Topic FMI eFMI

Goal (co-) simulation efficient ECU implementation

Execution
platform

standardized (Windows (.dll),
Linux)

diverse: different ECUs, different compilers

Reuse
"as is" in "all" simulation
environments

highly limited (therefore several implementations
possible)

Interface
fixed based on standardized
API (getX, setX, doStep, …)

not fixed, but description of the actual interface

Implementation
one implementation (one
source code, one binary)

any number of implementations (target, vendor and
"architecture" dependent)

Abstraction level C Code level
Abstract model representation algorithm (Algorithm
Code) in addition to (derived) C Code implementation
(Production Code)

1.2. FMI compliance

An important fact is that despite the broadened scope of the eFMI, an eFMU is always alsocan be packed into an
FMU. This is achieved by taking a distinguished Production Code level implementation and wrapping this to an
FMI compliant interface with corresponding model description file. Surely this Production Code level
implementation must be target independent and suitable for simulation targets like Windows or Linux.

1.3. Functions in eFMI

In the following different kinds of functions considered in the eFMI standard are described. It is mentioned for
which model representation a certain function kind is available. Differences between the kind of functions and
consequences and requirements for e.g. transformation tools are also covered.

1.3.1. Block methods

(Available in Algorithm Code and Production Code model representation)

The Algorithm and Production Code model representation is mathematically defined as a sampled input/output
block with one (potentially varying) sample period for the whole block. All variables of the block have a defined
type and all statements of the block are sorted and explicitely solved for a particular variable. Three block methods
are defined, so functions that operate on the same memory self that is exchanged between the function calls.
Especially, methods are provided to initialize the self memory with function Startup and to perform one step at
the actual sample instant with method DoStep.

The block methods are defined in the Algorithm Code representation. A Production Code generator translates
these methods to C-functions. It is also possible to define Production Code interface functions directly in C, without
providing an Algorithm Code representation.

On Production Code level the block methods are highly integrated in the environment provided by the embedded
control unit (ECU). For example, if the ECU provides input signals at certain addresses in memory or the
parameters are part of an overall global C-struct. Consequently the actual implementation/interface of the
methods is at liberty of the Production Code generating tool.

1.3.2. Built-in functions

(Available in Algorithm Code and Production Code model representation)

Built-in functions are functions with well defined syntax and semantics in the eFMI standard. This includes
elementary functions such as sin, cos, log, exp, but also functions to solve linear equation systems in various
ways, for example

 x := solveLinearEquations(A, b);

to solve the linear equation system A*x = b with regular A matrix for x.

Built-in functions can be used in Algorithm Code or Production Code. All built-in functions that are supported by
the eFMI standard are defined in Section 4.2.6. The names of the built-in functions are reserved and must not be
declared by the user.

A tool that transforms Algorithm Code into Production Code doesntdoesn’t need additional information for those
functions, because their syntax and semantics are clearly defined thus the tool knows how to handle it.

1.3.3. Local functions

(Available at Algorithm Code and Production Code level)

In Algorithm Code, local functions can be defined together with the physics-based model that underlies the eFMU.
A local function is formally defined with the GALEC language, see section [GALEC Language]. A Production Code
generator generates a C-function from this definition. Alternatively, a local function can be provided as C Code,
together with a GALEC wrapper that defines how the call of the GALEC function is mapped to C (the syntax and
semantics is identical to the Modelica external function interface). The declaration of the logical function interface
must be provided in the corresponding manifest file.

Example of a local function implemented with the GALEC language:

function add
 input Real u1;
 input Real u2;
 output Real y;
algorithm
 y := u1 + u2;
end add

Example of a local function wrapper with the GALEC language around a C-function:

// GALEC function wrapper
function dot // scalar product
 input Real v1[:];
 input Real v2[size(v1,1)];
 output Real y;
 external "C" y = dot(size(v1,1), v1, v2)
end dot

// C Code signature
float_t dot(const int32_t n, float_t const v1[], float_t const v2[]);

2. eFMU container architecture

An eFMU can be packed in different formats. The basic structure of the eFMU specific part is always:

<eFMU root directory> // depends on the package format

 // Directories for eFMU model representations (tool specific)

 schemas // directory with the used eFMI schemas

 __content.xml // defines the eFMU folder structure

The only required names are the file name __content.xml and the directory name schemas at the root of the
eFMU folder. All other directory and file names are defined by the eFMU generation tool. The used directory and
file names are stored in the __content.xml file and can therefore be deduced by reading this file.

The following eFMU package formats are defined:

1. The <eFMU root directory> is a standard directory in the file system.
[This is useful to hold an eFMU in a text-based version control system, such as github, gitlab or svn.]

2. The <eFMU root directory> of (1) is zipped with the efmu-content, especially __content.xml, at the
root of the zip-file. The zip-file has the extension .efmu.
[This packaging is useful to ship or distribute an eFMU.]

3. The <eFMU root directory> of (1) is a path extra/org.efmi-standard inside a standard FMU
(Functional Mockup Unit) of any FMU type and any FMU version. The path is defined according to the FMI 3.0
specification and the way how eFMI is standardized by the Modelica Association (for example:
extras/org.efmi-standard). Details need still to be fixed.. With attribute activeFMU inside the
__content.xml file it is defined which of the Algorithm, Production or Binary code representations is used
as basis of the FMU.
[This package format is useful to ship or distribute an eFMU for Software-in-the-Loop simulation with any
suitable FMU tool.]

Note, Algorithm Code, Production Code and Binary Code representations can optionally store associated FMUs. For
example Algorithm Code can store a Model-in-the-Loop FMU and Production Code can store one or more
Software-in-the-Loop FMUs for different targets. In order to execute these FMUs directly, an eFMI tool is needed.
Otherwise, one of the stored FMUs can be selected for package format (3) in order that any FMI-tool can simulate
this specific FMU.

Example:

An eFMU could be stored as zip-file with extension .fmu having the following internal structure:

modelDescription.xml // required FMI file

// optional FMI directories and files

extras // extrasextra // extra directoy

of FMI 2.0 and 3.0

 org.efmi-standard // eFMU root directory

 // tool specific directories, e.g. AlgorithmCode

 schemas // directory with the used eFMI schemas

 __content.xml // defines the eFMU folder structure

An eFMU may contain any number of additional subfolders below the <eFMU root directory> with one
subfolder for each model representation. An eFMU container can contain only one Behavioral Model
Representation, one Equation Code Model Representation, one Algorithm Code Model Representation, but can
contain multiple Production Code Model Representations and also multiple Binary Code Model Representations.
Each Model Representation itself can be organized in subfolders. It must have a dedicated manifest file. Other files
describing the model representation such as code, an FMU, documentation, or license files may be organized in this
subfolder.

The following diagram sketches the eFMU containers visually (details are given in the next sub-section):

2.1. Content description (efmiContainerManifest.xsd)

The __content.xml file is the registry for all model representations in the eFMU container. It has the following
schema definition:

Name

Description

xsdVersion

Version of the
__content.xml
schema file in
semantic version
number format
(https://semver.org)
.

activeFMU

Value of name
attribute of model
representation
whose FMU is
currently unpacked
in the root directory
of the FMU. If no
FMU is unpacked
currently, the value

https://semver.org/

Name

Description

of this attribute must
not be set.

efmiManifestAttributesBase

A group of attributes
that is identical for
all manifest files. For
details see
[ManifestAttributesB
ase].

Each model representation that is a part in the eFMU container must have a corresponding entry in the
__content.xml file with the following information:

Name

Description

name NameUnique
name of the

Name

Description

subfolder. Serves
also as

Name

Description

identification
item within the

container, also
defining its root
directory name.

kind

The type of the
model
representation.
The allowed
values are
EquationCode
,
AlgorithmCod
e,
ProductionCo
de,
BinaryCode,
BehavioralMo
del.

manifest

Path toName of
the container’s
manifest file
relative to the
root directory of
the model
representation..
The manifest file
must beis located
in the root folder
of the model
representationco
ntainer’s root
directory, cf.
"name" attribute.

checksum*

SHA-1 checksum
of the binary
content of the
manifest file. A
checksum of the
whole subfolder
is not required,
because the files
belonging to a
model
representation
and their
checksums are
listed in the
manifest file itself.

manifestRefId

The unique GUID
of the manifest
file (=
corresponding
attribute of

Name

Description

ManifestReferenc
e). References a

Name

Description

manifest using the
Manifest elements

Name

Description

id attribute. This
information has

Name

Description

been added for
technical

Name

Description

purposes only to
speedup resolving

Name

Description

references
between manifest

Name

Description

files via the
manifestRefI

Name

Description

d outlined below.
Otherwise,

Name

Description

following an
inter-manifest

Name

Description

reference (via a
manifestRefI

Name

Description

d used in the
source manifest)

Name

Description

would demand to
read other

Name

Description

manifest files
until a manifest

with the desired
id is found).

The following is an example of such a content file:

<?xml version="1.1" encoding="utf-8"?>
<Content xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="schemas/efmiContainerManifest.xsd"
 xsdVersion ="0.89.0"
 efmiVersion="1.0.0"
 id ="{92b7edbe-e77d-419a-8457-bf8d452a98f6}"
 name ="MyModel"
 generationDateAndTime="2018-11-30T152021-02-27T15:43:25Z"
>
 <ModelRepresentation kind ="ProductionCode"
 name ="TLGeneratedCode_v1"
 manifest ="./="mark.xml"
 checksum
="e29810938a2a535dc8f6f9b8f51c5febe834ee01"
 manifestRefId="63f8c810-f008-47f0-a4b6-7a243f83e46b"
/>
 <ModelRepresentation kind ="AlgorithmCode"
 name ="algoCode_v1"
 manifest ="./="luke.xml"
 checksum
="e29810938a2a535dc8f6f9b8f51c5febe834ee05"
 manifestRefId="63f8c810-f008-47f0-a4b6-7a243f85e46b"
/>

 <ModelRepresentation kind ="EquationCode"
 name ="equCode"
 manifest ="./john.xml"
 checksum
="e29810938a2a535dc8f6f9b8f51c5febe834ee04"
 manifestRefId="63f8c810-f008-47f0-a4b6-7a253f85e46b"
/>
 <ModelRepresentation kind ="BinaryCode"
 name ="binCode_v1"
 manifest ="./="matthew.xml"
 checksum
="e29810938a2a535dc8f6f9b8f51c5febe834ee08>"
 manifestRefId="63f8c810-f008-47f0-a4b6-7a243f85e47b"
/>
</content>

This __content.xml file describes therefore the following directory structure:

<eFMU root directory>

 TLGeneratedCode_v1

 mark.xml

 algoCode_v1

 luke.xml

 equCode

 john.xml

 binCode_v1

 matthew.xml

 schemas // directory with the used eFMI schemas

 __content.xml // the xml-file of the example above

This example just demonstrates that the folder names of the model representations and the manifest file names
are defined by the generating tool. Typically, more descriptive names would be used, such as:

<eFMU root directory>

 BehavioralModel

 manifest.xml

 EquationCode

 manifest.xml

 AlgorithmCode

 manifest.xml

 ProductionCode_Generic_C_Float32

 manifest.xml

 ProductionCode_Generic_C_Float64

 manifest.xml

 ProductionCode_Autosar_Float32

 manifest.xml

 schemas

 __content.xml

2.2. Structure of Model Representations

Each model representation can have its own flexible structure. Its content and the structuring of information is
described in the manifest file (for details on specific manifest files for the different kind of model representations
refer to the corresponding sections). Which file in a model representation is its manifest file can be found as the
reference entry in the __content.xml file. The manifest file must be located in the model representation’s root
folder.

eFMI allows for having model representations consisting of a manifest file only, hence information should not be
doubled. For example, a tool generating directly a Production Code Model Representation must also generate an
Algorithm Code Model Representation, because information relevant for Algorithm Code is stored only in the
corresponding manifest file and not in the Production Code manifest.

2.3. Model Representation Manifests

The model representation manifests share the same guiding principles:

1. Entity names start with a capital letter

2. Attribute names start with a lower-case letter and use camelCase where needed.

3. Entities that serve as a group get the name of the grouped entities and an 's' as postfix.

4. Each entity that should be referred to has an attribute called id.

5. The type of an id attribute is an arbitrary string.

6. All id attribute values in a manifest file are unique.

7. References to other elements within or across manifest are established through attributes ending with
"RefId". The value is the id of the referenced element.

8. For file references a string attribute is used and the value is interpreted as the relative path starting at the
corresponding model representations root folder.

9. The context of a reference is specified in the definition of the manifest element and could be either within the
same manifest (local context) or within the a referenced manifest (foreign context).

All manifests also share the principles outlined in the following sections:

2.3.1. Attributes of manifest files (efmiManifestAttributes.xsd)

The top-level element of a manifest file has the two attributes xsdVersion and kind that have a fixed value that
is specific to the corresponding manifest file. For example, these two attributes are defined for the AlgorithmCode
manifest file in the following way:

The attributes have the

following meaning:

AName Description

xsdVersion
The version of this manifest schema file in semantic version number format
(https://semver.org).

kind
The type of this manifest file. The allowed values are
EquationCode, AlgorithmCode, ProductionCode, BinaryCode,
BehavioralModel.

Additionally, the top-level element of a manifest file has the following attributes (that are not specific to the
manifest kind):

https://semver.org/

The attributes have the

following meaning:

Name Description

efmiVersion
The version of the efmi Standard in semantic version number format
(https://semver.org) (currently: "0.7.0").

id The UUID for this manifest file.

https://semver.org/

Name Description

name
The name of the block (controller, diagnosis system etc.) as used in the
modeling environment from which the manifest file was created, such as
"Modelica.Mechanics.Rotational.Examples.CoupledClutches".

description Optional string with a brief description of the block.

version
Optional version number of the block as used in the modeling environment
from which the manifest file was created. [Example: "1.0"].

generationDateAndTime

Date and time of the last modification of the manifest file. The format is a
subset of "xs:dateTime" and should be: "YYYY-MM-DDThh:mm:ssZ" (with
one "T" between date and time; "Z" characterizes the Zulu time zone, in other
words, Greenwich meantime).
[Example: "2009-12-08T14:33:22Z"].

generationTool
Optional name of the tool that created the manifest file. If the files have been
created manually use generationTool="manual".

copyright
Optional information on the intellectual property copyright for the manifest
and code files.
[Example: copyright = ""© My Company 2020"].

license

Optional information on the intellectual property licensing for the manifest
and code files.
[Example: license = "BSD license <license text or link to license>" or
"Proprietary" or "Public Domain"].

Note, optional attributes defined in the __content.xml file, hold also for the manifest files in folders below this
file, if not redefined in a manifest file. For example, if attribute license is defined in the __content.xml, but in
no other manifest file of this eFMU, then the defined license holds for all directories and files below the <eFMU
root directory>. If, say, a Production Code manifest defines a license attribute, then this license holds for
all directories and folders in this Production Code model representation, independently what is defined in the
__content.xml file.

2.3.2. Listing of relevant other manifest files (efmiManifestReferences.xsd)

The information about the eFMU is layered into several model representations (e.g. Algorithm Code, Production
Code). In order to allow cross referencing between these model representations, the manifest files to be referenced
need to be registered in a manifest file of a certain model representation. For this the ManifestReference tag
is used with the following attributes

Name

Description

id

Unique id of the
manifest
reference entry.
This id is used
to establish
cross manifest
references.

manifestRefId

The unique
GUID of the
manifest. [Note,
the name of the
associated
model
representation
in the
__content.x
ml file is not
used, in order to
decouple the
manifest files
from the
container
manifest.]

checksum

The checksum
of the
referenced
manifest file.

origin

Boolean flag to
indicate if that
referenced
model
representation
is the one that
was used to
derive the
current model
representation.

Example:

<ManifestReferences>
 <ManifestReference id ="ID_1"
 manifestRefId="{63f8c810-f008-47f0-a4b6-7a243f85e46b}"
 checksum ="e29810938a2a535dc8f6f9b8f51c5febe834ee05"
 origin = true />
 <ManifestReference id ="ID_2"
 manifestRefId="{63f8c810-f008-47f0-a4b1-7a243f85222b}"
 checksum ="b4b84af148e587b95300d7a734302d1b911a6e58"
 origin =false />
</ManifestReferences>

2.3.3. Listing of files belonging to the model representation (efmiFiles.xsd)

Each manifest contains a list of the files that are part of its model representation. These files are listed in a manifest
as follows in the Files elements tag.

A File element has the following attributes:

Name Description

id
id of the file reference entry. This is id is used to refer to the file reference within the
manifests.

name Name of the file

path
Directory part of path to the file (relative to root of model representation)). Value has to
start with ./ and end with /.

needsChecksum
boolean flag indicating that the file is considered in the checksum calculation (default
value "true")

checksum The checksum of the file.

role

The role of the file in the model representation. This attribute is an enumeration with
the following valid values:

- "Code": File containing code (Equation Code, Algorithm Code, Production Code or
Binary Code).

- "Manifest": The manifest file itself.

- "FMU": One and only zip-file that is an FMU-container. Any version and any
representation of an FMU can be used (for example FMI for ModelExchange, or FMI for
CoSimulation, or FMU with a DLL, or an FMU with C-Code). This representation is useful
to directly utilize the FMU in any FMI-compliant tool.

- "FMUFolder": The content of an FMU (so the files after unzipping an FMU). Any
version and any representation of an FMU can be used. This representation is useful
when an eFMU is stored in a version control system, such as github, gitlab or svn.

- "ReferenceData": File containing reference data (for example a csv file that stores
reference values of variables).

- "other": All other files (for example an AUTOSAR description file *.arxml). Note, a
description of the file can be stored in attribute description.

NOTE: The enumeration values have been selected such that each value may be used on
an arbitrary level of abstraction, that is kind of model representation. In the future, more
enumeration values might be added.

description An optional description of the file (especially if role = \"other\").

ForeignFile See below.

Example of a list of files:

<Files>
 <File id="ID_1" name ="model.c"
 path ="./code"/"
 needsChecksum="true"
 checksum ="b4b84af148e587b95300d7a734302d1b912a6e58"
 role ="Code"/>
 <File id="ID_2" name ="model.h"
 path ="./code"/"
 needsChecksum="true"
 checksum ="b4b84af148e587b95300d7a734402d1b911a6e58"
 role ="Code"/>
 <File id="ID_3" name ="misra.doc"
 path ="./code"/"
 needsChecksum="true"
 checksum ="b4b84af148e587b95300d7a734302d1b914a6e58"
 role ="other"/>
 <File id="ID_4" name ="model.arxml"
 path ="./code"/"
 needsChecksum="true"
 checksum ="b4b84af148e587b95300d7a734302d1b911a7e58"
 role ="other"/>
 <File id="ID_5" name ="model.doc"
 path ="./description"/"
 needsChecksum="false"
 role ="other"/>
</Files>

2.3.4. Referencing

Referencing inside a model representation

Reference attributes pointing to entities in the same manifest must fulfill the naming convention that the attribute
name consists of the original entity name and adding "RefId" as postfix. The value of the reference attribute must
thereby be a valid id in the given context of the reference attribute, meaning that the id must exist in the context
and be of the right type. For example a value of reference attribute variableRefId is an id number in the same
manifest referencing a variable. In the Production Code Model Representation manifest file shown below, the
DataReference with ID_100 references the variable T with ID_33 using the attribute variableRefId.

Referencing files

Files play a certain role in the eFMU model representation and are listed in a Files element of each manifest.
Referencing files inside a model representation is done by using a FileReference element that comes along
with Files and File element itself and not using a fileRefId attribute only. The reason to use a certain
FileReference element is that the element comes along with a kind attribute of type string to allow for
specifying the kind of a file in more detail.

Name

Description

fileRefId
Reference to the id
in the file overview

kind

Attribute for a
more detaildetailed
specification of the
kind of file used.
The list of allowed
values is not
predescribed but
should follow the
guideline ????

<CodeFile id="ID_13" fileType="ProductionCode">
 <FileReference fileRefId="ID_1" kind="SourceCode"/>
</CodeFile>

Note, that a FileReference attribute has no id attribute and therefore can’t be referenced. This prevents
transitive file referencing.

Referencing into other model representation - ForeignReference

(efmiManifestReferences.xsd)

The eFMU describes one model on different levels of abstraction. Thereby the level of abstraction decreases in the
following order

1. Behavioral Model

1. Equation Code

2. Algorithm Code

3. Production Code

4. Binary Code

In order to

establish cross referencing between these model representations, the "derived" model representation must
include a ManifestReference to that model representation as described above. The consistency to the
referenced one is ensured as follows:

The manifestRefId is used to retrieve the (current) model representation checksum of the entry in the
__content.xml file. This (current) checksum can be compared with the (stored) checksum that is part of the
ManifestReference and is the checksum at the point of creation of that container. Through comparison of both
consistency can be ensured.

In order to cross reference into a referenced container’s manifest, a ForeignReference element is present that
has the following required two attributes:

Name Description

manifestReferenceRefId The (manifest local) id of a ManifestReference.

foreignRefId The id inside the referenced manifest file.

Example:

<ManifestReferences>
 <ManifestReference id ="ID_1"
 manifestRefId="{63f8c810-f008-47f0-a4b6-7a243f85e46b}"
 checksum ="e29810938a2a535dc8f6f9b8f51c5febe835ee05"
 origin ="true"/>
 ...
</ManifestReference>
 ...
 <Variable name ="T"
 id ="ID_33"
 typeDefRefId="ID_25"
 pointer ="false"
 value ="0.1"
 const ="false"

 volatile ="true"
 static ="false" />
 <Variable name ="_Clocks_interval"
 id ="ID_34"
 typeDefRefId="ID_25"
 pointer ="false"
 value ="0.005"
 const ="false"
 volatile ="true"
 static ="false" />
 <Variable name ="gearRatio"
 id ="ID_35"
 typeDefRefId="ID_25"
 pointer ="false"
 value ="105"
 const ="false"
 volatile ="true"
 static ="false" />
 ...
 <DataReferences>
 <DataReference id="ID_100" variableRefId="ID_33" >
 <ForeignVariableReference manifestReferenceRefId="ID_1"
foreignRefId="ALG_ID_101"/>
 </DataReference>
 <DataReference id="ID_101" variableRefId="ID_34" >
 <ForeignVariableReference manifestReferenceRefId="ID_1"
foreignRefId="ALG_ID_100"/>
 </DataReference>
 <DataReference id="ID_102" variableRefId="ID_35" >
 <ForeignVariableReference manifestReferenceRefId="ID_1"
foreignRefId="ALG_ID_103"/>
 </DataReference>
 ...

In the example above (a cut-out of a Production Code Model Representation manifest file), the
manifestReferenceRefId attribute (with value "ID_1") identifies the ManifestReference as the one that
references the Algorithm Code Model Representation with the Manifest id "63f8c810-f008-47f0-a4b6-
7a243f85e46b" in the eFMU container and the foreignVariableRefId attribute the element in that container
with the given id (e.g. "ALG_ID_102").

It has to be checked, that the referenced ids actually are valid and are used for the objects of the right type.

Important restriction: The names of a variable can differ in the manifests of the Equation Code, the Behavioral
Model, the Algorithm Code, and the Production Code. But for input and output variables of the eFMI block, that are
defined in the Algorithm Code manifest, the structure (e.g. scalar or vector or matrix) has to be preserved over the
different model representations. It means, an output vector y in the EquationAlgorithm Code manifest
corresponds to a vector with the same length in all other model representations.

Referencing Files in Foreign Model Representations (efmiFiles.xsd)

In cases where a file in another model representation is used without change in the current model representation,
one should use ForeignFile elements in the Files list.

Name

Descripti

on

id
The
(manifest
local) id.

ForeignReference

Identifyin
g the
foreign
manifest
and the
file inside
the
manifest.

Example:

<ManifestReferences>

 <ManifestReference id="ID_0" manifestRefId="{63f8c810-f008-47f0-a4b6-
7a243f85e46b}" checksum="???" origin="true"/>
 ...
</ManifestReference>
 ...
<Files>
 <File id="ID_1" name="model.c" path="./code"
 needsChecksum="true"
checksum="e29810938a2a535dc8f6f9b8f51c5febe835ee05" role="Code"/>
 <File id="ID_2" name="model.h" path="./code"
 needsChecksum="true"
checksum="e29810938a2a535dc8f6f9b8f51c6febe835ee05" role="Code"/>
 <File id="ID_3" name="misra.doc" path="./code"
 needsChecksum="true"
checksum="e29810938a2a535dc8f6f9b8f51c5febe835ee06" role="other"/>
 <File id="ID_4" name="model.arxml" path="./code"
 needsChecksum="true"
checksum="e29810938a2a535dc8f6f9b8f51c5febe835ee08" role="other"/>
 <File id="ID_5" name="model.doc" path="./description"
 needsChecksum="false" role="other"/>
 <ForeignFile id="ID_6">
 <ForeignFileReference manifestReferenceRefId="ID_0"
 foreignRefId ="ID_26" />
 </ForeignFile>
</Files>

Annotations (efmiAnnotation.xsd)

Additional data that a vendor might want to store and that other vendors might ignore are defined with element
Annotations (this definition is identical to the corresponding element of FMI 3.0):

Name

Description

type

Domain name
in reverse
domain
notation of
the tool that
can interpret
the
annotation.
Must be
unique with
respect to all
other
elements of
the
Annotation
list. Domain
names under
both the
"org.mode
lica" and
"org.efmi
-
standard"
domains are
reserved for

Name

Description

future eFMI
versions.

2.3.5. Checksum calculation

The checksum is the mean to ensure integrity across different containers in an eFMU. These different container
relate to each other and may be changed independent of each other. In order to ensure / check the integrity, with
each change of a container, its checksum is updated in the reference entry in the __content.xml file.

For containers, that reference information from other containers or depend on them, also the checksum of these
referenced containers is locally stored in that manifest. The comparison of these checksums is now an appropriate
mean to check the consistency within the eFMU.

The calculation of checksums is done on the files that are listed in the manifest of the container (for which the
checksum attribute has the value "true") and the checksum is stored in the checksum attribute of the
corresponding "File" list entry of the "Files" elememt of each manifest file. The calculation for each file is based on
a hash algorithm, currently SHA1 [SHA1Wiki] (https://en.wikipedia.org/wiki/Secure_Hash_Algorithms).

The overall checksum of a model representation is the checksum of the manifest file, where all checksums of files
of the model representation has been stored. Since the paths of the files are part of the manifest file itself it is
ensured that a change of names, structure or content of the concerned files will result in a different checksum and
allows for detecting changes, e.g. a model representation has been changed in the container, but has been taken as
input for transformation tools before.

https://en.wikipedia.org/wiki/Secure_Hash_Algorithms

On the other hand, changes to "unchecksummed" files (e.g. description files) will not affect the checksum as well as
adding of files not listed in the manifest (listing in the manifest would also alter the checksum).

2.3.6. FMU File References

An eFMU container must be downward-compatible to an FMU container. Hence, it may have an FMU which is
stored in the root directory of the container (above the "eFMU" directory). Such FMU needs to be associated with a
certain model representation located in the eFMU container. In general, each model representation may have an
optional FMU, especially a Production Code model representation.

The currently activated FMU needs to be specified in the __content.xml file by using the optional attribute
activeFmu. If it is set, its value must correspond to the name of the associated model representation. If no FMU is
unpacked currently, the value of this attribute must not be set.

The optional FMU of a model representation is specified within the manifest file of the model representation,
where one and only one file in the list of files has the role attribute set to FMU. Its value must be a relative path
inside the model representation to the FMU file.

When the FMU of a model representation M is activated, the following steps are performed:

1. All files in the container’s root except the "eFMU" directory are removed.

2. The FMU file referenced by M is unzipped to the container’s root.

3. The value of the attribute activeFmu is set to the name of the model representation M.

3. Behavioral Model Representation

3.1. Introduction

The optional Behavioral Model representation provides reference results for different scenarios to allow automatic
verification of the Production and Binary Code representations. The reference results are stored in csv format
under the Behavioral Model folder (for details see section Section 3.3)). In the future this representation might be
extended to include the original model from which the eFMI representations are derived, or computable scenarios
might be added in form of FMUs.

Basically, one reference result set consists of a table, where the columns represent the time and variables of the
original source model (for example a AMEsim, Modelica, Simulink or AMEsimsyq model). Typically, these are the
input and output variables of the Algorithm Code representation and the data is produced by simulating the
original source model and storing the result in csv file format. Hereby, it is assumed that the simulations use the
default values of the tunable parameters and the initial values of the states as defined in the Startup() method
of the Algorithm Code model representation.

Automatic testing of a Production Code or Binary Code representation requires the following steps:

1. The Algorithm Code variable ids of the input/output variables in the Production Code manifest need to be
determined (note, the C variable names of the variables are usually different to the variables names in the
Algorithm Code). Therefore an indirect link between the variables in the Production Code manifest and the
Behavioral Model manifest is established. With additional information in the Behavioral Model manifest the
expected reference results for the input/output variables of the Production Code can be deduced from the
corresponding csv-files inside the Behavioral Model folder.

2. The units of the variables are defined in the Algorithm Code manifest file.

3. The results produced by executing compiled Production Code resp. Binary Code have to be compared with
the results stored in the Behavioral Model representation. In the Behavioral Model manifest optionally
relative and absolute error tolerances are defined to assess the match between the data. A second possibilty
to specify error tolerances is enabled by having whole data sets of time dependent lower and upper bounds
of variables in the reference results. More details are given in the next subsection.

3.2. Behavioral Model Manifest

The manifest file of the Behavioral Model representation is an instance of an XML schema definition and defines
the available scenarios with reference results and maximum acceptable deviations from them.

3.2.1. Definition of an eFMU Behavioral Model (efmiBehavioralModelManifest.xsd)

This is the root-level schema file of the Behavioral Model representation and contains the following definition:

Element-Name

Description

attributes

The attributes of
the top-level
element are the
same for all
manifest kinds and
are defined in
section Section
2.3.1.
Current kind-
specific values:
kind =
"BehavioralMod
el", xsdVersion
(value is the
current xsd version
of the schema for
the Behavioral
model manifest), .

ManifestReferences

References to
manifest files of
other model
representations for
which referencing
is needed within
this Behavioral
Model manifest.
Mainly, the
Algorithm Code
manifest on which
this Behavioral
Model manifest is
based on has to be
listed. This element
is the same for all
manifest kinds and
is defined in section
Section 2.3.4.3.

Files

List of files
referenced in this
model
representation.
There must be at
least one file that
contains reference
results in csv
format. This
element is the same
for all manifest
kinds and is
defined in section
Section 2.3.3.

Scenarios
A scenario groups
several simulation
results (parts of
one scenario) to

one unit. At least
one scenario
definition must be
present. For details
see Section 3.2.2.

Variables

Required list of
variables for which
a link between
columns in
reference results
and variables in the
Algorithm code
manifest is
established in the
Behavioral Model
manifest. For
details see Section
4.1.6.

CsvData

Optional element
that defines how
the columns of the
csv files are
mapped to the
variables. It also
provides
information for the
variables in each
scenario part how
acceptable
deviations between
simulation results
of
Production/Binary
code and reference
results are
specified. For
details see
[definition-of-
csvdata].

Annotations

Additional data
that a vendor might
want to store and
that other vendors
might ignore. For
details see Section
2.3.4.5.

3.2.2. Definition of a Scenario (efmiScenarios.xsd)

A scenario (e.g. open loop test simulations) consists of one or more scenario parts (e.g. simulation runs with
different numerical solvers).

Element-Name

Description

name
Optional name of the
scenario.

id
The id of the
scenario.

One simulation within a scenario is defined with a ScenarioPart element. The essential content of this element
is the reference to a csv file.

Element-Name

Description

name Optional name of the scenario part.

id The id of the scenario part.

fileRefId
The reference id of the csv file, in
which the reference result data for
this scenario part is stored.

3.2.3. Definition of Variables (efmiVariable.xsd)

The variables to be compared in one of the scenario parts are listed in the following element:

Element-Name

Description

id

The id of the
variable within
the Behavioral
Model
manifest.

ForeignVariableReference

The reference
to the variable
defined in the
Algorithm
Code manifest
file. For details
see Section
2.3.4.3. A
reference to
other model
representation
s is not
allowed. It is
not necessary
to define all
variables of the
Algorithm
Code manifest
here. Only the
variables for
that reference
data in csv files
is provided
need to be
listed.

3.2.4. Definition of CsvData (efmiCsvData.xsd)

This element is the essential part of the Behavioral Model manifest and provides the information where for the
variables the data can be found in the reference data files (= csv files). It also contains the information how the

assessment can be realized, that deviations between the eFMI simulation results (by compiled Production Code or
Binary Code) and the reference data in the csv files are acceptable.

Element-Name

Descript

ion

TimeData

Informati
on where
the time
vectors
can be
found in
the csv
files.

name

The
name of
the time
variable
in the
header of
the csv
files that
are
reference
d by the
listed
scenario

Element-Name

Descript

ion

parts in
Part.

SenarioPartRefId

The
reference
id of the
scenario
part to
which
this
definitio
n of the
time
vector is
associate
d with.

Data

Informati
on about
reference
data and
acceptabl
e
deviation
s
associate

Element-Name

Descript

ion

d with all
variables
(without
time) of
all
scenario
parts.

In one element Data the information about reference data and acceptable deviations associated with one
variables (but not time) of one or several scenario parts are contained. Several scenario part can only be included,
if the information to be provided is identical for these scenario parts. For the scenario parts, for which the
information is different for a specific variable, a new element Data has to be listed for this variable. The whole list
of all Data elements contains a combination of variables and scenario parts. It is not permitted to have the same
combination twice, because otherwise the information is not unique.

Element-Name

Description

variableRefId
Reference id of the
variable to be considered
in this Data element.

scenarioPartRefId

Reference id of the
associated scenario part
for which the
information is provided
in this Data element.
Several scenario parts

Element-Name

Description

can be listed within the
element Parts.

Nominal

The nominal reference
value of the variable that
is associated with a
column of the table in the
csv files. If the variable is
a vector or a
multidimensional array,

Element-Name

Description

then each relevant
component of the
vector/array is listed by
a separate element
Nominal.

name The name of the nominal
variable in the header of
the csv files that are

Element-Name

Description

referenced by the listed
scenario parts in Part.

index

Index of vectors resp.
flattend index of
multidimensional arrays.
The element has to be
absent for scalar
variables and is required
for vectors and

Element-Name

Description

mutlidimensional arrays.
The index corresponds
to the referenced
Algorithm code variable
(referenced by the
element
variableRefId and
the corresponding
element
ForeignVariableRe
ference in the element
Variable). For

Element-Name

Description

multidimensional arrays
the scalar index is
according to a row-major
order of all elements of
the array.

Tolerances
Optional error tolerance
information to be used
for comparison of
computed and given

Element-Name

Description

values in the csv files of
the variable considered
in this Data element.

The details of the error tolerance information valid for one variable (scalar or vector or multidimensional array) is
given with the following element. For each possible value of floatPrecision maximum one element
Tolerance has to be present.

Element-Name

Description

floatPrecision

Floating point precision that
has to be used to run the
compiled Production Code or
Binary code to be compared
with the reference results
(32-bit or 64-bit).

absTol

Optional default value for the
absolute error tolerance that
should be used for signal
comparisons. For vectors or
multidimensional arrays
these default values are used
for all components.

relTol

Optional default value for the
relative error tolerance that
should be used for signal
comparisons. For vectors or
multidimensional arrays
these default values are used
for all components.

Element-Name

Description

ToleranceItem

Optional list of detailed
information about error
tolerances and additional
columns for time-dependent
lower/upper bounds of
nominal reference result
values.

The element ToleranceItem contains detailed error tolerance information about a scalar variable resp. one
component of a vector/multidimensional array. If the considered variable is a scalar, then only one element
ToleranceItem has to be present within the list of the element Tolerance. For vectors or multidimensional
arrays only entries for relevant indices are needed and the values of the attribute index have to be different for
each of the entries.

Element-Name

Description

absTol

Optional absolute error tolerance of the scalar
value considered in this tolerance item. If there
is already a default value of absTol specified
in the element Tolerance, then this more
specific value of the element
ToleranceItem has to be used.

relTol

Optional relative error tolerance of the scalar
value considered in this tolerance item. If there
is already a default value of relTol specified
in the element Tolerance, then this more
specific value of the element
ToleranceItem has to be used.

csvLower
Optional name of the lower bound variable in
the header of the csv files that are referenced
by the listed scenario parts in Part.

Element-Name

Description

csvUpper
Optional name of the upper bound variable in
the header of the csv files that are referenced
by the listed scenario parts in Part.

index

Index of vectors resp. flattend index of
multidimensional arrays. The element has to
be absent for scalar variables and is required
for vectors and mutlidimensional arrays. The
index corresponds to the referenced Algorithm
code variable (referenced by the element
variableRefId and the corresponding
element ForeignVariableReference in
the element Variable). For
multidimensional arrays the scalar index is
according to a row-major order of all elements
of the array.

The lower and upper bound variables are not listed or referenced elsewhere in the manifest. The corresponding
columns in the csv files contain data to define time-dependent lower/upper bounds of an acceptable simulation
with the given float precision in the element Tolerance.

It is permitted to set all elements absTol, relTol, csvLower and csvUpper. If absTol or relTol are set,
then csvLower and csvUpper cannot be set and vice versa. For the case, that csvLower and csvUpper are set
and if there is already a default value of relTol or absTol specified in the element Tolerance, then these
default values have to be ignored for the specific scalar variable/component in this ToleranceItem.

3.2.5. Comparison of signals

The Behavioral Model manifest contains the neccessary information to use inputs in csv files and to compare the
simulation results of compiled Production Code or Binary Code with reference results in csv files. For the
assessment, if the result deviations are acceptable, two cases have to be distinguished (depends individually on
each variable and scenario part):

1. Check by using absolute and/or relative error tolerances or

2. Check by using lower and/or upper bounds.

For a scalar variable there is a column in a csv file that corresponds to the reference result data of this variable.
Each row of the data is associated to a time instant of the time vector. In the following the data vector is called
y_ref. The corresponding simulation result is called y_sim (also a time dependent vector with the same length
as y_ref and the values of the variable at the time instants given by the time vector). If the check is based on
lower/upper bounds, then there are further columns in the csv files that are associated to the time dependent
lower and upper bounds of the variable. In the following the vectors are called lower and upper. The i-th
component of all the described vectors are access by y_ref_i, y_sim_i, lower_i and upper_i.

If for all time instances t_i the following holds, then the test is passed otherwise not:

1. abs(y_ref_i - y_sim)_i ≤ max(absTol, relTol*abs(y_ref_i)) resp.

2. lower_i ≤ y_sim_i ≤ upper_i

3.3. Behavioral Model Data

The csv files as they are contained in a Behavioral Model representation are according to
(https://en.wikipedia.org/wiki/Comma-separated_values). In the first line there is a list of header names that
define the names of the columns separated by a colon. In the following lines for each of the variables defined in the
header a numeric value is provided separated by colon.

The unit of the time is seconds. Values of Boolean variables have to be represented by the Integer values 0 (false)
and 1 (true).

Example:

Time,wLoadRef,wMotor,vMotor,isReset

0,0,10,-200,0

0.001,0.003,10,-193.70000000000002,0

0.002,0.006,10,-187.41e3,1

0.003,0.009,10,-181.12958499999996,1

0.004,0.012,10,-174.85834414999999,0

4. Algorithm Code Model Representation

https://en.wikipedia.org/wiki/Comma-separated_values

The

Algorithm Code model is a portable and tool-independent intermediate representation for coupling physics-
modeling tools with embedded Production Code generation. Mathematically, it is described as a sampled
input/output block with one (potentially varying) sample period Ti for the whole block where inputs ui and
previous (block internal) states xi are provided at sample time ti and outputs yi and new states xi+1 are computed
and are latest used at sample time ti+1 = ti + Ti (see figure to the right). All variables of the block have a defined type
and all statements of the block are sorted and explicitely solved for a particular variable. Functions are provided to
execute the relevant parts of the block, especially to initialize it and to perform one step.

The purpose of the Algorithm Code model representation is to provide a well defined reusable basis for the
Production Code generating tools. It can be seen as a target-independent Production Code on a logical level where
the relationship to the original model is clearly visible (for example, the hierarchy of the original model is visible in
the variable names). Depending on the embedded device the eFMU should be run on, a single Algorithm Code
model representation can be used to generate multiple Production Code model representations and is therefore
the last target independent model representation of the eFMU.

The Algorithm Code model representation consists

• of a manifest file in XML format in which all interface variables are defined (see section [Algorithm Code
Manifest]),

• one code file with extension .alg that represents the executable part of the block consisting of a block with
declarations, and mandatory definitions of the three methods Startup, DoStep and Recalibrate. These
methods are defined in a target-independent way with the new language GALEC (Guarded Algorithmic
Language for Embedded Control) which is a small subsetbased on the syntax of thea Modelica
languagefunction (https://www.modelica.org/modelicalanguage) with extensions as needed for embbeded
systems (see section [GALEC - The Algorithm Code Language]).

In the Algorithm Code specification and its examples the following coding conventions are used:

• Types — primitives and components — start with capital letters, and each successive word part starts
capitalized. Examples: Real, Boolean, Pid, GearBox, CrankShaftPid.

• Stateless functions — including builtin functions — are defined with keyword function. The function names
start with lower-case letters, and each successive word part starts capitalized. Examples: sin,
solveLinearEquations, computeCrankShaftPid.

• Stateful functions are defined with keyword method. The method names start with capital letters, and each
successive word part starts capitalized. Examples: Startup, Recalibrate, DoStep.

• Functions for scalars that are generalized to one and two dimensions use the scalar function name with suffix
1D and 2D appended. Examples: roundTowardsZero1D, interpolate2D.

4.1. Manifest

https://www.modelica.org/modelicalanguage

The

manifest file of the Algorithm Code model representation is an instance of an XML schema definition and defines
the variables and block methods that represent a sampled input/output block, see figure to the right.

4.1.1. Definition of an eFMU Algorithm Code (efmiAlgorithmCodeManifest.xsd)

This is the root-level schema file of the Algorithm Code model representation and contains the following definition:

On the top level, the schema consists of the following elements (see figure above):

Element-

Name
Description

attributes

The attributes of the top-level element are the same for all manifest kinds and are defined
in section Section 2.3.1.
Current kind-specific values: kind = "AlgorithmCode", xsdVersion (value is the
current xsd version of the schema for the Algorithm Code model manifest).

ManifestReferences
Optional reference to the manifest of the Equation Code on which this Algorithm
Code manifest is based on. This element is the same for all manifest kinds and is
defined in section Section 2.3.4.3.

Files
List of files referenced in this model representation. There must be at least one file
that contains the code of the BlockMethods. This element is the same for all
manifest kinds and is defined in section Section 2.3.3.

Clock
A reference to the fixed or variable sample period defined by a block variable. For
details see Section 4.1.2.

BlockMethods
The properties of the block methods DoStep, Recalibrate, and DoStep. For details
see Section 4.1.3.

ErrorSignalStatus
Semantic error signal status to be referenced from ProductionCode manifest to
mark the single variable that represents the error status. For details see Section
4.1.4.

Units
An optional global list of unit and display unit definitions. These definitions are
used in the XML element Variables. This element is nearly identical to the
corresponding FMI 3.0 UnitDefinitions element. For details see Section 4.1.5.

Variables

A list of all variables that are accessible from the block methods defined in element
BlockMethods. A variable might be a scalar or an array of an elementary type.
Contrary to FMI 3.0, no target type variables (such a Float64) are defined here,
but mathematical variable types (such as RealVariable). The reason is that
target specific types are defined for the Production Codes [otherwise it would not
be possible to define, for example, Float32 and Float64 Production Codes in the same
eFMU] . For details see Section 4.1.6.

Annotations
Additional data that a vendor might want to store and that other vendors might
ignore. For details see Section 2.3.4.5.

4.1.2. Definition of Clock

Element Clock provides a reference to the fixed or variable sample period defined by a block variable. The block
should be executed periodically with the defined fixed or variable sample period.

Element-Name

Description

id
The id of the sample
period of the block.

variableRefId

Reference to the
variable in
<Variables> that
defines the sample
period. This variables
is only allowed to have
the following values
for variable attribute
blockCausality:
constant: Sample
period cannot be
changed.
tunableParameter
: Sample period can be
changed in the
calibration phase.
input: Sample period
from previous to
current clock tick

The referenced variable variableRefId defines the sample period for which the block was designed. When the
production code of this block is integrated in the target system (for example as AUTOSAR runnable), then it is

expected that the block is executed as periodic sampled data system with this sample period. It might be that also a
slightly changed sample period in the target system may still result in reasonable performance.

4.1.3. Definition of BlockMethods

Element BlockMethods defines properties of the defined block methods. Exactly three BlockMethod elements
must be defined.

Description

Name

fileRefId

A reference to the file
(defined in <Files><File>,
see section Section 2.3.3)
in which the code of the
block methods is stored.

writeOutputs

Defines the recommended
implementation scheme
to utilize the calculated
outputs. Default is
Undefined. The
currently only allowed
other value is
AsSoonAsPossible,
meaning to utilize the
outputs at once when they

are computed, more
details are given below.

id
The ID of the block
method

kind

The kind of the block
method (this is also the
name of the method).
Currently possible values
are Startup,
DoStep,
Recalibrate.

Signals

The error signals exposed
by the respective block
method (for details
Section 4.2.5.1) Attribute
value defines the value
of the signal. Currently,
the following values are
possible:
"INVALID_ARGUMENT"
(= the value of an input
variable is not correct)
"OVERFLOW" (= the
value of a variable is Inf)
`"NAN" (= the value of a
variable is Not-A-
Number)
"SOLVE_LINEAR_EQUA
TIONS_FAILED" (=
failed to solve a linear
equation system)
"NO_SOLUTION_FOUND
" (= no solution found for
other equation systems)
"UNSPECIFIED_ERROR
" (= error not further
specified)

The scheme writeOutputs = "AsSoonAsPossible" is typically used when the controller computes the
outputs for the current clock tick (e.g. integrates from the previous to the current clock tick). Pseudo-Code for this
scheme:

self = <instance of efmi component>
<initialize self with the manifest start values> or self.Startup()
<write outputs>
<wait until clock starts>

<at every clock tick>
 <read inputs>
 self.DoStep()
 <write outputs>
 if <calibration phase and tunable parameters available>
 <set tunable parameters>
 self.Recalibrate()
 end
 <wait for next clock tick>
<end>

The drawback of this scheme is that the computing time of efmu.DoStep() introduces a time delay until the
outputs are available.

Note, it is also possible to write the outputs inside DoStep directly after they are computed (without waiting until all
statements are processed and the method returns). This implementation scheme of the Production Code is
recommended if attribute writeOutputs has value AsSoonAsPossible.

[There are also other implementation schemes that might by useful (currently, it is not possible to state this in the
Manifest file). Examples:

Write outputs at next clock tick

This scheme is typically used when the controller computes the outputs for the next clock tick (e.g. integrates from the
current to the next clock tick). Pseudo Code:

self = <instance of efmi component>
<initialize self with the manifest start values> or self.Startup()
<write outputs>

<at every clock tick>
 <write outputs>
 <read inputs>
 self.DoStep()
 if <calibration phase and tunable parameters available>
 <set tunable parameters>
 self.Recalibrate()
 end
 <wait for next clock tick>
<end>

The drawback of this scheme is that the inputs are extrapolated over the sample period because the inputs at the next
clock tick are utilized in DoStep but are not known when DoStep is called.

Two different clocks for reading inputs and writing outputs

The reading of inputs and the writing of outputs might be performed with different clocks that have the same sample
period, but the clock for the outputs is shifted relative to the clock for the inputs.

Event clock (purely event based)

The block might be triggered by an external event (e.g. at a particular angle of the engine shaft). The sample period
(from the previous to the current clock tick) is provided as input signal.

4.1.4. Definition of ErrorSignalStatus

This element defines the single, hidden, error signal variable that holds the error signal status and is referenced
from the ProductionCode manifest. It consists only of attribute id that defines the ID of this hidden variable:

4.1.5. Definition of

Units

Element Units defines the units that are used by the Variables element.

This element is identical to element UnitDefinitions of FMI 3.0 with the only exception that there is an
additional attribute id to identify a unit uniquely in the AlgorithmCode manifest file and without element
DisplayUnit:

4.1.6. Definition of Variables

The Variables element consists of an ordered list of all variables used as model states of the methods defined in
element BlockMethods, so the values of these variables can be directly accessed and changed in the respective
method using the name of the variable prepended with the instance name self (for example
self.previous_x if the variable has name previous_x). Variables that are defined with blockCausality
= input are set from the environment at the beginning of a sampling period. Variables that are defined with
blockCausality = output are used at the end of the sampling period by the environment in an appropriate
way. Variables that are defined locally in a block method are not listed in the Variables element.

Variables are defined as (hereby one variable is defined according to schema group efmiVariable in file
efmiVariable.xsd):

The schema

definition contains basically the same information as element ModelVariables in FMI 3.0, but using
mathematical instead of target types and having the following deviations:

• There is no String type.

• A type might have Dimensions where the size of a dimension is an Integer literal (a dimension cannot
depend on a structural parameter as in FMI 3.0).

• The variable attributes causality, variability and initial of FMI 3.0 are replaced with the new
attribute blockCausality (see below).

• The following FMI 3.0 attributes are not present:

o valueReference

o canHandleMultipleSetPerTimeInstant

o clockReference

o clockElementIndex

o intermediateUpdate

o declaredType

o quantity

o displayUnit

o unbounded

o derivative

o reinit

Variable Base (attributes + elements)

All variable kinds (so RealVariable, IntegerVariable, BooleanVariable) have the following base
attributes/elements:

Description

Name

id

The unique
identification of
the variable with
respect to the
AlgorithmCode
manifest file (can
be referenced
from other
manifest files).

name

The full, unique
name of the
variable. Every
variable is
uniquely identified
within an eFMI
AlgorithmCode
instance by this
name.

description

An optional
description string
describing the
meaning of the
variable.

blockCausality

Enumeration that
defines the
causality,
variability and
initialization of the
variable. Allowed
values of this
enumeration:

• "input":
The variable
value is set by
the
environment
at the start of
a sampling
period.

• "output":
The variable
value can be
used by the
environment
once it is
computed.

• "tunablePa
rameter":
Independent
parameter

that is
constant
during a call
to DoStep()
and can be
calibrated.

• "calculate
dParameter
": A data
value that is
constant
during a call
to DoStep()
and is
computed
during
initialization
or when
tunable
parameters
change.

• "constant"
: The value of
the variable
defined with
the start
attribute
never
changes.

• "state":
Local state
variable that
is initialized
in Startup
and is
calculated
from other
variables. The
value of this
variable is
kept between
method calls.

start

Initial value of the
variable as defined
by default
initialization.

The given
xs:token value
can encode either
a scalar value or a
multi-dimensional
value where each
element value is
separated by an

XML whitespace
character. In the
latter case, the
array elements are
given in row-major
order, that is the
elements of the
last index are
given in sequence.

[For example, a
table T[4,3,2]
(first dimension 4
entries, second
dimension 3
entries, third
dimension 2
entries) is mapped
into the following
sequence of values:
T[1,1,1],
T[1,1,2],
T[1,2,1],
T[1,2,2],
T[1,3,1],
T[1,3,2],
T[2,1,1],
T[2,1,2],
T[2,3,1],
…]

If the variable is a
scalar, the string
must encode a
scalar value. If the
variable is a multi-
dimensional array,
the string can
either: (1) encode
a scalar value,
meaning that each
element of the
multi-dimensional
array has the
respective scalar
value as start
value or (2)
encode a multi-
dimensional value,
meaning that the
start values of the
elements of the
multi-dimensional
array are the
respective
encoded multi-
dimensional value.

Encoded values
must be of the
variable’s type and

each must satisfy
its min and max
value (if min
and/or max
elements are
defined).

Dimensions

If the variable is
an array, then the
fixed dimensions
of the array are
defined by this
element. For every
dimension, the
number defines
the number of the
dimension (must
be consecutive
numbers 1, 2, …)
and size defines
the fixed size of
the dimension
(must be >= 1).

ForeignVariableReference

Subelement of type ForeignReference to the variable definition in
the Equation Code. At least variables with blockCausality =
input or output have this element defined. For details see Section
2.3.4.3.

Annotations
Additional data of the variable, e.g., for the dialog menu or the graphical layout. For details
see Section 2.3.4.5.

In FMI 3.0 the attributes causality, variability, initial are defined, which combinations are allowed
and why the allowed combinations are needed for an offline simulation program with events. However, for eFMI
most of the combinations cannot occur. For simplicity, eFMI uses therefore only the attribute blockCausality.
In the following table the mapping of blockCausality to the FMI 3.0 attributes is defined:

eFMI FMI 3.0

blockCausality causality variability initial

input input discrete --- (no initial)

output output discrete exact

tunableParameter parameter tunable exact

dependentParameter calculatedParameter tunable calculated

constant local constant exact

state local discrete exact

RealVariable-specific attributes

The following RealVariable specific attributes are defined:

Attribute-Name

Description

unitRefId

Identifier of the unit of the variable
defined in list Units.Unit (Section
4.1.5). The value of the variable is with
respect to this unit.

relativeQuantity

If this attribute is true, thenDefines if
BaseUnit-based unit conversions have to
consider the base-unit’s offset of
displayUnit (defined in
Units.Unit) must be
ignored.(relativeQuantity=false) or not
(relativeQuantity=true). [For example, 10

Attribute-Name

Description

degree Celsius = 10 Kelvin if
relativeQuantity = "true" and
not 283.15 Kelvin.]

min

Minimum value of variable (variable
value =≥ min). If not defined, the
minimum is the largest negative number
that can be represented on the machine.
If the variable is a multi-dimensional

Attribute-Name

Description

array, min is a scalar value that holds for
all array elements.

max

Maximum value of variable (variable
value =≤ max). If not defined, the
maximum is the largest positive number
that can be represented on the machine.
If the variable is a multi-dimensional
array, max is a scalar value that holds for
all array elements.

Attribute-Name

Description

nominal

Nominal value of variable. If the variable
is a multi-dimensional array, nominal is
a scalar value that holds for all array
elements.

If not defined and no other information
about the nominal value is available, then
nominal = 1 is assumed.
[The nominal value of a variable can be,
for example, used to define tolerances or
scaling values for numerical algorithms in
which the variable is used.]

Example:

<Units>
 <Unit id="UnitID_1" name="s"/>
</Units

<Variables>
 <RealVariable id="ID_1" name="Ti" unitRefId="UnitID_1"
blockCausality="tunableParameter" start="0.1"/>
 <RealVariable id="ID_A" name="A" blockCausality="constant" start="1.1 1.2 2.1
2.2">
 <Dimensions>
 <Dimension number="1", size="4"/>
 </Dimensions>
 </RealVariable>
 <RealVariable id="ID_2" name="previous(I.x)" blockCausality="state"
start="0.0" min="0.0" />
</Variables>

IntegerVariable-specific attributes

The following IntegerVariable specific attributes are defined:

Attribute-Name

Description

min

Minimum value of variable (variable value =≥ min). If not defined, the
minimum is the largest negative number that can be represented on the
machine. If the variable is a multi-dimensional array, min is a scalar
value that holds for all array elements.

max

Maximum value of variable (variable value =≤ max). If not defined, the
maximum is the largest positive number that can be represented on the
machine. If the variable is a multi-dimensional array, max is a scalar
value that holds for all array elements.

Examples:

<Variables>
 <IntegerVariable id="ID_11" name="numberOfCylinders"
blockCausality="tunableParameter" start="6" min="0" />

 <IntegerVariable id="ID_12" name="pivots" start="0">
 <Dimensions>
 <Dimension number="1" size="8"/>
 </Dimensions>
 </IntegerVariable>
</Variables>

BooleanVariable-specific attributes

The BooleanVariable element has no additional attributes.

4.2. GALEC: The Programming Language for Algorithm Code

Containers' Source Code

The

algorithm that defines an input/output, sampled data block is defined with the new language GALEC (Guarded
Algorithmic Language for Embedded Control). This language) that is a small subset of the Modelica Language with
some extensions as needed for embbeded real-time systems and is definedspecified in this sub-section. GALEC
is based on a small subset of the SynchronousModelica Language Elements (Chapter 16), and(especially on
theModelica functions, Modelica External Function Interface (section 12.9, and on Synchronous Language Elements)
of the Modelica Specification 3.4 (https://www.modelica.org/documents/ModelicaSpec34.pdf). Additionally,)
together with changes and extensions as needed for embbeded real-time systems. GALEC has the following
features are provided that are not present in the Modelica Language:

• The language is designed so that only algorithms can be defined that have an upper-bound on the number of
operations for each control-cycle to satisfy hard real-time constraints. (for example, there are no while loops).
Furthermore, all needed memory, especially of arrays and operations on arrays, is known statically.

• The language is designed for computational safety. For example it can be statically guaranteed that out-of-
bounds and otherwise illegal memory accesses for all possible executions cannot occur at run-time.

• The language is designed for traceability so that GALEC code can be understood in terms of the original model
and vice versa.

• The language has a restricted set of methods to efficiently pass the block state between functions. This is
different to the Modelica language.

• A set of built-in functions is defined so that physical models and their solvers can be reasonably mapped to
GALEC code. For example, there are built-in functions for interpolation and for the solution of linear equation
systems.

• The language is designed to handle erroneous situations in a safe way. For example, it is possible to determine
at the end of the algorithm whether the computed outputs can be used for further processing, or whether it is
necessary to switch to a backup code, for example, if operations produced qNaN (quiet-Not-a-Number) values.
Furthermore, min/max values defined in the declaration of variables are used to implicitly limit the variable
values at the start and at the end of the DoStep method. This is different to the Modelica language that raises
assertions if min/max definitions are violated.

https://www.modelica.org/documents/ModelicaSpec34.pdf

The GALEC code of a block is stored in a file with extension *.alg and is a self-contained file that can be parsed
and interpreted without inspecting the Algorithm Code manifest file. For examples of GALEC programs, see Section
4.2.7.

4.2.1. Language-design Overview

GALEC code generation is subject to many, often contradicting, requirements imposed by physics and mathematics
(physics-modeling domain), embedded real-time system-control (Production Code domain) and development
processes for certified systems (embedded development domain):

(a) An algorithmic source-language for embedded real-time

GALEC code has to take into account that further embedded code generation typically must satisfy hard
real-time constraints. Generated algorithmic solutions must have an upper-bound of algorithmic steps
executed each control-cycle, such that termination within a statically fixed number of computational steps
can be guaranteed. To derive such upper-bounds for actual GALEC code is subject of the termination-
analysis, which checks that functions of GALEC code are transitively non-recursive and loops always have
a statically fixed maximal number of iterations. To transform equation-based models to such solutions
may not always be possible. To that end, GALEC code generators are free to reject valid models of their
modeling-language as not being suitable for GALEC code generation.

Another important concern of embedded applications is computational safety, requiring for example that
programs are free of out-of-bounds or otherwise illegal memory accesses for all possible executions; and that
control-flows for error detection and handling always shortcut normal program execution [1]. To that end,
a dimensionality-analysis is enforced, which statically defines the sizes of multi-dimensions w.r.t. function
call contexts; considering all possible call contexts is required to support generic functions working on
arbitrary sized multi-dimensions. The dimensions derived are used to statically ensure that all multi-
dimensional accesses always will be within bounds throughout later program executions. Dimensionality
and termination-analysis are closely linked; bounded loops can conveniently iterate multi-dimensions
whose statically known dimensions in turn define respective upper iteration bounds. Since iteration
bounds can depend on the sizes of any multi-dimension, other iteration indices or integer expressions
combining such, GALEC code supports advanced iteration schemes that are still guaranteed to be well-
defined.

(b) An algorithmic target-language for simulation of physics-models

GALEC code generators have to rearrange original physics-model equations to derive an algorithmic
solution. The more comprehensive, complex and mathematically challenging a controller design is — and
therefore interesting for modeling its physics — the more rigorous such transformations are typically.
Particularly later real-time constraints as described in (a) often require radical transformations to handle
algebraic loops and enable equation-system optimisations like symbolic processing, tearing and index
reduction. GALEC code generators are therefore encouraged to apply whichever mathematical and logical
equation-system transformations they consider required to yield an equivalent algorithmic solution.

Besides the requirement to achieve an algorithmic solution in terms of expression- and assignment-
sequences that compute the next state of the simulated control-cycle, no further transformation has to be
performed. GALEC provides means to compute with structured-data as common in physics-modeling
languages, particularly higher-level matrix-operations. And a library of builtin functions supports common
mathematical tasks like solving a linear system of equations. The exact implementation of all these
mathematical-abstractions is the responsibility of Production Code generators, leaving opportunity for
later target-machine specific optimization. To that end, GALEC code generators are highly encouraged to
leverage on the provided mathematical-abstractions.

(c) An intermediate-language leaning towards algorithm-logics and mathematical-optimization,
not algorithm-implementation and target-specific optimization

The emphasis in (b) has been on mathematical transformations only; otherwise GALEC code generators
should not apply transformations that curtail Production Code generators in their code generation
decisions, particularly regarding optimisations leveraging on target-specifics. Typical target-specific
optimisations are for example data-structure changes to improve memory-layout for faster access-

operations or optimisations of the trade-off between code-size and performance like loop-unrolling.
Especially higher-level matrix-operations and builtin function calls are interesting for target-specific
Production Code optimisations. Although it seems obvious not to further reduce such mathematical
abstractions, it is non-trivial in practice.

The mathematical equation-system transformations described in (b) typically imply separation or
reduction of existing and introduction of new multi-dimensional data-structures, influencing matrix-
operation and builtin function calls in turn. For example, tearing may be used to reduce the required
numerical integration, in turn yielding smaller but also more frequent matrix allocations for linear
solving. Fortunately, such mathematical transformations most often also result in more efficient
embedded code generated by Production Code generators; but that is hard to say in general. Of course, if
required to achieve an algorithmic solution at all, such transformations have to be done. But otherwise,
the resulting decomposition of matrices accompanied by matrix-operation flattening and therefore
increase in code size may very well supersede the advantage.

On the other hand, GALEC code generators have the domain-knowledge for mathematical-optimisations
that Production Code generators lack. An important case for trade-offs between mathematical and
Production Code optimisations is scalarization to eliminate controller-output irrelevant or redundant
state-variables and equations. Physics-models often contain simple equality-equations between the state-
variables of two components; likewise, the components constituting a certain controller may be
generalized for more advanced cases than their actual application context, leaving equation-parts unused.
GALEC code generators are encouraged to eliminate such system parts, which typically results in multi-
dimensions with unused elements like a 2x3 matrix of which only four entries are actually required to
compute the outputs. Eliminating the unused entries means to change model structure, while shifting the
matrix or changing its dimensionality is not an option because of traceability and a lack of knowledge
regarding the final matrix-layout Production Code will eventually apply.

As an alternative, GALEC code can scalarize such multi-dimensions, i.e., flatten the higher-level multi-
dimensional entity to a set of scalars — and therefore dimension-less — otherwise equally typed entities.
Unused scalars can then just be discarded. The drawback of scalarization is, that all expressions
containing higher-level matrix-operations with scalarized multi-dimensions and loops referring to such
must be expanded to respective sequences of scalar operations. Besides being in conflict with the
requirement to not curtail Production Code from optimizing higher-level matrix-operations, the resulting
code-size increase due to expansions may very well render the savings in elements futile.

(d) A language for algorithmic controller implementation

TODO: Startup and DoStep (with input parameters); eFMU state and method vs. function; previous
and derivative state-variables.

(e) A language part of a trustworthy tool-chain from physics-models to embedded-code

GALEC code generators have to maintain traceability, such that embedded solutions derived from
physics-based controller designs can be understood in terms of the original model; and vice versa, all
parts of a controller-model can be traced to its embedded implementation. To link individual physics-
equations to their respective algorithmic solution is very challenging in general, since equations are likely
subject to rigorous transformations as described in (b). A common denominator between a physics-
model and its transformed solution is however, that both simulate the same system. It therefore is a
starting point for GALEC code to at least refer to the states of the original physics-model components
whenever using or updating such. The premise is of course, that controllers are modeled as systems
consisting of well-structured parts; only then GALEC code generators can, and are highly encouraged, to
utilize original system-structure for traceability. To that end, GALEC does not only provide mathematical
multi-dimensions as described in (b), but also nested multi-dimensional components with matrix- and
scalar-variables; and in case of optimisations resulting in scalarization as described in (c), a quotation-
based notation can be used to denote scalarized elements as if their original multi-dimensions still exist.
GALEC code generators have to maintain traceability, such that embedded solutions derived from
physics-based controller designs can be understood in terms of the original model; and vice versa, all
parts of a controller-model can be traced to its embedded implementation. To link individual physics-
equations to their respective algorithmic solution is very challenging in general, since equations are likely
subject to rigorous transformations as described in (b). A common denominator between a physics-
model and its transformed solution is however, that both simulate the same system. It therefore is a

starting point for GALEC code to at least refer to the states of the original physics-model components
whenever using or updating such. The premise is of course, that controllers are modeled as systems
consisting of well-structured parts; only then GALEC code generators can, and are highly encouraged, to
utilize original system-structure for traceability. To that end, GALEC does not only provide mathematical
multi-dimensions as described in (b), but also nested multi-dimensional components with matrix- and
scalar-variables; and in case of optimisations resulting in scalarization as described in (c), a quotation-
based notation can be used to denote scalarized elements as if their original multi-dimensions still exist. For
example, a scalarized real variable may have the name 'a.b[2].c[2,3]', linking it with original
model structure for traceability although all output-relevant combinations of components a and b and
matrix c are scalarized into individual variables.

(f) A portable and tool-independent language for standardized tool-integration and
distribution of controller implementations

GALEC code is at the center of eFMUs, linking physics-modeling with embedded-development tooling.
Although eFMUs are free to only contain target-specific source code, build scripts and resulting binaries,
such eFMUs are just fancy containers for embedded solutions; and vice versa, a pure modeling eFMU
without executable embedded-solutions misses the actual purpose of eFMI compared to the ordinary FMI
standard. It is the GALEC code that brings both worlds together and exposes their relation to eFMU users.
The latter does not only imply traceability as described in (e), but also to adhere to a common
specification of controller inputs, outputs, states and parameters and control-cycle functionality — an
abstract controller usage interface. In the spirit of the FMI standard, and to not preclude a potential future
integration with it, this interface is given in terms of an FMI like XML manifest declaring all entities and
functionalities of interest for users of the eFMU. The control-state defined in GALEC code — the state
components with state variables, control-inputs and -outputs and their nesting — therefore always is
linked to entities declared in the manifest; likewise, the initialization and control-cycle functions are
exposed in the manifest to clearly declare the functionality an eFMU provides. GALEC code generators are
required to derive respective manifests if asked for.

4.2.2. Notation Conventions

The concrete syntax of GALEC code is defined using Extended BackusNaurBackus–Naur Form
(EBNF) according to ISO/IEC 14977. The whole grammar is split into different sections, each
defining a specific language construct — i.e., syntactic concept — of GALEC code like lexemes,
references, expressions, statements etc. The EBNF-rules — i.e., syntactic rules — defining the
syntactic concept a section is about can be amended with further semantic rules given in
prose. Semantic rules constrain the applicability of the syntactic rules they refer to. They are
in turn classified w.r.t. the different semantic concepts of GALEC code they contribute to like
type-analysis, dimensionality-analysis, termination-analysis etc.

Due to the decision to structure the whole specification w.r.t. language constructs, semantic
concepts cross-cut sections. Table TODO summarizes all semantic concepts, the semantic
rules contributing to their definition and the section they are defined. The inevitable
complexity of cross-dependencies, typical for any serious formal language, is further
attenuated by using a consistent notation for semantic rules, enabling explicit linkage between
defined rules, the semantic concepts they contribute to and further rules relevant for or later
refining a definition. Likewise, syntactic rules are well-prepared for usage in semantic-rules,
i.e., usage in prescriptive definitions given in prose.

Syntactic Rules, Terms and Relations

Each syntactic rule has a unique rule-number of the form G-X1.X2, where X1 is the section the
rule is part of and X2 is its unique rule-number within that section; the actual EBNF rule
follows separated by a colon. The non-terminals defined by syntactic rules are human readable
terms that are well-suited for prose-text usage. Semantic rules denote such usage by writing
the respective non-terminal in italic. For readability reasons, every non-terminal can be used
in plural or singular form and its first letter can be capitalized when used at the beginning of a
sentence. The meaning of a non-terminal within a semantic rule is defined by the following
meta-rule:

https://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip

M-1.1 (syntactic term / Meta-rules, terminology): Parts of semantic rules typeset in italic
refer to non-terminals; they are called syntactic term. Let N be a non-terminal referred to in a
semantic rule S; let G be the syntactic rule defining N (cf. M-1.2 for uniqueness of syntactic
rules). The semantic of N in S is: a code fragment F of a whole GALEC program P, where F is
derived according to G throughout the derivation of P and satisfies all semantic rules amended
to G.

M-1.1 requires that the syntactic rule a syntactic term refers to is unique; to that end we
define:

M-1.2 (uniqueness of syntactic rules / Meta-rules): For every non-terminal N exists a single
syntactic rule whose EBNF syntax-rule has N as meta-identifier (cf. ISO/IEC 14977).

M-1.1 has severe consequences. If, for example, the specification refers to loop-iterator-
declarations, it is clear that this must be names declared by a for-loop regardless in which
context the syntactic term loop-iterator-declaration is used; this implication is given because
loop-iterator-declaration just derives to name and is only used by bounded-iteration[2] which in
turn is only used by for-loop. Besides such implicit restrictions, further explicit restrictions
about the syntactic relation between syntactic terms — i.e., that some term’s own derivation
must be in a well-defined relation to another term’s derivation throughout the whole
derivation — are used:

M-1.3 (syntactic relations / Meta-rules, terminology): Let N1 and N2 be syntactic terms.

N1 is contained in N2, if, and only if, N1 is derived throughout the derivation of N2; in this case N2
is called a container of N1 and we say N2 contains N1 and N1 is part of N2. If, and only if, N2
contains N1 and both refer to the same non-terminal N, N1 is called a nested N. N2 is the closest
container of N1, if, and only if, N2 contains N1 and for all N3 containing N1 and that refer to the
same non-terminal as N2 it holds that N3 contains N2.

N1 is preceding N2, if, and only if, neither is contained in the other and the left-most derivation
of the closest container of N1 and N2 derives N1 before N2; in this case N2 follows N1. Instead of
preceding also the term before is used; and instead of follows also the term after. If, and only if,
either, N1 follows N2 or N2 follows N1, both are siblings. N1 and N2 are different, if, and only if,
they are siblings or the one contains the other.

N1 is lexically-equivalent to a sequence of characters aα, written N1 =lexical aα, if, and only if, N1
derives to aα. N1 is lexically-equivalent to N2, written N1 =lexical N2, if, and only if, N1 and N2 derive
to the same sequence of characters.

If, and only if, N2 contains N1 and throughout all possible derivations of the non-terminal N2
refers to the non-terminal N1 refers to can be derived at most once, we speak of the N1 of N2;
obviously, N2 is the closest container of N1 in that case.

Let d = ߼sub>1, …, ߼sub>nβ1, …, βn be a single definition according to ISO/IEC 14977; ߼sub>iβi
with 1 =≤ i =≤ n is called the i’th factor of d. A dzδz is called the ?2-…-?z'thγ2-…-γz'th factor of d1δ1,
if, and only if, ?∀i,j?N∀∀+; i = j - 1; 2 =≤ j =≤ z: djδj is the ?j'thγj'th factor of diδi. Let G be the
syntactic rule of N2. We call N1 the i1-…-ik'th child of N2, if, and only if, N1 has been derived for the
i1-…-ik'th factor of G when deriving N2; in this case N2 is called the parent of N1. If, and only if, the
i1-…-ik'th factor of G has been derived when deriving N2, we say N2 has a i1-…-ik'th child;
otherwise it is without i1-…-ik'th child.

A syntactic term F is without a code fragment according to some non-terminal N, if, and only if,
N is not derived throughout the derivation of F; in this case, we say F does not contain a N, it is
N-free. Note, that F is a syntactic term — i.e., a code fragment derived according to the
syntactic rule for the non-terminal F — whereas N is just a non-terminal referring to some
syntactic rule; nevertheless, N will be highlighted italic in semantic rules as if it is a syntactic
term, denoting that it is a non-existing code fragment.

E-1: The derivation of the following block fragment defines various syntactic relations
(denoted by using capitals only). Note, that according to M-1.1 syntactic relations are only
defined for syntactically correct inputs, i.e., blocks (cf. S-2.1).

/*
 For-loop CONTAINING another for-loop.
 Thus, neither for-loop is BEFORE or AFTER the other.
 Both for-loops are function-call-FREE:
*/
for i in 1:size(A,1) loop
 /*
 If-statement PART OF a for-loop and CONTAINING a
 DIFFERENT for-loop. The if-statement is WITHOUT a
 function-call since it does NOT CONTAIN such:
 */
 if
 /*
 The 2ND CHILD of the if-statement is an expression:
 */
 mod(i,2) == 0
 then
 /*
 NESTED for-loop, i.e., a for-loop CONTAINED in
 another for-loop. The NESTED for-loop FOLLOWS its
 CONTAINING if-statement's 2ND CHILD:
 */
 for j in 1:size(A,2) loop
 /*

 Assignment aα PRECEDING another assignment ߬ β,
with
 which its 1ST CHILD is LEXICALLY-EQUIVALENT.
 The assignment is also BEFORE another assignment
?γ
 that is DIFFERENT to ߻β; all three assignments
are
 SIBLINGS:
 */
 A[i,j] := 1; // aα
 end for;
 else
 /*

 Assignment ߠAFTERβ AFTER a PRECEDING assignment aα
with
 LEXICALLY-EQUIVALENT 1ST CHILD:
 */

 A[i,j] := 0; // ߊβ
 end if;
end for;
/*
 Assignment ?γ most likely not PART OF a for-loop,
 but for sure with exactly one function-declaration CONTAINER
 that trivially is its CLOSEST function-declaration CONTAINER:
*/
A[size(A,1), size(A,2)] := -1; // ?γ

E-2: Consider the syntactic rule G-2.3:

function-declaration =
 ("function" | "method"),
 name,
 { parameter-declaration },
 ["protected", { local-variable-declaration }],
 "algorithm",
 { statement },
 "end",
 name,
 ";" ;

Its first factor is ("function" | "method"), its 1-2’th factor is "method", its 4’th
factor is ["protected", { local-variable-declaration }], its 4-2’th factor is
{ local-variable-declaration } and its 4-2-1’th factor is local-variable-
declaration. According to the presented syntactic rule, every function-declaration must
have a 5’th child lexically-equivalent to "algorithm" even if it contains no statements; it can
also be without 4-2’th child although it has a 4’th and 4-1’th child. It is important to note here,
that if without 4-2’th child, a function-declaration cannot contain local-variable-declarations;
the reason is because the 4-2’th factor is the only possibility to derive local-variable-
declaration throughout any possible derivation of function-declaration. Likewise the 6’th
factor is the only possibility to derive statements throughout the derivation of function-
declarations. Finally, note the difference between without an i'th child vs. without a code
fragment according to some non-terminal. Local-variable-declaration and parameter-
declaration will always derive variable-declaration throughout their own derivation. Thus,
function-declarations for example can be without 4-2’th child and still contain a variable-
declaration if they have a 3’rd child, i.e., a function-declaration can be without 4-2’th child but
still not variable-declaration-free.

Consider the following function-declaration:

function foo
protected
algorithm
end foo;

Its second and eight children are names lexically-equivalent to foo. It is without 1-2’th child
because it has a 1-1’th child lexically-equivalent to "function". And although it has a 4’th
child, it is without a local-variable-declaration.

Using syntactic relations, complicated constraints can be conveniently and precisely defined.
For example, the usage of references in statically-evaluated expressions is restricted; on the
one hand, they never must be used to access control-state-dependent — i.e., runtime — values,
but on the other hand, they should be available to access runtime-independent values
provided by the dimensionality- and termination-analysis like the dimensional-sizes of
variables or the iteration-values of loop-iterator variables which are always statically-bound.
A respective formal definition, based on syntactic relations only, is: every reference contained
in a constant-scalar-integer-expression must either, be the 3’rd child of a dimension-query or
have a unique for-loop container whose loop-iterator-declaration is lexically-equivalent to the
reference. Although such constraints sound like common prose, they are completely formally
well-defined by meta-rules M-1.1 to M-1.3 and the derivation semantics of EBNF as defined in
Section 5 of ISO/IEC 14977.

It is important to note, that meta-rules, like M-1.1 to M-1.3, are used by nearly all semantic
rules and therefore not explicitly referenced by definitions even if relevant.

Semantic Rules

Likewise syntactic rules, also semantic rules have unique rule-numbers. The structure for
semantic rule-numbers is S-X1.X2; again X1 is the section the rule is part of and X2 a unique rule-
number within that section. The unique rule-number is followed by an informal rule name
describing the rule-intention, a slash and finally one or more semantic concepts the rule
contributes to, all wrapped in parenthesis. The actual definition follows separated by colon.

As an example consider the following semantic rule:

S-TODO (guarded multi-dimension access / Dimensionality-analysis): For each
dimensional-context of the function-declaration a reference R is part of (cf. S-TODO), the
dimensional-bounds of the computed-dimensions of R must be within the dimensional-bounds
of the declaration R refers to (cf. S-TODO).

The general definition of dimensional-bounds and what it means for one to be within another
is given by meta-rule M-TODO to which — like for all common meta-rules — is not explicitly
referred to.

Rationales, Limitations and Examples

Besides syntactic and semantic rules, sections also list rationales, limitations and examples. A
rationale gives further reason why something is specified as it is, like usage-considerations,
other specifications of interest or easy overlooked cases that are non-trivial to handle. A
limitation clarifies a language constraint that might be relaxed in further iterations of the
standard to support future use-cases, that is required to support further tooling working with
GALEC code or that is very hard to ease in general for which reason it has been introduced.
Examples are used to investigate the implications of the specification by demonstrating code
fragments that are illegal GALEC code or that are valid but with a twist fostering
understanding of the specification. All three — rationales, limitations and examples — can be
part of semantic rules, in which case they are uniquely numbered within the rule they are part
of. If more general, they can also be freestanding, in which case their unique number is
constructed likewise syntactic and semantic rule numbers, only that rationales are prefixed by
R-, limitations by L- and examples by E-. In any case, rationales and limitations have an
informal name describing their intention likewise semantic rules have. If freestanding, they
also can be associated with semantic concepts, again separated by a slash like for semantic
rules; if not freestanding and part of a semantic rule, they implicitly contribute to the same
semantic concepts as the rule they are part of.

As an example consider the following non-freestanding rationales, example and limitation:

S-TODO (uniqueness of early loop exits / Termination-analysis): Let B1 and B2 be two
different early-loop-exits. Their respective closest for-loop containers must be different; and
their loop-iterator-references must refer to different for-loops.

R-1 (well-formedness): That early-loop-exits must be part of a for-loop, and the name-analysis
of their loop-iterator-references, are already defined by S-TODO.

R-2 (MISRA C:2012 compliance): The rule is introduced to enforce compliance with MISRA
C:2012, Rule 15.4.

E-1: The following for-loop is illegal due to multiple early loop exits for each of the nested
loops:

for i in 1:3 loop // Outer loop.
 for j in 1:3 loop // Inner loop.
 if b1 then
 break i; // First break of outer and inner loop.
 else
 break j; // Illegal: Second break of inner loop.
 end if;
 end for;
 if b3 then
 break i; // Illegal: Second break of outer loop.
 end if;
end for;

L-1 (relaxation of MISRA C:2012 compliance): To transform non-unique early loop exists to
a unique form complying with MISRA C:2012 is not trivial. Production code generators may
miss support for such transformations, to which end this rule has been introduced. On the
other hand, it may unnecessarily constrain GALEC code generators, even forcing them to fail
to generate an algorithmic solution. To shift the responsibility of compliance from GALEC code
generators to Production Code generators, the rule can be disabled using the consider-
misra=false flag throughout GALEC code generation.

Other specification parts can refer to enclosed rationales, limitations and examples by
appending their unique number separated by a colon to the number of the enclosing semantic
rule; for example, one can refer to the limitation of above example by writing S-TODO:L-1.

4.2.3. Block-interface and life-cycle

This Section investigates the utilization of GALEC programs (i.e., blocks) that are due for
deployment on an embedded target and its runtime environment.

§1: Embedded target, runtime environment, system integration, block

instance & block-interface (terminology, system integration)

GALEC defines an operational interface for blocks — called block-interface — that must be
preserved by Production Code generators when translating a block to code that is subject of
embedded system integration. Embedded system integration is not just achieved by means of
a block’s interface; it must over and above adhere to the operational restrictions defined in §1
to §3 (particularly the block life-cycle of §3 must be satisfied).

A single block can be instanziated many times on an embedded target and its runtime
environment; each instance is operationally isolated. There are no restrictions on the number
or kind of block instances (in particular different blocks can be instanciated within the same
runtime environment). Any interaction of the runtime environment with a block instance
must be via its block-interface (even instances of the same block must interact via their block-
interface).

§2: Block-interface variables & methods (runtime semantic, system

integration)

The block-interface constitues of block-interface variables and block-interface methods.

The block-interface variables are:

• Block inputs: The sampling inputs provided by the runtime environment.

• Block outputs: The sampling results consumed by the runtime environment; they must
never be written by the runtime environment.

• Tunable parameters: Parameters sporadically, and not necessarily each sampling,
changed by the runtime environment.

Besides this block-interface variables, other block-variables exist, which are block internal
and therefore cannot (and must not, cf. §1) be written or read by the runtime environment:

• Dependent parameters: The parameters derived from tunable parameters.

• Block states: The internal states.

All block-variables are persistently stored in block instances, such that their values survive
block-interface method calls and therefore can be used in call sequences of such. Each block
instance has its individual set of block-variables; changing some tunable parameter t of a
block instance b1 does not change t of another block instance b2 of the same block.

The block-interface methods are:

• Startup(): Computes initial values for all block-variables.

• Recalibrate(): Updates the dependent parameters considering the currently set
tunable parameters.

• DoStep(): Computes the block outputs and updates the block states for the given block
inputs and the current tunable and dependent parameters for a single sampling.

L-1 (design-space of Production Code generation and system integration): Production
Code generators and system integration are free to realize a GALEC block by any means they
see fit as long as its operational semantic is satisfied. They can achieve a mutual agreement
that block-interface functionality is not supported, like recalibration by means of
Recalibrate() or reading block inputs from the runtime environment, given that the use-
case and system integration scenario does not require such. In general however, Production
Code generators must support the full block-interface and life-cycle to be eFMI specification
conformant.

Examples of integration scenario specific design-space agreements are:

1. Not generate and call Startup(), but instead statically evaluate it and store start
values in read only memory or only load them once when the runtime system boots.

2. Not generate a dedicated DoStep() function, but instead inline the implementation in
the runtime environment.

3. Not generate Recalibrate(), transforming tunable and dependent parameters to
become constants which can be constant-folded.

4. Store block-variables globally, leveraging on knowing that there is exactly one instance
and not several (no need to support individual block-instances).

5. Not persist block inputs (cf. §3:R-1, last paragraph), but instead provide new values for
every input every sampling, for example as function arguments to DoStep().

Particularly (3) is a common integration scenario, since recalibration typically is only
performed during the development phase of an embedded system and no longer supported in
production systems.

R-1 (block-variable initialization and Algorithm Code Container manifest start values):
The start values of the variables in the manifest of an Algorithm Code Container are
conceptually determined by calling Startup() on the target system and its runtime
environment. A Production Code generator can for example (1) use these start values directly
in the C-Code for static initialization (i.e., as precomputed values), hereby casting from the
concrete manifest-variable type in which the start-values are stored to the best fitting
concrete type of the target system, or (2) provide an implementation of Startup() to be
called by the runtime environment during startup, or (3) use any other means to ensure
block-variables have initial values according to Startup() (cf. §2:R-1).

§3: Block life-cycle (runtime semantic, system integration)

The permitted interactions with block instances are defined by the following state machine,
specifying a universal life-cycle for block instances, called block life-cycle (the do-actions of
states refer to the block-interface methods defined in §2):

The block-interface methods of a single block instance must be called in sequence by the
runtime environment; parallel execution of such is prohibited. The block-interface methods of
separate block instances can be executed in parallel. The block-interface variables of a block
instance must not be read or written by the runtime environment while any of its block-
interface methods is in execution.

R-1 (block life-cycle implications for system integration): The following discussion refers
to the block life-cycle state machine. Italic refers to states or transitions of it; monospace
refers to state actions, i.e., block-interface methods according to §2.

The block life-cycle does not enforce the runtime environment to set inputs and tunable
parameters (input written and tuneable parameter written transitions) separately in sequence
or at most once before each sampling. It does not prohibit the runtime environment to read
block inputs or tunable parameters or execute Recalibrate() several times before a single
sampling. This allows complex system integration scenarios where the runtime environment
has to setup the next sampling depending on the state of a block instance.

The block life-cycle enforces however, that whenever a tunable parameter is changed via
tunable parameter written, all dependent parameters must be recomputed via
Recalibrate() before the next sampling (recalibration required conditional). Otherwise, a
protocol error is given and the block behavior is undefined (idle (protocol error) state).
Several tunable parameter changes can be bundled though; it is not required to switch to
recalibrating after each individual new tunable parameter is set, but sufficient to do so once
before the next sampling.

Likewise, the block life-cycle enforces that DoStep() is executed exactly once for each
sampling (sampling clock ticks transition).

The block life-cycle also enforces that the new block inputs, to be used for the next sampling,
must be ready before the execution of DoStep() starts (all inputs set condition of sampling
clock ticks transition). It is however not enforced that every input must be assigned a new
value each sampling. Since Startup() assigns all block-variables a well-defined value,
including block inputs, following samplings will be well-defined even if an input is not set
anew (assuming recalibration is done as described in the last but one paragraph). If a block-
input is not updated before a sampling, it has the last value set. It is however very uncommon
not to set all inputs each sampling; one reasonable scenario not to do so is if the block is
super-sampled compared to some of its inputs (e.g., a sensor provides a new input value every
2ms, but the block is sampled every 1ms because of other faster changing inputs).

E-1: The following C99 pseudo-code snippets sketch typical system integration scenarios for
blocks.

All examples share the following conventions. It is assumed that the Production Code
generator mapped the block-interface methods Startup(), Recalibrate() and
DoStep() to equally named C functions that expect the block-variables to operate on as
argument, e.g., a struct pointer; to that end, c is a constant pointer to the static struct holding
the block-variables (it encapsulates a single block instance). Prose text bracket by [[and]]
denotes arbitrary C code implementing the respective action, but does not interact any further
with the block-interface than denoted.

The most common integration scheme, with support for recalibration throughout samplings,
is:

/*
 Initialization:
*/
Startup(c); // Assigns every block-variable a value, particularly
outputs.

[[process initial outputs of block]]

/*
 Sampling cycle:
*/
while ([[block not shutdown]])
{
 if ([[recalibration desired]])
 {
 [[set new tunable parameters of block]]
 Recalibrate(c); // Recompute dependent parameters of
block.
 }
 [[set new inputs of block]]
 [[wait until sampling clock ticks]]
 DoStep(c); // Recompute internal states and outputs of block.
 [[process new outputs of block]]
}

A more simple integration scenario may not utilize recalibration throughout sampling, but
only once immediately after initialization:

/*
 Initialization:
*/
Startup(c); // Assigns every block-variable a value, particularly
outputs.
[[process initial outputs of block]]
[[set new tunable parameters of block]]
Recalibrate(c); // Recompute dependent parameters of block.

/*
 Sampling cycle:
*/
while ([[block not shutdown]])
{
 [[set new inputs of block]]
 [[wait until sampling clock ticks]]
 DoStep(c); // Recompute internal states and outputs of block.
 [[process new outputs of block]]
}

An even more simple integration scenario may not require recalibration at all, effectively
transforming tunable and dependent parameters to constants since they can not change
anymore after initialization:

/*
 Initialization:
*/
Startup(c); // Assigns every block-variable a value, particularly
outputs.
[[process initial outputs of block]]

/*
 Sampling cycle:
*/
while ([[block not shutdown]])
{
 [[set new inputs of block]]
 [[wait until sampling clock ticks]]
 DoStep(c); // Recompute internal states and outputs of block.
 [[process new outputs of block]]
}

A Production Code generator can optimize this scenario, leveraging on enhanced constant-
folding.

An advanced integration scenario might also require several different recalibartions and input
modifications depending on the state of the runtime environment:

/*
 Initialization:
*/
Startup(c); // Assigns every block-variable a value, particularly
outputs.
[[process initial outputs of block]]

/*
 Sampling cycle:
*/
while ([[block not shutdown]])
{
 // Handle default setup:
 [[set new inputs of block]]

 // Handle first special case, modifying the default:
 v1 = [[some value provided by the runtime environment]];
 t1 = [[read tunable parameter t1]];
 o1 = [[read output o1]]; // Previous sampling output, or
initial if first sampling.
 if (o1 / t1 > v)
 {
 [[set input i1 to v1]]
 if (t1 > 2*v)
 {
 [[set tunable parameter t1]]
 Recalibrate(c);
 }
 }

 // Handle second special case (may amend the first case):
 v2 = [[some value provided by the runtime environment]];
 t2 = [[read tunable parameter t2]];
 if (t2 < v2)
 {
 [[set tunable parameter t2]]
 Recalibrate(c); // Recompute dependent parameters of
block.
 [[set input i2 to input i1]]
 }

 // Everything is prepared for next sampling:
 [[wait until sampling clock ticks]]
 DoStep(c); // Recompute internal states and outputs of block.
 [[process new outputs of block]]
}

4.2.4. General Syntactic and Semantic Rules

Lexemes

G-1.1 — G-1.7 (white space characters):

character = ? any valid ISO/IEC 10646:2017 code point ? ;

white-space = { space | new-line-character | comment } - () ;

space = " " | ? tabulator (ISO/IEC 10646:2017 code point 9) ? ;

new-line-character =
 ? carriage return, line feed or carriage return followed by
line feed
 (ISO/IEC 10646:2017 code point 13 or 10 or 13 followed by
10) ? ;

comment = single-line-comment | multi-line-comment ;

single-line-comment = "//", { character - (new-line-character)
} ;

multi-line-comment = "/*", { character } - ({ character }, "*/",
{ character }), "*/" ;

G-1.8 — G-1.17 (constants):

boolean = "false" | "true" ;

digit = (* ? any ISO/IEC 10646:2017 code point in range [48, 57]:
? *)
 "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;

non-zero-digit = digit - ("0") ;

integer = "0" | positive-integer ;

positive-integer = non-zero-digit, { digit } ;

real = (integer-places, [decimal-places], [exponent]) - (
integer) ;

integer-places = integer ;

decimal-places = ".", digit, { digit } ;

exponent = ("e" | "E"), ["+" | "-"], digit, { digit } ;

constant = boolean | integer | real ;

G-1.19 — G-1.26 (names):

keyword =
 "block" | "protected" | "public" | "end"
 | "record"
 | "function" | "method" | "signals" | "algorithm"
 | "input" | "output"
 | "Boolean" | "Integer" | "Real"
 | "limit"
 | "if" | "signal" | "in" | "then" | "elseif" | "else"
 | "for" | "loop"
 | "and" | "or" | "not" |

 | "size"
 | "self"
 (* reserved for future extensions: *)
 | "while" | "do" | "until"
 | "break" | "return"
 | "enumeration"
 | "__", identifier ;

alphabetic-character =
 (* ? any ISO/IEC 10646:2017 code point in ranges [65, 90] or
[97, 122]: ? *)
 "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" |
"k" | "l" | "m"
 | "n" | "o" | "p" | "q" | "r" | "s" | "t" | "u" | "v" | "w" |
"x" | "y" | "z"
 | "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" |
"K" | "L" | "M"
 | "N" | "O" | "P" | "Q" | "R" | "S" | "T" | "U" | "V" | "W" |
"X" | "Y" | "Z" ;

identifier = (alphabetic-character, { alphabetic-character | "_"
| digit }) - (keyword) ;

quoted-identifier =
 "'",
 (
 "previous", "(", scalarized-reference, ")"
 | "derivative", "(", quoted-identifier-higher-order-
derivative, ")"
 | scalarized-reference
),
 "'" ;

quoted-identifier-higher-order-derivative =
 scalarized-reference
 | "derivative", "(", quoted-identifier-higher-order-
derivative, ")" ;

scalarized-reference =
 (identifier | keyword),
 [fixed-dimensions],
 { ".", (identifier | keyword), [fixed-dimensions] } ;

fixed-dimensions = "[", positive-integer, { ",", positive-integer
}, "]" ;

name = identifier | quoted-identifier ;

S-1.1 (longest match / Meta-rules, lexical-structure): Given the following EBNF grammar:
Glexemes = { ? all meta-identifiers of G-1.1 — G-1.26 concatenated by | ? }. Let a߻dαβγδ be an
arbitrary GALEC program P, with aα being an arbitrarily long sequence of characters matched

throughout a left-most derivation of P according to Glexemes, ߠand ?β and γ being arbitrary long
but not empty sequences of characters, and dδ being an arbitrary long sequence of characters.
Let G1 and G2 be any two different rules of G-1.1 — G-1.26 that can be applied next throughout

the left-most derivation of P according to Glexemes. Assume G1 would match ߠandβ and G2 would
match ߻;βγ; in that case G1 is not applicable.

For every left-most derivation of any GALEC program P it must hold that the sequence of G-
1.1 — G-1.26 applications is the same as the sequence of G-1.1 — G-1.26 applications for the
left-most derivation of P by Glexemes.

E-1: Let a, ߬ ?α, β, γ and dδ be as defined above, with ߠβ = i, ?γ = 4 and dδ starts with white-
space. The next rule applied within the set G-1.1 — G-1.26 must be G-1.21 (identifier).

S-1.2 (universality of white space / Meta-rules, lexical-structure): Except for rules G-1.1 —
 G-1.26, { white-space } is implicitly preceding and following each syntactic-factor of a
syntax-rule (cf. ISO/IEC 14977).

E-1: The expanded rule of G-TODO, showing its implicit white-space, is:

state-reference =
 { white-space },
 "self",
 { white-space },
 ".",
 { white-space },
 name,
 { white-space },
 [{ white-space }, computed-dimensions, { white-space }],
 { white-space },
 {
 { white-space },
 ".",
 { white-space },
 name,
 { white-space },
 [{ white-space }, computed-dimensions, { white-space }
],
 { white-space }
 },
 { white-space } ;

E-2: According to E-1, the following is a valid state-reference:

self.
a . b [2] // vector
 . 'c[2].d[3]'
 .
 m [
3 , /* matrix access */ 4
]

E-3: The following is an illegal quoted-identifier due to white-space within its quotes:

'a . b [2] // vector
 .
 m [
3 , /* matrix access */ 4
]'

S-1.3 (primitive names / Name-analysis, terminology): Names, identifiers and quoted-
identifiers are primitive names. Let aα be lexically-equivalent to a primitive name N; aα is the
name of N. Syntactic terms with a name are called named. Let aα be the name of a named
syntactic term N; we say N has name aα and N is named aα.

R-1: The set of named syntactic terms can be easily extended by semantic rules by just
defining a name for a syntactic term.

R-1.1 (scalarization and quoted identifiers / Traceability): Quoted-identifiers are provided
to denote scalarized entities — typically multi-dimensional nested components of the original
physics-model whose elements are flattened to individual scalar entities for further numeric
optimisations throughout the generation of an algorithmic solution. By reusing the original
multi-dimensional query for an element that is now an independent scalar as the scalar’s
name, traceability can be achieved.

The previous(aα) and derivative(aα) notations are intended to be used for support-
variables holding the value a variable aα had at the end of the last control-cycle or its
derivative respectively. Many physics-modeling languages, like Modelica, provide such values
implicitly by means of operators applicable to any variable. Since algorithmic solutions are
discrete however, no continuous derivatives exist. And the meaning of previous, in terms of
the last value before the current, depends on the applied discretization scheme. For backward
discretization it indeed is the last control-cycle’s value; for forward discretization however, it
is the current value. For mixed schemes the meaning is unclear. Due to these issues, no
specific operators are provided. Instead, algorithmic solutions have to explicitly introduce
variables to hold values or compute derivates. The previous(aα) and derivative(aα)
notations can be used to give the explicit variables introduced for the variables aα that have
been subject of such implicit operations convenient names, ultimately increasing traceability.

E-1: The Modelica model

model M
 model MI
 model MII
 Real x;
 Boolean y;
 equation
 ...
 end MII;
 MII b[3];
 equation
 ...
 end MI;
 MI a[2];
equation
 ...
end M;

could be scalarized to

Real 'a[1].b[1].x';
Boolean 'a[1].b[1].y';
Real 'a[1].b[2].x';
Boolean 'a[1].b[2].y';

Real 'a[1].b[3].x';
Boolean 'a[1].b[3].y';
Real 'a[2].b[1].x';
Boolean 'a[2].b[1].y';
Real 'a[2].b[2].x';
Boolean 'a[2].b[2].y';
Real 'a[2].b[3].x';
Boolean 'a[2].b[3].y';

Further numeric analyses could conclude that a.b[2] is an alias or irrelevant for the
simulation for which reason it can be eliminated, reducing the set of individual scalar state
variables to only

Real 'a[1].b[1].x';
Boolean 'a[1].b[1].y';
Real 'a[1].b[3].x';
Boolean 'a[1].b[3].y';
Real 'a[2].b[1].x';
Boolean 'a[2].b[1].y';
Real 'a[2].b[3].x';
Boolean 'a[2].b[3].y';

R-1.2 (reserved keywords): G-1.19 (keyword) reserves certain character sequences for
future language extensions; the respective sequences are not used elsewhere in the grammar.
The sequences while, do and until are reserved for a potential future introduction of non-
bounded or more complicated loops, return and break for potential early function and loop
exit statements and enumeration for a potential extension with enumeration types. Such
reservations do not imply by any means that the language indeed will be extended
accordingly; they rather serve to preserve up-wards compatibility of code when respective
language extensions are added. The "__", identifier alternative reserves names that
might collide with internal compiler macros of further tooling; it is in the spirit of 6.11.9 of
ISO/IEC 9899:TC3.

E-1: Boolean until; is not a local-variable-declaration due to until being a reserved
keyword.

Blocks and Declarations: Control-state and -cycle (memory and inter-

functional flowchart)

G-2.1 — G-2.3 (blocks, state compartments and functions):

block =
 "block",
 name,
 { state-entity-declaration } (* TODO: must be inputs,
followed by outputs followed by parameters *),
 "protected",
 { state-compartment-declaration },
 { state-entity-declaration },
 { error-signal-declaration },
 { function-declaration },

 "public",
 { function-declaration },
 "end",
 name,
 ";" ;

error-signal-declaration = "signal", identifier, ";" ;

state-compartment-declaration =
 "record",
 name,
 { state-entity-declaration },
 "end",
 name,
 ";" ;

function-declaration =
 ("function" | "method"),
 name,
 [signal-interface],
 { parameter-declaration },
 ["protected", { local-variable-declaration }],
 "algorithm",
 { statement },
 "end",
 name,
 ";" ;

signal-interface = "signals", identifier, { ",", identifier },
";" ;

G-2.4 — G-2.12 (state entity, parameter and local variable declarations):

state-entity-declaration =
 ["constant" | "parameter"], (* TODO: Definition of terms
and semantic of constants and tuneable and dependent parameters
*)
 variable-declaration ;

parameter-declaration = data-flow-direction, variable-declaration
;

local-variable-declaration = variable-declaration ;

data-flow-direction = "input" | "output" ;

variable-declaration =
 (primitive-type | state-compartment-reference),
 name,
 [constant-dimensions],
 ";" ;

primitive-type = "Boolean" | "Integer" | "Real" ;

state-compartment-reference = name ;

constant-dimensions =
 "[",
 (derived-dimension | constant-scalar-integer-expression),
 { ",", (derived-dimension | constant-scalar-integer-
expression) },

 "]" ;

derived-dimension = ":" ;

R-2.1 (unique start symbol): According to ISO/IEC 14977 and S-1.2, block is the only start
symbol.

S-2.1 (consistent naming / Name-analysis): The 2nd and 12th child of blocks must be
lexically-equivalent. The 2nd and 5th child of a state-compartment-declaration must be
lexically-equivalent. The 2nd and 9th child of a function-declaration must be lexically-
equivalent.

E-1: The following block fragment is illegal due to inconsistent state compartment and
function names:

record GearBox // Illegal: GearBox and gearBox not lexically-
equivalent.
 Real w;
end gearBox; // Illegal: GearBox and gearBox not lexically-
equivalent.

method UpdateGearBox // Illegal: UpdateGearBox and
'UpdateGearBox' not lexically-equivalent.
 input Real x;
algorithm
 self.gearBox.w := (x / self.gearBox.w) * self.gearBox.w;
end 'UpdateGearBox'; // Illegal: UpdateGearBox and
'UpdateGearBox' not lexically-equivalent.

S-2.2 (state compartments, components and variables and control-inputs and -outputs;
input and output parameters; local variables / Type-analysis, terminology): A state-
entity-declaration without primitive-type is called state component, otherwise it is called state
variable. State components and variables are called state entities.

State-compartment-declarations are called state compartment; the state entities contained in a
state compartment are called its local entities (thus, state compartments have local
components and variables).

State entities whose data-flow-direction is lexically-equivalent to input are called control-
input; state entities whose data-flow-direction is lexically-equivalent to output are called
control-output. Control-inputs and -outputs must be state variables and not be part of state
compartments (i.e., state components cannot be control-inputs or -outputs nor can such be
local entities of any state compartment).

A parameter-declaration whose data-flow-direction is lexically-equivalent to input is called
an input parameter; otherwise it is called an output parameter. Input and output parameters
are called parameters.

Local-variable-declarations are called local variable.

E-1: The following valid block fragment defines various non-functional entities:

/*
 State compartment that is the control-state (cf. S-2.8).
 It has two local state entities, one variable and one
component.
*/
block Controller
 record C
 Real r;
 Integer i;
 end C;

 Integer i; // State entity that is a state variable.
 C c; // State entity that is a state component.

 function f
 output Real out_1[size(in, 1)]; // Parameter that is an
output parameter.
 input Real in[:]; // Parameter that is an
input parameter.
 output Real out_2[size(in, 1)]; // Parameter that is an
output parameter.
 protected
 Integer s; // Local variable.
 algorithm
 s := 0;
 for i in 1:size(in, 1) loop
 s := s + in[i];
 end for;
 out_1 := in / s;
 out_2 := s * in;
 end f;
end Controller;

S-2.3 (stateless and stateful functions / Side-effect-analysis, terminology): Function-
declarations are just called functions. Functions whose first child is lexically-equivalent to
method are called stateful function; otherwise, they are called stateless function.

R-1 (state of stateful functions / Runtime-semantic): The motivation to separate stateful
functions from stateless is, that the latter cannot change the control-state by any means; only
stateful functions can write state variables as long as they are not control-inputs (cf. S-
TODO.TODO (non-writeable control-inputs, input parameters and loop iterators; side-
effect-freeness of stateless functions / Side-effect-analysis)). There are no restrictions on
reading state variables however, including control-inputs and -outputs; stateless functions
therefore still can depend on the control-state. These restrictions on when control-state
changes are permitted improve readability of GALEC code and enable the generation of
Production Code leveraging on parallel computing (cf. S-3.TODO:R-1 (isolated side-effects of
stateful function calls and parallel computing / Runtime-semantic)).

S-2.4 (names of state compartments and entities, functions, parameters and local
variables / Name-analysis): State compartments, state entities, functions, parameters and
local variables are named.

The name of a state compartment is the name of its 2nd child.

The name of a function is the name of its 2nd child.

The name of a state entity, parameter and local variable is the name of its variable-declaration
where the name of a variable-declaration is the name of its 2nd child.

E-1: The following valid block fragment defines various names:

block Controller2
 Real 'derivative(shaft[2].x)'; // Scalar named
'derivative(shaft[2].x)'.
 GearBox 'shaft[2].gear'[3]; // State component vector
named 'shaft[2].gear'.
 Real w; // Scalar named w.

 method 'shaft[2].gear.update' // Stateful function
named 'shaft[2].gear.update'.
 input Real 'previous(shaft[2].y)'; // Scalar input
parameter named 'previous(shaft[2].y)'.
 input Integer index; // Scalar input
parameter named index.
 protected
 Real exp_y; // Scalar local
variable named exp_y.
 algorithm
 exp_y := exp('previous(shaft[2].y)');
 self.'shaft[2].gear'[index].w :=
 exp_y^2 - self.'derivative(shaft[2].x)' * exp_y;
 end 'shaft[2].gear.update';
end Controller2;

S-2.5 (unique declarations (Part I) / Name-analysis): Blocks must not contain two different
functions or state compartments with equivalent names. Functions and state compartments
must have different names. Parameters and local variables must not be named like functions
or state compartments. Functions must not contain two different parameters or local
variables with equivalent names. Parameters and local variables contained in the same
function must have different names. Different local entities of a state compartment must have
different names.

S-TODO incorporates and adds further unique declaration restrictions for iterators.

R-1 (MISRA C:2012 compliance): The restriction that parameters and local variables must
not have function or state compartment names is introduced to avoid hiding of outer-scope
declarations in accordance with MISRA C:2012, Rules 5.3, 5.8 and 5.9.

R-2 (separate name-space for state entities): State entities can have the name of a state
compartment, function, parameter, local variable or iterator because, according to S-TODO,
they can only be accessed using a state-reference which always starts with the unique
sequence self.. Thus, the intention to refer to a state entity always is clearly denoted; state
entities are within their own separate name-space. State entities not local to the same state
compartment can have equivalent names because they are always differently accessed.

E-1: The following block is illegal due to hiding of outer-scope declarations and re-
declarations (for the definition of preceding and follows cf. M-1.3; for hiding of outer-scope
declarations cf. the ISO/IEC 9899:TC3 and MISRA C:2012 standards):

/*
 The single-line comments in this example are just
abbreviations for
 // Illegal: Equally named <C>.
 where <C> is the comment and refers to the relative locations
of
 equally named entities.
*/

record efmu // state compartment follows
end efmu;

record efmu // state compartment preceding
 C v; // state entity follows
 Real v; // state entity preceding
end efmu;

record C // function and local variable follow
end C;

method DoStep // function follows
protected
 Real v; // local variable follows
 Real v; // local variable preceding
algorithm
end DoStep;

method DoStep // function preceding
protected
 Integer f; // function follows
algorithm
end DoStep;

function C // state compartment preceding and local variable
follows
 output Real r; // local variable follows
protected
 Boolean r[4]; // parameter preceding
algorithm
end C;

function f // local variable preceding
protected
 Integer C; // state compartment and function preceding
algorithm
end f;

E-2: The following valid block has no re-declarations or hiding of outer-scope declarations:

block Controller3
 C C; // Type and name are lexically-equivalent.
 /*
 Name lexically-equivalent to self.C.r, parameter of
 function f and local variable of function DoStep:
 */
 Real r;

 record C
 /*
 Name lexically-equivalent to self.r, parameter of
 function f and local variable of function DoStep:
 */
 Real r;
 Boolean DoStep; // Name lexically-equivalent to function
DoStep.
 end C;

 method DoStep
 protected
 /*
 Name lexically-equivalent to self.r, self.C.r and
 parameter of function f:
 */
 Real r;
 algorithm
 end DoStep;

 method Startup
 algorithm
 end Startup;

 function f
 /*
 Name lexically-equivalent to self.r, self.C.r and
 local variable of function DoStep:
 */
 output Real r;
 algorithm
 end f;
end Controller3;

S-2.6 (state compartment lookup / Name-analysis): Let R be a state-compartment-
reference. There must exist a state compartment D named like the name of R; according to S-
2.5, D must be unique. We say R refers to D.

S-2.7 (types of state entities, parameters and local variables / Type-analysis): The first
child of a variable-declaration D defines its type. If, and only if, D contains a primitive-type T,
the type of D is lexically-equivalent to T. In this case D has a variable type; otherwise, the type
of D is the state compartment its state-compartment-reference refers to and D has a
component type.

The type of a state entity, parameter and local variable is the type of its variable-declaration.

The type of parameters and local variables must not be a component type.

E-1: The following valid block fragment defines entities of various types. Note, that type and
dimensionality (cf. S-2.12) are orthogonal characteristics; declarations can combine every
type with any dimensionality.

block Controller
 record GearBox
 Real w; // State variable of type Real.
 end GearBox;

 Boolean s; // State variable of type Boolean.
 Real w[3]; // State variable of type Real.
 GearBox g[3]; // State component of type GearBox.

 function 'g.w.T_sum'
 input Integer T[3, 3]; // Input parameter of type
Integer.
 output Real y; // Output parameter of type Real;
 protected
 Real 'g.w'[3]; // Local variable of type Real;
 algorithm
 for i in 1:3 loop
 'g.w'[i] := emfu.g[i].w;
 end for;
 y := (if efmu.s then 1 else -1) * sum(real(T) * 'g.w');
 end 'g.w.T_sum';
end Controller;

E-2: The following function is illegal due to parameters and local variables with component
types:

method UpdateGearBox
 input Shaft s; // Illegal: Input parameter has a component
type.
 input Integer i;
protected
 GearBox g; // Illegal: Local variable has a component type.
algorithm
 g := s.gear[i]; // Illegal: Cf. S-TODO.TODO (type of
references / Type-analysis):L-1.
 g.w := (g.x / g.w) * g.w;
end UpdateGearBox;

S-2.8 (state compartment composition graph, control-state and control-state extent /
Termination-analysis): We define the following directed graph G. For every state
compartment C, G contains a node labeled with the name of C. For every state component with
type T and local to C, we add a directed edge from C to T. G is called the state compartment
composition graph.

The state compartment composition graph must be cycle-free and it must contain a node N
labeled efmu from which all other nodes are reachable (and which therefore is its only root,
i.e., the only node without incoming edges).

The state compartment named efmu is called the control-state.

Control-inputs and outputs must be local state entities of the control-state.

L-1 (unique, all-embracing, finite control-state extent / Runtime-semantic): According to
S-2.5, state compartments are unique for which reason the state compartment composition
graph cannot contain two nodes with equivalent label. It can contain multiple edges between
two nodes however, since for each state component of type nt contained in state compartment
ns the state compartment composition graph will contain a separate edge from ns to nt. Nodes
can also have several incoming edges from different nodes, since state components of
equivalent type can be part of different state compartments. Considering all these constraints,
the state compartment composition graph must be a directed, cycle-free graph with unique
root (and not necessarily a directed tree).

TODO: transform state compartment composition graph to tree defining control-state extent.
Argue why that one is unique, all-embracing and finite and why that is good-for/required-by
embedded code. Define that in the context of runtime-semantic the term control-state always
refers to the control-state extent.

The control-state must be unique; and considering the restrictions of the state compartment
composition graph, it must comprise all state entities defined, i.e., be all-embracing
(reachability) and finite (cycle-free).

E-1: The following state compartments are illegal because they have a cyclic composition,
miss the efmu root and have other roots:

record C1 // Illegal: Part of C1, C2, C3 cycle.
 C2 c;
end C1;

record C2 // Illegal: Part of C1, C2, C3 cycle.
 C3 c;
end C2;

record C3 // Illegal: Part of C1, C2, C3 cycle.
 C1 c;
end C3;

record C // Illegal: Non-efmu root.
 C2 c;
end C;

// Illegal: The control-state (efmu root) is missing.

E-2: The following state compartments are illegal because the control-state is not a root:

record C1
end C1;

record C2

end C2;

/*
 Illegal: Control-state is not a root (C1 not reachable from
 efmu in state compartment composition graph):
*/
record efmu
 C2 c;
end efmu;

E-3: The following state compartments are illegal because there are control-inputs and -
outputs that are not local state entities of the control-state or are state components (cf. S-2.2):

record C
 input Real i; // Illegal: Control-input not local to the
control-state.
 output Real o; // Illegal: Control-output not local to the
control-state.
end C;

record efmu
 C c;
 input Real i_1;
 output Real o_1;
 input C i_2; // Illegal: Control-input is a state
component.
 output C o_2; // Illegal: Control-output is a state
component.
end efmu;

S-2.10 (locally and transitively called functions, static function call graph and recursion-
freeness / Termination-analysis): Let Cf be the set of names of the function-calls contained in
a function f; Cf is called the local function call set of f and we say for each function fc whose
name is in Cf that it is locally called by f and that f locally calls fc.

We define the following directed graph G. For every function f (including builtin functions), G
contains a node labeled with the name of f. For every function fc locally called by a function f,
we add a directed edge from f to fc. G is called the static function call graph.

Let n be a node of the static function call graph and nr be a node reachable from n; let f be the
function named like the label of n and fr the function named like nr. We say fr is transitively
called by f and f transitively calls fr.

The static function call graph must be cycle-free.

S-2.11 (initialization and control-cycle functions / Name-analysis): Every block must
contain a function named Startup; respective functions are called initialization function.
Initialization functions must be stateful and parameter-declaration-free. Initialization
functions must not locally call user-defined functions (i.e., initialization functions can only call
builtin functions).

Every block must contain a function named DoStep; respective functions are called control-
cycle function. Control-cycle functions must be stateful and parameter-declaration-free.

All user-defined functions, except the control-cycle and initialization functions, must be
transitively called from the control-cycle function (thus, let Nuser-defined be the set of nodes of the
static function call graph labeled with the name of a user-defined function, excluding the
control-cycle and initialization functions, and let ncontrol-cycle be the node labeled with the name of
the control-cycle function: ?∀nuser-defined?∀Nuser-defined: nuser-defined is reachable from ncontrol-cycle).

R-1 (controller interface / Runtime-semantic): According to S-2.5, the initialization and
control-cycle functions are unique. They and the control-state are the controller interface, i.e.,
the functionality visible for the runtime environment executing the eFMU.

L-1 (initialization and control-cycle; control-state consistency / Runtime-semantic): At
runtime, the Production Code generated for the initialization function must be executed at
least once before the production code for the control-cycle function is executed for the very
first time; its purpose is to initialize the control-state at startup and provide the outputs for
the first clock tick. Thereafter, the Production Code generated for the control-cycle function
must be executed at every sampling-step to update the blocks’s control-state and compute the
block outputs.

To ensure the consistency of the control-state and the computations based on it, the runtime
environment must never call any function of the controller interface of an eFMU while any of
its functions is still executing. Any runtime environment interaction with an eFMU must be via
its controller interface; and any such interaction must satisfy above restrictions. This prohibits
third parties, for example, to recalibrate an eFMU while its control-cycle function is executing
or to execute user-defined functions that are not part of the controller interface.

Note, that production code is not restricted in terms of parallel execution of different
controllers (i.e., independent applications of the Production Code generated for a single or
different GALEC programs) as long as the generated production code and its runtime
environment ensure that each individual application (i.e., block) satisfies above restrictions.

S-2.12 (scalars, multi-dimensions, vectors and matrices / Dimensionality-analysis,
terminology): State entities, parameters and local variables without constant-dimensions are
called scalar; otherwise multi-dimension. Let d = [a1, …, anα1, …, αn] be the constant-dimensions
of a state entity, parameter or local variable v; in that case v is n-dimensional/multi-
dimensional, n is the number of its dimensions and each aiαi with 1 =≤ i =≤ n is its i'th
dimension. Scalars are zero-dimensional. If, and only if, v is one-dimensional it is called vector;
if, and only if, it is two-dimensional, matrix. The first dimension of a matrix are its rows, the
second its columns.

E-1: The following block fragment declares various scalars and multi-dimensions (denoted by
using capitals only):

block S
 /*
 A 0-DIMENSIONAL state component, i.e.,
 a state component SCALAR:
 */
 C a;

 /*
 A 1-DIMENSIONAL state component, i.e.,
 a state component VECTOR:
 */
 C b[2];
 /*
 A 2-DIMENSIONAL state component, i.e.,
 a state component MATRIX
 with 2 ROWS and 3 COLUMNS:
 */
 C c[2,3];
 /*
 A 3-DIMENSIONAL state component, i.e.,
 a MULTI-DIMENSIONAL state component, i.e.,
 a state component MULTI-DIMENSION,
 that is neither, a VECTOR nor a MATRIX:
 */
 C d[1,1,1];
 Real r[3,3]; // a state variable MULTI-DIMENSION

 function f
 input Real i[:,:]; // an input parameter MATRIX
 output Integer o; // an output parameter SCALAR
 protected
 Integer j[size(i,1)]; // a MULTI-DIMENSIONAL local
variable
 Real k[size(i,2)]; // a VECTOR, i.e., a MULTI-
DIMENSION
 algorithm
 end f;
end S;

S-2.13 (dimensional-sizes of state entities / Dimensionality-analysis): State entities must
not contain dimension-queries or derived-dimensions.

TODO: More relaxed alternative: Contained dimension-queries must refer to state entities; the
resulting dependency graph must be cycle-free. More restrict alternative: The constant-scalar-
integer-expressions of their constant-dimensions must derive to positive-integers.

TODO: Static computation of actual dimensions.

S-2.14 (dimensional-sizes of parameters and local variables / Dimensionality-analysis):
Output parameters and local variables must not contain derived-dimensions (i.e., only input
parameters can contain derived-dimensions).

TODO: Static computation of actual dimensions.

S-2.15 (signature of functions; procedures / Type-analysis, terminology): The parameters
a function contains define its signature, i.e., its input-arity, output-arity and order of inputs
and outputs.

Let Sinput be the set of all input parameters contained in a function f; let Soutput be the set of all
output parameters contained in f. The inputs of f are the tuple Tinput = (p1,…,pn) with n = |Tinput| =
|Sinput| and ?∀pi,pj?∀Tinput ; i,j?N∀∀+ ; i < j =≤ n: pi?∀Sinput ?∀ pj?∀Sinput ?∀ pi is preceding pj; likewise,
the outputs of f are the tuple Toutput = (q1,…,qm) with m = |Toutput| = |Soutput| and ?∀qi,qj?∀Toutput ;
i,j?N∀∀+ ; i < j =≤ m: qi?∀Soutput ?∀ qj?∀Soutput ?∀ qi is preceding qj. The input-arity of f is n; its
output-arity is m.

An input parameter is called the i'th input of a function f, if, and only if, it is the i'th element of
the inputs of f; likewise, an output parameter is called the i'th output, if, and only if, it is the i'th
element of the outputs. Trivially, an input parameter part of a function f is an input of f and an
output parameter an output.

Functions of output-arity 0 are called procedure.

R-1: The signature of a function defines its whole interface, since the types and dimensions of
input and output parameters are already defined by S-2.7 and S-2.14. Given for example a
function of input-arity 3, one can talk about the type and dimensionality of its second input.

Expressions: Scalar and Multi-dimensional Arithmetic

G-3.1 — G-3.4 (statically- and dynamically-evaluated expressions):

expression =
 constant
 | reference
 | dimension-query
 | function-call
 | parenthesized-expression
 | if-expression
 | multi-dimension-constructor
 | unary-operation
 | binary-operation ;

parenthesized-expression = "(", expression, ")" ;

dimension-query = "size", "(", reference, ",", constant-scalar-
integer-expression, ")" ;

constant-scalar-integer-expression = expression ;

G-3.5 — G-3.11 (operations):

unary-operation =
 unary-operator,
 (
 constant
 | reference
 | dimension-query
 | function-call
 | parenthesized-expression
 | if-expression
) ;

unary-operator = "-" | "not" ;

binary-operation = expression, binary-operator, expression ;

binary-operator = arithmetic-operator | relational-operator |
logical-operator ;

arithmetic-operator = "+" | "-" | "*" | "/" | "^" ;

relational-operator = "<" | ">" | "<=" | ">=" | "==" | "<>" ;

logical-operator = "and" | "or" ;

G-3.12 — G-3.15 (multi-dimension constructors, function calls and conditional
expressions):

multi-dimension-constructor =
 "{",
 multi-dimension-constructor-element,
 { ",", multi-dimension-constructor-element },
 "}" ;

multi-dimension-constructor-element = expression | multi-
dimension-constructor ;

function-call = name, "(", [expression, { ",", expression }],
")" ;

if-expression =
 "(",
 "if",
 expression,
 "then",
 expression,
 { "elseif", expression, "then", expression },
 "else",
 expression,
 ")" ;

S-3.1 (statically- and dynamically-evaluated expressions / Syntactical-structure,
terminology): Expressions and all children of such, as well as constant-scalar-integer-
expressions, are called expression. Expressions part of, or that are, a constant-scalar-integer-
expression are called statically-evaluated; all other expressions are called dynamically-
evaluated.

References contained in statically-evaluated expressions must either, be the third child of a
dimension-query or refer to a loop-iterator-declaration. Function-calls contained in statically-
evaluated expressions must refer to builtin functions.

R-1: Considering that builtin functions are stateless (cf. S-2.9:R-2) and loop-iterator-
declarations are unrelated to state variables (the value of a loop-iterator-declaration is a
statically-defined, finite sequence of iteration-values within a fixed range, cf. S-TODO),
statically-evaluated expressions cannot use or change the control-state. Their evaluation is
control-state independent and therefore independent of control-inputs and -outputs (cf. S-

TODO); they can be evaluated throughout Production Code generation, hence, statically-
evaluated.

Dynamically-evaluated expression on the other hand can directly or indirectly depend on the
control-state and, by means of assignments, change it.

S-3.2 (operations, operators and arguments of operations / Type-analysis, terminology):
Binary-operations and unary-operations are also just called operation. The 2’nd child of a
binary-operation and the 1’st child of an unary-operation are called its operator. The 1’st and
3’rd child of a binary-operation O are called its first and second argument respectively; they
are the arguments of O. The 2’nd child of an unary-operation is called its argument.

Let ?∀ be lexically-equivalent to the operator O?∀ of an operation O; we call O an ?-∀-operation
and O?∀ the ?-∀-operator. If, and only if, O is a binary-operation it and its operator are called
binary; otherwise unary.

E-1: The expression -v is a unary --operation, whereas v_1 - v_2 is a binary --operation;
both can be either, statically- or dynamically-evaluated (cf. S-3.1) depending on their
application context. For example, in A[v_1 - v_2] := -v * A[v_1 - v_2], the binary
--operations are statically-evaluated whereas the unary --operation is dynamically-
evaluated.

not-operations are always unary and and- and or-operations are always binary. Note, that
they can be statically-evaluated, like in A[(if remainderEuclidean(i, 2) == 0
and i <= size(A, 1) then i else size(A, 1))].

S-3.3 (operator precedence and associativity / Meta-rules, syntactical-structure): The
following table defines a unique disambiguation for the syntactic ambiguities of binary-
operations by means of an operator precedence and associativity for sequences of operators
with equivalent precedence:

Operator classes (highest precedence to
lowest)

Associativity of contained
operators

^ right-to-left

*, / left-to-right

+, - left-to-right

<, >, <=, >= left-to-right

==, <> left-to-right

and left-to-right

or left-to-right

Binary-operations must satisfy the defined operator precedence and associativity.

A binary-operation O satisfies operator precedence, if, and only if, it does not contain binary-
operations whose operator has a lower operator precedence than the operator of O and which
themselves are not contained within a precedence-overriding non-terminal part of O. The
precedence-overriding non-terminals are: reference, dimension-query, function-call,
parenthesized-expression, if-expression and multi-dimension-constructor.

Operator associativity is satisfied if, and only if, binary-operations are derived left-most if their
operator’s associativity is left-to-right and right-most otherwise.

L-1 (strict evaluation order of expressions / Runtime-semantic): Operator precedence and
associativity, together with syntactic rules G-3.5 to G-3.11 imply a well-defined order for the
evaluation of operation sequences — an evaluation order. For example, production code
generated for a sequence of additions a + b + c must evaluate it from left-to-right, i.e., first
add a and b followed by adding the respective result and c. Thus, the evaluation order must
not be changed by Production Code generators even for expressions that are associative in
mathematics. Doing so acknowledges, that computational arithmetic is limited considering
value overflows or floating point imprecision and that typically only GALEC code generators
have the physics-model-specific numerical knowledge to select an appropriate evaluation
order (for which reason Production Code generators should not change it). Enforcing an exact
evaluation order also improves computational consistency between different Production Code
generators.

E-1: The following examples illustrate the disambiguation enforced by S-3.3. They leverage on
the fact that, using parentheses, every syntax-wise ambiguous expression can be explicitly
disambiguated such that S-3.3 is not required.

Each example consists of three semantically equivalent expressions, each on a separate line.
The first line shows a version of the expression requiring S-3.3 for disambiguation. The
second line shows a version not requiring S-3.3 and that is minimal in the usage of
parenthesis. The third line shows the expression with completely explicit evaluation order; it
discloses the actual evaluation order by parenthesizing even expression parts whose
evaluation order is already well-defined by syntactic rules only.

Expression 1:

 a + b + c
(a + b) + c
(a + b) + c

Expression 2:

 a + b * c / d / e * f + g

(a + ((((b * c) / d) / e) * f)) + g
(a + ((((b * c) / d) / e) * f)) + g

Expression 3:

 -a ^ -b ^2 *c
(-a ^(-b ^2))*c
((-a)^((-b)^2))*c

Expression 4:

3 - a^ -b^2
3 - (a^(-b^2))
3 - (a^((-b)^2))

Expression 5:

3 - -a ^ -b ^2
3 - (-a ^(-b ^2))
3 - ((-a)^((-b)^2))

Expression 6:

 a < b <> c < d == e < f and g == h <> i or j
+ k < l - m and n or o
(((((a < b) <> (c < d)) == (e < f)) and ((g == h) <> i)) or (((j
+ k) < (l - m)) and n)) or o
(((((a < b) <> (c < d)) == (e < f)) and ((g == h) <> i)) or (((j
+ k) < (l - m)) and n)) or o

E-2: The parenthesis of a^(2*b) cannot be omitted because a^2*b is equivalent to
(a^2)*b. For example, a^(2*b) yields 64 if a is 2 and b is 3 whereas (a^2)*b yields 12.

The parenthesis of (a^b)^c cannot be omitted because a^b^c is equivalent to a^(b^c).
For example, (a^b)^c yields 1 if a is -1, b is 3 and c is 2 whereas a^(b^c) yields -1.

The parenthesis of (a or b) and c cannot be omitted because a or b and c is
equivalent to a or (b and c). For example, (a or b) and c yields false if a and b are
true and c is false whereas a or (b and c) yields true.

The value assigned to a in a := -b^2; always will be positive whereas for a := 0 -
b^2;, a := -1*b^2; and a := -(b^2); it always will be negative.

The strict left-to-right associativity of a <> b <> c is important for the expression to have
a well-defined — i.e., unique — type. For example, if a and b are of type Integer and c of type
Boolean, (a <> b) <> c is type-correct whereas a <> (b <> c) is illegal.

S-3.4 (type of operations / Type-analysis): Except for ^-operations, the arguments of an
operation must be equally typed. The arguments of arithmetic-operators and relational-
operators, except == and <>-operators, must be of type Integer or Real. The arguments of /-
operations must be of type Real. The arguments of logical-operators must be of type Boolean.

The argument of unary --operations must be of type Real or Integer; the argument of unary
not-operations must be of type Boolean.

Except for ^-operations and operations with an operator that is a relational-operator, the type
of an operation is the type of its arguments. The type of ^-operations is Real; the type of
operations with an operator that is a relational-operator is Boolean.

R-1 (Real-type restriction of /-operation; absence of %-operator / Type-analysis):
Division of Integer values via the /-operator is prohibited since there exists no common
mathematical or formal language interpretation of such. Often, integer division is target-
specific. For example in C89, integer division with a negative operand has an implementation-
defined behavior, whereas in C99 it corresponds to divisionTowardsZero. Programming
languages differ on their interpretation of integer division and remainder; particularly
regarding the latter a plethora of mod-function and %-operator interpretations exist. The
problem is related to the implicitly applied rounding of integer divisions; GALEC is explicit
however and provides a systematic scheme of rounding-related builtin functions (cf. S-2.9),
like roundUp, divisionUp and remainderUp or roundTowardsZero,
divisionTowardsZero and remainderTowardsZero for the rounding strategies to
round plus and minus half up or towards zero respectively. Instead of some implicit-rounding
/ and %-operator on Integer values, the desired builtin function and explicit type casts via
real and integer can be used.

R-2 (equality-tests of Real-typed variables / Coding recommendation): The support of
Real arguments for == and <>-operations is mostly intended for tests against magic literal
numbers like 0.0 or 1.0, for example to enable if-statements protecting against division by
zero. Since tests for exact equality of Real variables are otherwise error-prone, tools are
advised to warn about such although they are not prohibited. Equality tests of Real-typed
variables cannot be prohibited easily anyway, since such can be encoded in a plethora of
different schemes using negation, other relational-operators and temporary variables, like:

b1 := r1 > r2;
b2 := r1 < r2;
if not(b1 or b2) /* r1 == r2 */ then

L-1 (target-specific ^-operation implementation / Runtime-semantic): The ^-operator
provides all kind of type-combinations for its base and exponent arguments. It is not
restricted to just Real arguments, because specialized — and therefore more efficient —
 implementations for different base and exponent type combinations exist, often provided as
target-specific hardware operations. By enabling, for example, both, Real and Integer-typed
exponents, Production Code tools can choose the most efficient implementation available on a
target platform. The return type is always Real however, since overflows in case of only
Integer arguments are likely if the result would be implicitly forced to fit into the Integer
representation of a target platform.

S-3.TODO (type and dimensionality of constant-scalar-integer-expressions / Type-
analysis, dimensionality-analysis): The type and dimensionality of constant-scalar-integer-
expressions are the type and dimensionality of their first child; they must be Integer and scalar
respectively.

S-3.TODO (well-defined stateful function calls / Side-effect-analysis): Expressions
containing a function-call C referring to a stateful function must not contain function-calls or
state-references that are siblings of C. If-expressions must not contain function-calls referring to
a stateful function.

R-1 (isolated side-effects of stateful function calls and parallel computing / Runtime-
semantic): The restrictions on expressions regarding the combination of stateful function-
calls with other function-calls and state variable references promote the isolation of side-
effects into separate statements, such that complex expressions can be understood without
consideration of control-state changes triggered throughout their evaluation. Moreover, the
evaluation order of function-call arguments is undefined, such that the runtime-semantic of
multiple argument-expressions with side-effects would become undefined without S-3.TODO;
likewise, the runtime-semantic of multi-dimension-constructors containing multiple stateful
function-calls would become ambiguous. And although the evaluation order of binary-
operations is strict (cf. S-3.3), limiting side-effects in such highly improves clarity.

S-3.TODO also enables the generation of Production Code that computes different parts of a
single expression in parallel, without requiring mutual exclusion or memory copying. For
example, multiple function-calls and the evaluation of function-call arguments can be
parallelized without the risk of race conditions.

The even more stringent restrictions on if-expressions are required to ensure their branches
can be executed in parallel and afterwards the actual result selected (assuming evaluating the
condition or other siblings of the if-expression requires significant time such that the early
execution of branches in parallel is worthwhile). The main motivation is however, that side-
effects of expressions, if any at all, are defined regardless of actual control-flow. If an
expression calls a stateful function, that very function will always be executed, regardless
which branches of contained if-expressions are actually executed. Conditional evaluation of
stateful function-calls must be isolated in if-statements instead.

Note, that calling stateful functions cannot be completely prohibited within expressions;
otherwise return values of such could not be used like in (a, b) := m();, v := -m();,
self.A := 2 * m(f(B), f(C)); or self.A := m(m(self.A)); where m and f
refer to a stateful and stateless function respectively. All of these statements are valid and
their runtime-semantic is well-defined.

E-1: The following expression examples illustrate the restrictions on stateful function-calls
within expressions. Illegal applications are marked by a respective comment; for valid
expressions the parts that can be evaluated in parallel are marked. All m_aα are stateful
functions whereas f_aα are stateless functions for any a?Nα∀∀+.

Expression 1:

f_1(
 f_2(m_1()), // Illegal: Sibling state variable reference.
 f_3(self.v))

Expression 1:

f_1(
 f_2(m_1()), // Illegal: Sibling stateful function-call.
 f_3(m_2())) // Illegal: Sibling stateful function-call.

Expression 1:

(2 * self.v) + m_1() // Illegal: Sibling state variable
reference.

Expression 1:

m_1() // Illegal: Sibling stateful function-call.
 +
m_2() // Illegal: Sibling stateful function-call.

Expression 2:

(if 0 < m_1() // Illegal: Sibling state variable reference.
 then f_1(self.v_1)
 else 1.0)

Expression 3:

(if f_1(self.v_1)
 then m_1() // Illegal: Within if branch.
 else self.v_1)

Expression 3:

(
if
// Parallelizable: Part of separately-evaluable sub-expression-
set aα:
 f_1(A)
then
// Parallelizable: Part of separately-evaluable sub-expression-
set aα:
 f_2(A * B) * C
else
// Parallelizable: Part of separately-evaluable sub-expression-
set aα:
 f_2(A - B) * C
)

 + // NOT parallelizable (cf. S-3.3:L-1).

// Parallelizable: Part of separately-evaluable sub-expression-
set aα:
f_3(
 D / (E - F), // Parallelizable: Part of separately-evaluable

sub-expression-set ߬ β.
 E * F, // Parallelizable: Part of separately-evaluable

sub-expression-set ߬ β.
 (
 f_2(E) // Parallelizable: Part of separately-evaluable
sub-expression-set ?.γ.
 * // Parallelizable: Part of separately-evaluable

sub-expression-set ߬ β.
 f_2(F) // Parallelizable: Part of separately-evaluable
sub-expression-set ?.γ.
)
)

 + // NOT parallelizable (cf. S-3.3:L-1).

// Parallelizable: Part of separately-evaluable sub-expression-
set aα:

(

)

 + // NOT parallelizable (cf. S-3.3:L-1).

// Parallelizable: Part of separately-evaluable sub-expression-
set aα:
(
 A^3
)

To understand why expressions marked to be illegal are prohibited, consider that each of the
following three can depend on control-state changes performed by previous stateful function-
calls:

1. the value a reference, that refers to a state variable, will yield

2. the values a function-call (stateful or stateless) will return

3. the control-state changes a stateful function-call will perform

For example, given

function f_1
 input Real x_1;
 input Real x_2;
 input Real x_3;
 output Real y;
algorithm
 y := x_3 * (x_1 * self.a + x_2 * self.b);
end f_1;

method m_1
 output Real y;
algorithm
 self.a := self.a + 1;
 self.b := self.a;
 y := self.a;
end m_1;

method m_2
 output Real y;
algorithm
 self.b := 2 * self.b;
 self.a := self.b;
 y := self.b;
end m_2;

all three cases are demonstrated by the illegal expression f_1(self.a, f_1(m_1(),
self.b, m_1()), m_2()). The argument values passed to each f_1 call depend on
when the m_1 and m_2 calls are executed, i.e., the order of argument evaluation. There exist 3!
* 3! = 36 results if self.a and self.b are of type Integer and the evaluation of inner f_1
call arguments is not mixed with outer call argument evaluation; if both can be mixed, 5! = 120
results exist (note, that mixing the evaluation of inner and outer arguments is not prohibited
by S-3.TODO (eager evaluation and pass-by-value) although usually — except for result
caching — inefficient).

S-3.TODO (function lookup / Name-analysis): Let fc be a function-call. There must exist a
function fd named like the first child of fc; according to S-2.5, fd must be unique. We say fc refers
to fd.

S-3.TODO (type of function calls used in expressions / Type-analysis): Function-calls part
of expressions must refer to functions of output-arity 1; their type is the type of the first
output of the function they refer to.

R-1: According to S-3.1, the right-hand of multi-assignments (their function-call child) is not an
expression; likewise, function-calls whose parent is a statement are not expressions. The
rationale for either is, that expressions have a unique type and dimensionality characterising
their potential values. The function-call child of a multi-assignment can refer to a function with
several outputs however, each with an individual type and dimensionality; and for function-
calls not part of an assignment outputs don’t matter.

E-1: Let p_1 and p_2 be procedures of input-arities 1 and 2 respectively and let f_1 and f_2 be
functions of input-arity 0 and output-arities 1 and 2 respectively. The statements
p_1(f_1());, p_2(f_1(), f_1());, f_1();, f_2();, (v) := f_1(); and (
v_1, v_2) := f_2(); are valid, whereas p_1(p_1(f_1())); and p_2(f_2());
are illegal.

Statements: State changes (intra-functional flowchart)

G-TODO.TODO — G-TODO.TODO (TODO)

(* references *)
reference = local-reference | state-reference ;

local-reference = name, [computed-dimensions] ;

state-reference =
 "self",
 ".",
 name,
 [computed-dimensions],
 { ".", name, [computed-dimensions] } ;

computed-dimensions =
 "[",
 constant-scalar-integer-expression,
 { ",", constant-scalar-integer-expression },
 "]" ;

(* statements *)
statement =
 (
 limit-statement
 | function-call
 | single-assignment

 | multi-assignment
 | if-statement
 | for-loop
),
 ";" ;

limit-statement =
 "limit",
 ("self" | reference),
 { ",", ("self" | reference) } ;

single-assignment = reference, ":=", expression ;

multi-assignment =
 "(",
 [reference, { ",", reference }],
 ")",
 ":=",
 function-call ;

if-statement =
 "if",
 (expression | error-signal-check),
 "then",
 { statement },
 { "elseif", (expression | error-signal-check), "then", {
statement } },
 ["else", { statement }],
 "end",
 "if" ;

error-signal-check =
 "signal",
 [identifier],
 [
 ["not"],
 "in",
 identifier,
 { ",", identifier }
],
 ["or", expression] ;

for-loop = "for", bounded-iteration, "loop", { statement },
"end", "for" ;

bounded-iteration =
 [loop-iterator-declaration, "in"],
 start-bound,
 [":", iteration-step-size],
 ":",
 termination-bound ;

loop-iterator-declaration = name ;

start-bound = constant-scalar-integer-expression ;

iteration-step-size = constant-scalar-integer-expression ;

termination-bound = constant-scalar-integer-expression ;

S-TODO.TODO (type of references / Type-analysis): The type of a reference is the type of the
entity it refers to.

References referring to a state component must be the third child of a dimension-query or part
of a limit-statement.

L-1 (limited application of state components / Runtime-semantic): The semantic rule
indirectly prohibits any runtime interaction with state components — like passing them as
function or operation arguments or assignment of such — except to query their
dimensionality by means of dimension-queries or limiting all their variables by means of limit-
statements. In opposite to variables, state components as such do not exist at runtime; they
have no runtime values — they are valueless. Only variables have a value that can be used in
expressions or changed via assignment. As a consequence, Production Code generators do not
have to preserve state components and are free to choose whichever runtime representation
they consider most suitable for their nested entities; they can, for example, map the nested
constants of a state-component to read-only memory or constant fold them or pack nested
state variables together with other non-nested variables. This is a significant difference to for
example C89 struct variables, which have a value that must be stored within a locally coherent
piece of memory, a requirement necessary to enable efficient struct value assignment or
referencing via pointers (neither exists in GALEC).

S-TODO.TODO (left- and right-hand of assignments / Side-effect-analysis, terminology):
Single-assignments and multi-assignments are called assignment. The first child of an
assignment is called its left-hand; the third child its right-hand.

S-TODO.TODO (non-writeable control-inputs, input parameters and loop iterators; side-
effect-freeness of stateless functions / Side-effect-analysis): State-references contained in
the left-hand of an assignment must not refer to control-inputs. Local-references contained in
the left-hand of an assignment must not refer to input parameters or loop-iterator-
declarations.

Stateless functions must not contain an assignment whose left-hand contains a state-reference;
and they must not transitively call stateful functions.

4.2.5. Error handling

GALEC incorporates dedicated language means for systematic, reliable and guaranteed error
handling. Three integrated concepts can be distinguished: (1) error signals with enforced
signal handling seamlessly incorporated into normal program control-flow, (2) well-defined
floating point operations with guaranteed quiet Not-a-Number propagation and (3) variable
ranges for guaranteed block saturation. Together, these concepts enable delayed, but ensured
error handling avoiding any need to immediately check each and every possible failing
operation by means of a plethora of exceptions.

The following sections present these three concepts.

Error Signals

Error-signal-declaration semantic

An error-signal-declaration D of the from

error-signal-declaration = "signal", identifier, ";" ;

is called an error signal. The name of an error signal is the name of its contained identifier; its
name must be unique within the block D is part of.

Let Predefined be the following sequence of characters

signal INVALID_ARGUMENT;
signal OVERFLOW;
signal NAN;
signal SOLVE_LINEAR_EQUATIONS_FAILED;
signal NO_SOLUTION_FOUND;
signal UNSPECIFIED_ERROR;

Predefined implicitly follows the characters matched by the 6th child of block; its error signals
are called predefined. Any other error signals are called user-defined.

Note: Above specification implies that pre- and user-defined error signals are error signals
and can therefore be explicitly signaled and checked by user-code.

Note: The intended usage of the pre-defined error signals is:

• INVALID_ARGUMENT: Unspecified error in one or more input arguments.

• OVERFLOW: Computed floating point result is -8-∞ or +8.+∞.

• NAN: Computed floating point result is qNaN.

• SOLVE_LINEAR_EQUATIONS_FAILED: Solving a linear equation system via the
solveLinearEquations builtin function failed.

• NO_SOLUTION_FOUND: Not used for solveLinearEquations, but for example if an
optimizer, special nonlinear solver etc. does not find a solution.

• UNSPECIFIED_ERROR: Error that is not further specified.

Error-signal-statement semantic

A error-signal statement S of the form

error-signal-statement =
 "signal",
 identifier, (* Set of signals set, at least one
AND/OR signal-closure propagation *)
 { ",", identifier } ; (* Set of signals set, at least one
AND/OR signal-closure propagation *)

has the following semantic:

1. Each identifier s of S referring to a signal-closure variable s in scope sets all the signals of
s whenever S is executed.

2. Any other identifier s of S must refer to an error signal e. Whenever S is executed, e is set.

3. The union of all error signals set by S is called the signal-set of S.

Functional error interface and exposed error signals

A function-declaration F of the form

function-declaration =
 ("function" | "method"),
 name,
 [signal-interface], (* 3rd child defining the signal-set --
i.e, exposed error signals -- of the function *)
 { parameter-declaration },
 ["protected", { local-variable-declaration }],
 "algorithm",
 { statement },
 "end",
 name,
 ";" ;

has the following semantic w.r.t. error handling:

1. Let all identifiers contained in the 3rd child of F form the signal-set S of F. Each element s
of S must refer to an error signal e; each such e is called an exposed error signal of F and
F is said to expose e.

2. Block-interface functions must not expose user-defined error signals.

3. The signal-set of F must be identical to the out-reachable-signals-set an imaginary final
statement following the last statement of F would have.

Error-signal-check semantic

An error-signal-check of the form

error-signal-check =
 "signal",
 [identifier], (* Optional signal-closure *)
 [
 ["not"], (* Optional signal-test-negation
*)
 "in",
 identifier, (* Set of signals tested, at least
one *)
 { ",", identifier }, (* Set of signals tested, at least
one *)
],
 ["or", expression] ; (* Optional fallback-condition *)

has the following semantic:

1. A signal-closure is a scoped variable that captures the current error-state (i.e., all the
currently set error signals). Its scope is the body of the respective if/elseif
conditional — the error-signal-check-body — similar to loop-iterators (cf. loop-iterator-
declaration, issue #49). It must never be assigned to.

2. We define the signal-test-set of an error-signal-check as follows:

o At least one signal tested is given: If, and only if, no signal-test-negation is given,
the signal-test-set comprises all signals tested; otherwise, it comprises the signals of
the in-reachable-signals-set of the error-signal-check minus the set of all signals
tested.

o No signal tested is given: The signal-test-set is the in-reachable-signals-set; the
error-signal-check is called unrestricted.

In any case, the signal-test-set must be non-empty and a

subset of the in-reachable-signals-set of the _error-

signal-check_.

3. An error-signal-check is signal-satisfied, if, and only if, any of the signals of its signal-test-
set is set when it is executed.

4. An error-signal-check is conditional-satisfied, if, and only if, it is not signal-satisfied and
has an optional fallback-condition that is satisfied when the error-signal-check is
executed.

5. An error-signal-check is satisfied if it is signal-satisfied or conditional-satisfied.

6. The error-signal-check-body B of an error-signal-check is the executed branch of its if-
statement, if, and only if, it is satisfied. In this case, all signals of the signal-test-set are
unset immediately before the execution of B but after initializing the signal-closure if
any.

Error signal propagation semantic: static signal propagation analysis and

reachable-signals-set

The idea is simple: To statically decide which error-signals could be set at any point of
execution, we define a data-flow analysis, whereas the propagated data is a set of error
signals — the reachable-signals-set; this set in turn can then be used to enforce that error-
checks only check for error-signals that can be set according to their preceding control-flow
and functions only expose signals that can be signaled but are not checked thereafter for any
of their possible control-flows.

We define signal-sets for expressions and statements (a signal-set defines which additional
signals can be set by the respective language construct):

1. The signal-set of a function-call is the referred function’s signal-set. The signal-set of any
other expression is the union of the signal-sets of its contained function-calls.

2. The signal-set of single-assignments and multi-assignments is the signal-set of their right-
hand sides.

3. The signal-set of a for-loop is the out-reachable-signals-set of its last statement.

4. The signal-set of an if-statement is the union of the out-reachable-signals-sets of the last
statements of its bodies.

We define reachable-signals-sets for statements and the branches of if-statements, particularly
error-signal-check branches. Thereby we distinguish between the signals that can be set
before executing the respective construct (in-reachable-signals-set) and the ones that can be
set after its execution finished (out-reachable-signals-set):

1. The in-reachable-signals-set of the first statement S of a function-body is the empty set.

2. The in-reachable-signals-set of the first branch of an if-statement S is the in-reachable-
signals-set of S; for any further branch of S it is the out-reachable-signals-set of its
preceding branch.

3. The in-reachable-signals-set of the body of a branch B of an if-statement is the out-
reachable-signals-set of B.

4. The in-reachable-signals-set of any other statement S of a function-body is the union of
the out-reachable-signals-sets of all its preceding statements (according to control-flow).

5. The out-reachable-signals-set of an error-signal-check branch is its in-reachable-signals-
set minus its signal-test-set, finally unified with the signal-set of its fallback-condition if
any. The out-reachable-signals-set for a non error-signal-check branch is its in-reachable-
signals-set.

6. The out-reachable-signals-set of an if-statement is the out-reachable-signals-set of its last
branch unified with its signal-set.

7. The out-reachable-signals-set of any other statement is its in-reachable-signals-set
unified with its signal-set.

Production Code and exposing errors to the runtime environment

Since block-interface methods can only expose the 6 pre-defined error signals (cf. Section
"Semantic: A"), a definition of signal-communication with the runtime environment is only
required for such. To that end a unique mapping of each pre-defined error signal to a unique
bit position within a 32 bit integer value is defined. These mappings are bidirectional, such
that all exposed error signals can be returned to the runtime environment encoded in a single
32 bit integer value. The bit positions of the pre-defined error signals are:

• Bit 0: INVALID_ARGUMENT

• Bit 1: OVERFLOW

• Bit 2: NAN

• Bit 3: SOLVE_LINEAR_EQUATIONS_FAILED

• Bit 4: NO_SOLUTION_FOUND

• Bit 5: UNSPECIFIED_ERROR

Bit positions 6 to 15 of the returned error value are reserved for the future if there is need to
add further pre-defined error signals in later specification versions; for now these bits must
be never set by error values returned to the runtime environment.

To enable easy Production Code generator implementation by encoding all error signals — i.e.,
pre- and user-defined — in single, uniquely laid out (i.e., uniform bit position accessible) 32 bit
integer values, GALEC programs must contain at most 16 user-defined error signals (i.e., 32 - 6
pre-defined - 10 reserved).

Examples

Example 1: The following Example sketches a typical mixed-mode coding style, where some
error cases are avoided in the first place by special operation modes of the controller and
others are treated after something failed by testing for respective error signals:

/*
 Safe common control-code, potentially selecting or
deselecting special
 modes of operation:
*/
...
v := f(A); // f may signal the error f_ERROR.
...
if signal in f_ERROR or not(check(v)) then
 /*
 Error-handling path if f(A) signaled an f_ERROR or
 returned a v not satisfying some check:
 */
 ...
elseif self.operation_mode == 1 then
 /*
 Safe control-code for some special operation mode:
 */
 ...
elseif self.operation_mode == 2 then
 /*
 Safe control-code for some special operation mode:
 */
 ...
else
 /*
 Control-code for normal mode of operations:
 */
 ...
 x := solveLinearEquations(A, b * v);
 ...
 if signal in SOLVE_LINEAR_EQUATIONS_FAILED then
 /*
 Handle the special case that the system of linear
equations
 has no solution:
 */
 ...
 elseif signal then
 /*
 Handle any other unexpected error of the NORMAL
operation mode:
 */
 ...
 end if;
end if;

if signal s then
 /*
 The common control-code or the special modes of operation
that are
 supposed to be safe missed some error case or introduced
 errors themselves. We now can set the control-outputs and
state
 variables to some reasonable default values and propagate
the
 unexpected error signals to the runtime environment:
 */
 ...
 signal s;
end if;

Example 2: The following example summarises all possible combinations of error signaling
and checking:

method DoStep
/*
 (1) Signal interface of functions (signals exposed to
callees):
*/
signals invalid_gear_switch, to_high_velocity;
algorithm
 ...
 /*
 (2) Universal signal checks, catching and un-setting all
signals set:
 */
 if signal then
 ...
 end if;
 ...
 /*
 (3) Specialized signal checks, catching and un-setting
 all signals within a specific set:
 */
 if signal in error1, error2 then
 ...
 end if;
 ...
 /*
 (4) Restricted universal signal checks, catching any
signal that is
 not within a certain set:
 */
 if signal not in invalid_gear_switch, to_high_velocity then
 ...
 end if;
 ...
 /*
 (3) Checks with signal variables enclosing the checked
signals
 that have been set at the check point:
 */
 if signal s then
 ...
 /*
 (4) Propagation of signal variable, i.e., set all the
signals that the
 check s is part of unset:
 */
 signal s;
 ...
 else
 ...
 end if;
 ...
 if ... then
 ...
 /*
 Explicit setting of signals, i.e., signaling of
errors:
 */
 signal invalid_gear_switch, to_high_velocity;
 ...
 end if;
 ...
 /*
 (*) And all kind of combinations of the above
 (signals to check with signal variables, signal

 propagation and explicit signaling):
 */
 if signal s in f1_error, f2_error or condition1 then
 ...
 signal s, invalid_gear_switch;
 ...
 elseif signal s not in invalid_gear_switch, to_high_velocity
or condition2 then
 ...
 signal s;
 ...
 end if;
 ...
 /*
 Catch all signals not exposed according to the function's
interface:
 */
 if signal not in invalid_gear_switch, to_high_velocity then
 end if;
end DoStep;

Example 3: The following example shows typical violations of error signal propagation,
demonstrating the advantages of a strict static signal-propagation analysis for code
hardening:

function f
 signals Error1; // Violates B.2: Error1 never exposed and
Error2 is missing.
 input Real i;
 output Real o;
protected
algorithm
 if i > 100.0 then
 signal Error1;
 elseif i > 200.0 then
 signal Error2;
 end if;
 o := 2.0 * i;
 if signal in Error1 or o > 350.0 then
 o := 350.0;
 end if;
end f;

method DoStep // Violates B.2: Error2 is exposed but 'signal in
Error2;' is missing.
protected
algorithm
 ...
 f(1.0);
 ...
 if signal s then
 ...
 s := Error1; /* Violates C.1: Signal-closures must not be
assigned to. */
 elseif signal in Error1 then
 /*
 Above error-signal-check violates C.2: Signal-test-
sets must be non-empty.
 Note, that the preceding branch already handles all
error signals since it
 is an unrestricted error-signal-check.
 */
 end if;

 signal Error1;

 if signal in Error1, Error2 then
 /*
 Above error-signal-check violates C.2: The signal
test-set is not a subset of the
 in-reachable-signals-set since Error2 can never be
set at this point.
 */
 ...
 signal Error2;
 elseif signal in Error2 then
 /*
 Above error-signal-check violates C.2: The signal
test-set is not a subset of the
 in-reachable-signals-set since Error2 can never be
set at this point. Note, that the
 signal-set of the error-signal-check-body of the
preceding branch cannot be handled
 by this branch; it requires handling in a completely
separate if-statement.
 */
 end if;

 signal Error1;
 if signal in Error1 then
 end if;
 if signal in Error1 then
 /*
 Above error-signal-check violates C.2: Signal-test-
sets must be non-empty.
 The preceding if-statement already implicitly unsets
Error1 when its
 single error-signal-check is satisfied.
 */
 end if;
end DoStep;

method Startup
protected
algorithm
 // signal in Error1; /* The following if-statement is
erroneous, even if this line is uncommented. */
 if signal not in Error1 then
 /* Above error-signal-check violates C.2: Signal-test-
sets must be non-empty.
 end if;
end Startup;

Example 4: The following function fragment investigates interesting corner-cases of error-
signal propagation. It is well-suited to exercise the formal definitions of signal-set, in-
reachable-signals-set and out-reachable-signals-set of if-statements. The left-out code hooks
denoted by … are assumed to be arbitrary code not setting or checking error signals.

function f
 signals f_Error;
 output Boolean b;
protected
algorithm
 b := true;
 signal f_Error;
end f;

method DoStep
 ...
algorithm
 ...
 if signal then // Unset all error signals.
 end if;
 signal in TestDefinitions1, TestDefinitions2;
 if signal in TestDefinitions1 then
 ...
 signal TestDefinitions3;
 ...
 elseif signal in TestDefinitions2 then
 ...
 if signal TestDefinitions3 then
 ...
 end if;
 ...
 elseif signal in TestDefinitions3 then
 ...
 end if;
 /*
 At this point still TestDefinitions2 and TestDefinitions3
WILL be
 set because only the first branch was tested, its test
signal-satisfied,
 the tested signal TestDefinitions1 unset and its body
executed.
 */
 ...
 if signal then // Unset all error signals.
 end if;
 signal TestDefinitions1, TestDefinitions2;
 if signal in TestDefinitions1 then
 ...
 if signal in TestDefinitions2 then
 ...
 end if;
 ...
 end if;
 // At this point no error signals WILL be set.
 ...
 /*
 Assume for the following code an execution where
NotSetSignal
 is not set:
 */
 if signal not in NotSetSignal then // Unset all error signals
except NotSetSignal.
 end if;
 i := 2;
 if signal in NotSetSignal or f() /* Cf. definition of f
above! */ then
 i := 2 * i;
 elseif signal in f_Error then
 i := 2 * i;
 signal f_Error;
 /*
 The following branch would be invalid, because f_Error can
never be set when it is tested:
 elseif signal in f_Error then
 i := 2 * i;
 */
 end if;

 // At this point i WILL be 8 and f_Error set.
end DoStep;

-8, +8-∞, +∞ and quiet Not-a-Number propagation

GALEC assumes that the target system of the generated production code is compliant to IEEE
Standard 754-2008. Even if GALEC code is as much as possible target independent, there are
corner cases in which the properties of the target system need to be taken into account in
GALEC. If a target system is not fully compliant to IEEE 754-2008, it should still be possible to
map GALEC code to such a target, since only a small subset of IEEE 754 is used and/or
potential deviations in corner cases might still be acceptable [(for example, if a processor does
not support -8-∞ or +8+∞ handling, but saturates automatically to the largest/smallest
representable floating point number)]. Note, in the following, IEEE 754 shall always mean IEEE
754-2008. Deviations to this standard are explicitly marked.

The language assumes, following IEEE 754 section 6, that exception handling of the processor
is configured so that an overflow of Real numbers is handled automatically by the processor
for all language operators without generating exceptions by mapping negative and positive
overflows to -8-∞ and +8+∞ respectively (e.g. 2.0 < 1.0 / 0.0 is true). With built-in
function isInfinite(r) it can be inquired whether a Real variable r is -8-∞ or +8+∞ (e.g.
isInfinite(1.0 / 0.0) returns true).

The language also assumes that IEEE 754 exception handling of the processor is always
configured to never generate an exception in case of underflow of Real numbers (so deviating
from the default exception handling of IEEE 754, section 7.5).

If the result of a mathematical operation on Real numbers is mathematically undefined (for
example log(-1.0) or 0.0 / 0.0), then the standard operators of the language return
quiet Not-a-Number (qNaN) as defined by IEEE 754, section 7.5. It is assumed that the
processor is configured so that qNaN values are automatically propagated through all
operations without generating exceptions (hence quiet Not-a-Number). With built-in function
isNaN(r) it can be inquired whether a Real variable r has qNaN as value or not.

All relational operators (<, >, <=, >=, ==, <>) trigger error signal NAN if one of their
operands is qNaN. In such a case the operator returns false. Conceptually, every relational
operator a ?⊕ b is mapped to a built-in function call f_?(_⊕(a, b) with f_?_⊕ defined
as:

function f_?_⊕
 signals NAN;
 input Real a;
 input Real b;
 output Boolean y;
algorithm
 if isNaN(a) or isNaN(b) then
 signal NAN;
 y := false;
 else
 y := a ?⊕ b;
 end if;
end f_?;_⊕;

[In C this function can be implemented efficiently for example as the expression (isNaN(a) ||
isNaN(b) ? (error_signal |= Bitmask setting NAN, 0) : a ?⊕ b).]

All built-in functions (see section Section 4.2.6) that can have qNaN input arguments and are
not able to propagate qNaN because the output argument(s) are not of type Real trigger the
NAN error signal.

[Note, potential issues as sketched in Agner 2019 are not critical because relational operators
and builtin functions trigger the NAN error signal if a qNaN value cannot be propagated.]

For some built-in functions that can return qNaN, also companion built-in functions are
provided, that do not return qNaN, provided none of the input arguments is qNaN. These
functions start with the prefix safe_ and achieve this behavior (conceptually) by automatic
limitation of their input argument(s).

Variable Ranges, explicit and implicit limitation and block saturation

All variables can be declared with range attributes min and/or max; variables with range
attributes are called ranged.

Ranged variables are limited to their defined range at a particular point of execution by means
of limit-statements. If a variable v is ranged with lower bound ?∀ and upper bound ?,∀, then
the statement limit v; is equivalent to v := (if v < ?⊥ then ?⊥ elseif v >
?⊤ then ?⊤ else v);. If v has only a lower bound ?,∀, limit v is equivalent to v :=
(if v < ?⊥ then ?⊥ else v);. If v has only an upper bound ?,∀, limit v; is
equivalent to v := (if v > ?⊤ then ?⊤ else v);. Limiting a non-ranged entity has
no effect.

[Above definition implies that limitation on qNaN values has no effect (the variable’s value
remains qNaN).]

limit can also be used to limit all state variables according to their ranges (using keyword
self), or all nested state variables of a certain state component (by referring to that very
state component):

limit self; // Limits all ranged state variables.
limit c; // Assume c refers to a state component: limits all
nested state variables of c.

A single limit statement can limit a set of entities. For example,

limit self.c.d.vc, self.v, self.c, l;

limits the variable self.c.d.vc (assuming self.c.d refers to a state component and d is
one of its variables), the state variable self.v (assuming self.v refers to a state variable),
all nested variables of the state component self.c (assuming self.c refers to a state
component) and the local variable l.

Every block-interface method implicitly limits all state entities whenever the method is
entered and when it returns, except Startup(), which only limits on returning. The implicit
semantic is:

method Startup
protected
 ...
algorithm
 ...
 // initialize stuff
 ...
 limit self; // Implicit by semantic of language.
end Startup;

method DoStep
protected
 ...
algorithm

https://www.agner.org/optimize/nan_propagation.pdf

 limit self; // Implicit by semantic of language.
 ...
 // compute stuff
 ...
 limit self; // Implicit by semantic of language.
end DoStep;

method Recalibrate
protected
 ...
algorithm
 limit self; // Implicit by semantic of language.
 ...
 // compute stuff
 ...
 limit self; // Implicit by semantic of language.
end Recalibrate;

Every function implicitly limits its inputs whenever the function is entered and its outputs
when it returns.

[Implicit limitation at the very beginning and end of block-interface methods means, that from
the perspective of the runtime environment ranged state variables are effectively saturated at
their defined ranges; the block as such is saturated and guarantees operation within its limits
(except for state variables with qNaN values that need special error handling).

Production Code generators are free to optimize and minimize limitation of variables. For
example, limitation of constants, tunable parameters and dependent parameters will never be
required in DoStep(), since such cannot be assigned new values and their limitation is already
performed in Startup() and Recalibrate() respectively. Limitation of inputs is only
needed at the very beginning of DoStep() code, because inputs are not changed afterwards.
Limitation of outputs is only needed at the end of the DoStep() code. Limitation of states needs
to be performed only at the end of Startup() and the end of DoStep(), because the states
are just passed between DoStep() calls and then it is guaranteed that a state that is limited at
the end of the previous DoStep() call remains limited at the very beginning of the next
DoStep() call. Furthermore, interval arithmetic analyses can be used to conclude that a
variable will never be outside of its valid range, such that limitation code for it can be avoided.

The rationale why limitation is not implicitly performed on every assignment to a ranged
variable (i.e., why GALEC has no strict saturation arithmetic) is, that numerical algorithms and
particularly integration typically fail if values are not continuous over time. For example, an
integration algorithm such as a Runge-Kutta method of order 4 may not work as expected, if
states are limited during one step because the smoothness requirements of the integration
method are violated. Furthermore, limitations in the middle of computations often inadvertently
break algebraic characteristics like distributivity and commutativity that are essential for
symbolic processing and optimization. These pitfalls of limitation are however not violated by
the implicit limitations at the very start and end of block-interface methods; the block as such —
 its interface — is saturated from the perspective of the runtime environment. Throughout the
execution of a block-interface method however, variables may very-well get values assigned
outside of their defined ranges.]

Error Handling Recommendations

In practice it is typically required that all control-outputs are guaranteed to never be qNaN
and always be within their defined ranges. To that end, the following actions are
recommended:

• Provide min/max values for state variables, particularly control-inputs, -outputs and
tunable parameters. Implicit limitation will guarantee, that the state variables are in their
defined ranges when a block-interface method returns, or the variable values are qNaN.

• Before leaving DoStep(), check that none of the control-outputs is qNaN and that the
error signal is not NAN. If one of these conditions does not hold, take appropriate actions,
for example restore the state from the previous sample instant, compute the control-
outputs with a backup algorithm (e.g. P-controller) that does not produce qNaN values, or
provide a default control-output, e.g. zero. In any case, the returned outputs should never
be qNaN.

• Use the safe_?_⊕ builtin functions (see below) if this is possible, in order that qNaN
values are not generated.

• Often problematic is the /-operator. A general approach to handle division in a
meaningful way for all possible circumstances seems impossible. However, in many cases
the time-varying denominator is guaranteed to not change sign; examples are: dividing by
density, mass fraction, gear efficiency or slip. In such cases, the built-in operator
safe_posdiv(num, den, eps) should be used that provides a meaningful
approximation of num / den without generating qNaN values, if it is guaranteed that
den >= 0.

4.2.6. Built-in Functions

In this section the built-in functions are defined. If the built-in function is also defined in IEEE
754, the semantic of the built-in function is according to this standard.

Any function that has Real input and Real output arguments can usually return qNaN,
because an input argument might be qNaN that is typically propagated to one or more
outputs. Whenever a function can return qNaN (either because it is generated inside the
function or a qNaN input can be propagated to an output), this is explicitly mentioned and also
in which situation this occurs. For many built-in functions ?⊕ that can generate qNaN, there is
also a function safe_?_⊕ that approximates ?⊕ so that no qNaN is generated, in case this
approximation is useful (but of course such a function can still return qNaN if the input is
qNaN).

A built-in function only returns an error signal if explicitly mentioned in its definition below;
most builtin functions do not signal any errors and instead rely on qNaN propagation.

Overview

In the following table, an overview of the built-in functions is given (the follow-up sub-section
contains the precise definition of the built-in functions):

Function-Name Description

Properties of Integer

minInteger() Target-specific smallest Integer.

maxInteger() Target-specific largest Integer.

Properties of Real

Function-Name Description

minReal()
Target-specific smallest Real r <>
minusInfinite().

maxReal() Target-specific largest Real r <> plusInfinite().

r := posMinReal() Target-specific smallest Real r > 0.0.

r := epsReal()
Target-specific largest Real r > 0.0 such that 1.0 +
r == 1.0.

nan()
Target-specific quiet not-a-number representation
(qNaN).

isNaN(x)
true if x is the target-specific qNaN representation;
otherwise false.

minusInfinite() Target-specific -8-∞ representation.

plusInfinite() Target-specific +8+∞ representation.

isInfinite(x) true if x is -8-∞ or +8;+∞; otherwise false.

isFinite(x)
true if x is finite (neither -8-∞ nor +8+∞ nor qNaN);
otherwise false.

Multi-dimensional properties of Real

hasNaN1D(x)
true if at least one element of vector x is qNaN;
otherwise false.

hasNaN2D(x)
true if at least one element of matrix x is qNaN;
otherwise false.

Numeric type conversions

Function-Name Description

real(i) Convert Integer i to Real.

integer(r)

Convert Real r to Integer by truncation
(roundTowardsZero(r)).
Signals NAN if r is qNaN in which case 0 is returned.
Signals OVERFLOW if r can not be represented as
Integer, in which case 0 is returned.

Direct Real rounding

roundDown(r)
Round r towards -8-∞ (also known as floor).
Returns qNaN if r is qNaN.

roundUp(r)
Round r towards +8+∞ (also known as ceil).
Returns qNaN if r is qNaN.

Nearest Real rounding (using a tie-breaking rule)

roundHalfToEven(r)
Also known as convergent rounding, statistician’s
rounding, Dutch rounding.
Returns qNaN if r is qNaN.

Division of Integers using rounding

divisionTowardsZero(
i1, i2)

Divide i1 by i2, rounding the result towards zero. Same
as div(i1, i2) in C99.

Remainder of Integers using rounding

remainderTowardsZero
(i1, i2)

i1 divided by i2 and the quotient rounded towards
zero. Same as rem(i1, i2) in C99.

Remainder of Reals using rounding

realRemainderTowards
Zero(r1, r2)

Real remainder with rounding towards zero (r1 - r2
* roundTowardsZero(r1 / r2)).
Returns qNaN if r1 or r2 are qNaN.

Function-Name Description

Relational Integer functions

imin(i1, i2) Minimum of i1 and i2.

imax(i1, i2) Maximum of i1 and i2.

Relational Real functions

min(r1, r2)
Minimum of Real variables r1 and r2.
Returns qNaN if r1 or r2 are qNaN.

max(r1, r2)
Maximum of Real variables r1 and r2.
Returns qNaN if r1 or r2 are qNaN.

Mathematical Real constants and functions

euler()
Target-specific, most-precise representation of Euler’s
number eℯ (= 2.71828…).

y := sign(x)
Sign of x (if x is positive: y == 1.0, negative: y == -
1.0, zero: y == 0.0).
Returns qNaN if x is qNaN.

absolute(x)
Absolute value of Real variable x.
Returns qNaN if x is qNaN.

fractional(x)
Fractional part of Real variable x.
Returns qNaN if x is qNaN.

sqrt(x)
Square root of x.
Returns qNaN if x is qNaN or x < 0.0.

exp(x) Natural base exponential of x.

ln(x)
Natural logarithm of x.
Returns qNaN if x is qNaN or x < 0.0.

Function-Name Description

log10(x)
Logarithm of x to base 10.
Returns qNaN if x is qNaN or x < 0.0.

safe_posdiv(xn, xd,
eps)

qNaN-free division of xn by xd if eps > 0.0: xn /
(if xd >= eps then xd else eps).
Returns qNaN if xn or xd is qNaN or if eps == 0.0
and xn == 0.0 and xd == 0.0.

safe_sqrt(x)

qNaN-free square root of x: sqrt(if x >= 0.0
then x else 0.0).
Returns qNaN if x is qNaN.

safe_log(x)

qNaN-free natural logarithm of x: log(if x >= 0.0
then x else 0.0).
Returns qNaN if x is qNaN.

safe_log10(x)

qNaN-free logarithm to base 10 of x: log10(if x >=
0.0 then x else 0.0).
Returns qNaN if x is qNaN.

Trigonometric Real constants and functions

pi()
Target-specific, most-precise representation of pπ (=
3.14159…),
the ratio of a circle’s circumference to its diameter.

sin(x)
Sine of x.
Returns qNaN if x is qNaN, -8-∞ or +8.+∞.

cos(x)
Cosine of x.
Returns qNaN if x is qNaN, -8-∞ or +8.+∞.

Function-Name Description

tan(x)

Tangent of x.
Returns qNaN if x is qNaN, -8, +8-∞, +∞ or
isInfinite(sin(x) / cos(x)) (x is an odd
multitude of pπ/2).

y := asin(x)
Inverse of sin(x) in the range -pπ/2 =≤ y = p≤ π/2.
Returns qNaN if x is qNaN, x < -1.0 or x > 1.0.

y := acos(x)
Inverse of cos(x) in the range 0 =≤ y = p≤ π.
Returns qNaN if x is qNaN, x < -1.0 or x > 1.0.

y := atan(x)
Inverse of tan(x) in the range -pπ/2 < y < pπ/2.
Returns qNaN if x is qNaN; -pπ/2 if x is -8; p-∞; π/2 if x
is +8.+∞.

z := atan2(y, x)

Inverse two-argument tangent in the range -pπ < z = p≤
π (angle in the Euclidean plane, given in radians,
between the positive x axis and the ray to the point (x,
y)).
Returns qNaN if y or x are qNaN or y == 0.0 and x
== 0.0.

sinh(x)
Hyperbolic sine of x.
Returns qNaN if x is qNaN.

cosh(x)
Hyperbolic cosine of x.
Returns qNaN if x is qNaN.

tanh(x)
Hyperbolic tangent of x.
Returns qNaN if x is qNaN.

safe_tan(x)

qNaN-free tangent of x: if x = p≥ π/2 then 8∞
elseif x = -p≤ -π/2 then -8-∞ else
tan(x).
Returns qNaN if x is qNaN.

safe_asin(x)
qNaN-free inverse sine of x: asin(if x > 1.0 then
1.0 elseif x < -1.0 then -1.0 else x).
Returns qNaN if x is qNaN.

Function-Name Description

safe_acos(x)

qNaN-free inverse cosine of x: acos(if x > 1.0
then 1.0 elseif x < -1.0 then -1.0 else
x).
Returns qNaN if x is qNaN.

Systems of linear equations

x :=
solveLinearEquations
(A, b)

Solution x for linear equations system A*x=b.
Signals SOLVE_LINEAR_EQUATIONS_FAILED if no
unique solution exists or hasNaN2D(A) == true or
hasNaN1D(b) == true, in which case
allNaN1D(x) == true.

(LU, pivots) :=
luFactorize(A)

LU decomposition with partial pivoting of square matrix
A.
Signals SOLVE_LINEAR_EQUATIONS_FAILED if no
unique solution exists or hasNaN2D(A) == true, in
which case allNaN2D(LU) == true.

x := luSolve(LU,
pivots, b)

Solution x for LU-factorized linear equations system
L*U*x = b[pivots], with LU == L*U.
Signals SOLVE_LINEAR_EQUATIONS_FAILED if no
unique solution exists or hasNaN2D(LU) == true
or hasNaN1D(pivots) == true or
hasNaN1D(b) == true, in which case
allNaN1D(x) == true.

Interpolation in 1D/2D/3D

interpolation1D(x1,
x1_data, nx1,
y_data, ipo, expo)

Constant/linear interpolation in 1D with extrapolation.

interpolation2D(x1,
x2, x1_data, nx1,
nx2_data, nx2,
y_data, ipo, expo)

Constant/linear interpolation in 2D with extrapolation.

Function-Name Description

interpolation3D(x1,
x2, x3, x1_data,
nx1, nx2_data, nx2,
nx3_data, nx3,
y_data, ipo, expo)

Constant/linear interpolation in 3D with extrapolation.

Precise Definitions

S-2.9 (builtin functions / Syntactical-structure, terminology): Let Cbuiltin = Cbuiltin1 ∀ Cbuiltin2 ∀
Cbuiltin3 ∀ Cbuiltin4 where each Cbuiltinn with n?{∀{1,2,…,4} is a sequence of characters defined in the
following and ∀ is the left-to-right concatenation of sequences of characters. Cbuiltin is implicitly
appended to each program; its functions are called builtin. Functions that are not builtin are
called user-defined.

In Appendix TODO further built-in functions are defined that are not yet part of the eFMI
standard but likely will be added in the future. Therefore, the names and functionality of these
functions are reserved. The following definition of built-in functions may refer to functions
defined in the appendix.

Cbuiltin1 is the following sequence of characters:

/*
 Note: We distinguish integer and Integer. Integer with
uppercase first letter is the type
 Integer -- a target-specific data-type -- whereas
integer with lowercase first
 letter is the mathematic term for numbers without
fractional component. Likewise,
 we distinguish real and Real.
*/

/**

 Properties of Integer:

****************************/

function minInteger
 output Integer i;
algorithm /*
 i := target-specific smallest Integer;
*/ end minInteger;

function maxInteger
 output Integer i;
algorithm /*
 i := target-specific largest Integer;
*/ end maxInteger;

/**

 Properties of Real:

****************************/

function minReal
 outputs Real r;
algorithm /*
 r := target-specific smallest, not -8-∞ representing, Real;
*/ end minReal;

function maxReal
 outputs Real r;
algorithm /*
 r := target-specific largest, not +8+∞ representing, Real;
*/ end maxReal;

function posMinReal
 output Real r;
algorithm /*
 r := target-specific smallest Real > 0.0;
*/ end posMinReal;

function epsReal
 output Real r;
algorithm /*
 r := target-specific largest Real r > 0.0 such that 1.0 + r
== 1.0;
*/ end epsReal;

function nan
 output Real r;
algorithm /*
 r := target-specific not-a-number representation;
*/ end nan;

function isNaN
 input Real x;
 output Boolean b;
algorithm /*
 b := true if x is target-specific not-a-number
representation, false otherwise;
*/ end isNaN;

function minusInfinite
 output Real r;
algorithm /*
 r := target-specific -8-∞ representation;
*/ end minusInfinite;

function plusInfinite
 output Real r;
algorithm /*
 r := target-specific +8+∞ representation;
*/ end minusInfinite;

function isInfinite
 input Real x;
 output Boolean b;
algorithm /*
 b := x == minusInfinite() or x == plusInfinite();
 if signal in NAN then
 b := false;
 end if;
*/ end isInfinite;

function isFinite
 input Real x;

 output Boolean b;
algorithm /*
 b := not(isNaN(x)) and not(isInfinite(x));
*/ end isFinite;

/**

 Multi-dimensional properties of Real:

****************************/

function hasNaN1D
 input Real x[:];
 output Boolean result;
algorithm /*
 result := false;
 for i in 1:size(x, 1)
 if isNaN(x[i])
 result := true;
 end if;
 end for;
*/ end hasNaN1D;

function hasNaN2D
 input Real x[:, :];
 output Boolean result;
algorithm /*
 result := false;
 for i in 1:size(x, 1)
 for j in 1:size(x, 2)
 if isNaN(x[i, j])
 result := true;
 end if;
 end for;
 end for;
*/ end hasNaN2D;

/**

 Numeric type conversions:

****************************/

function real
 input Integer i;
 output Real r;
algorithm /*
 r := target-specific Real representation of i;
*/ end real;

function integer
 signals NAN, OVERFLOW;
 input Real r;
 output Integer i;
protected
 Real tmp;
algorithm /*
 i := 0;
 tmp := roundTowardsZero(r); // Returns qNaN if r is qNaN.
 if tmp < real(minInteger()) or tmp > real(maxInteger()) then
 signal OVERFLOW;
 elseif signal in NAN then
 signal NAN; // tmp was qNaN.
 else

 i := target-specific Integer representation of tmp;
 end if;
*/ end integer;

/**

 Direct Real rounding:

****************************/

function roundDown
 input Real r;
 output Real i;
algorithm /*
 // Also known as: flooring, round towards -8.-∞.
 if isNaN(r) then
 i := nan();
 else
 i := target-specific greatest integer =≤ r;
 end if;
*/ end roundDown;

function roundUp
 input Real r;
 output Real i;
algorithm /*
 // Also known as: ceiling, round towards +8.+∞.
 if isNaN(r)
 i := nan();
 else
 i := target-specific least integer >= r;
 end if;
*/ end roundUp;

/**

 Nearest Real rounding (using a tie-breaking rule):

****************************/

function roundHalfToEven
 input Real r;
 output Real i;
algorithm /*
 // Also known as: convergent rounding, statistician's
rounding, Dutch rounding,
 // Gaussian rounding, oddevenodd–even rounding, bankers'
rounding.
 i := (if roundHalfDown(r) < roundHalfUp(r)
 then (if (r + 0.5 is even) then r + 0.5 else r - 0.5)
 else roundHalfDown(r));
 if signal in NAN or isNaN(r) then
 i := nan();
 end if;
*/ end roundHalfToEven;

/**

 Relational Integer functions:

****************************/

function imin
 input Integer u1;

 input Integer u2;
 output Integer y;
algorithm /*
 y := (if u1 < u2 then u1 else u2);
*/ end imin;

function imax
 input Integer u1;
 input Integer u2;
 output Integer y;
algorithm /*
 y := (if u1 > u2 then u1 else u2);
*/ end imax;

/**

 Relational Real functions:

****************************/

function min
 input Real u1;
 input Real u2;
 output Real y;
algorithm /*
 y := (if u1 < u2 then u1 else u2);
 if signal in NAN then
 y := nan();
 end if;
*/ end min;

function max
 input Real u1;
 input Real u2;
 output Real y;
algorithm /*
 y := (if u1 > u2 then u1 else u2);
 if signal in NAN then
 y := nan();
 end if;
*/ end max;

/**

 Mathematical Real constants and functions:

****************************/

function euler
 output Real r;
algorithm /*
 r := target-specific, most-precise representation of eℯ;
*/ end euler;

function sign
 input Real r;
 output Real i;
algorithm /*
 i := (if r > 0.0 then 1.0 elseif r < 0.0 then -1.0 else 0.0);
 if signal in NAN then
 i := nan();
 end if;
*/ end sign;

function fractional
 input Real x;
 output Real y;
algorithm /*
 y := x - roundTowardsZero(x);
*/ end fractional;

function absolute
 input Real x;
 output Real y;
algorithm /*
 y := sign(x) * x;
*/ end absolute;

function sqrt
 input Real x;
 output Real y;
algorithm /*
 if x < 0.0 then
 y := nan();
 elseif signal in NAN then
 y := nan();
 else
 y := x^0.5;
 end if;
*/ end sqrt;

function exp
 input Real x;
 output Real y;
algorithm /*
 y := euler()^x;
*/ end exp;

function ln
 input Real x;
 output Real y;
algorithm /*
 if x < 0.0 then
 y := nan();
 elseif signal in NAN then
 y := nan();
 else
 y := natural logarithm of x;
 end if;
*/ end ln;

function log10
 input Real x;
 output Real y;
algorithm /*
 if x < 0.0 then
 y := nan();
 elseif signal in NAN then
 y := nan();
 else
 y := logarithm to base 10 of x;
 end if;
*/ end log10;

function safe_posdiv
 input Real xn;
 input Real xd;
 input Real eps(min = posMinReal());

 output Real y;
algorithm /*
 y := xn / (if xd >= eps then xd else eps);
*/ end isinf;

function safe_sqrt
 input Real x;
 output Real y;
algorithm /*
 y := sqrt(if x < 0.0 then 0.0 else x);
*/ end safe_sqrt;

function safe_log
 input Real x;
 output Real y;
algorithm /*
 y = log(if x < 0.0 then 0.0 else x);
*/ end safe_log;

function safe_log10
 signals NAN;
 input Real x;
 output Real y;
algorithm /*
 y = log10(if x < 0.0 then 0.0 else x)
*/ end safe_log10;

/**

 Trigonometric Real constants and functions:

****************************/

function pi
 output Real r;
algorithm /*
 r := target-specific, most-precise representation of pπ;
*/ end pi;

function sin
 input Real x;
 output Real y;
algorithm /*
 if not(isFinite(x)) then
 y := nan();
 else
 y := sine of x;
 end if;
*/ end sin;

function cos
 input Real x;
 output Real y;
algorithm /*
 if not(isFinite(x)) then
 y := nan();
 else
 y := cosine of x;
 end if;
*/ end cos;

function tan
 input Real x;
 output Real y;

algorithm /*
 if not(isFinite(x)) then
 y := nan();
 else
 y := sin(x) / cos(x);
 end if;
 if isInfinite(y) then
 y := nan();
 end if;
*/ end tan;

function asin
 input Real x;
 output Real y;
algorithm /*
 if -1.0 <= x and x <= 1.0 then
 y := inverse of sin(x) in the range -pπ/2 =≤ y = p≤ π/2;
 elseif signal in NAN or true then
 y := nan();
 end if;
*/ end asin;

function acos
 input Real x;
 output Real y;
algorithm /*
 if -1.0 <= x and x <= 1.0 then
 y := inverse of cos(x) in the range 0 =≤ y = p≤ π;
 elseif signal in NAN or true then
 y := nan();
 end if;
*/ end asin;

function atan
 input Real x;
 output Real y;
algorithm /*
 if isNaN(x)) then
 y := nan();
 elseif isInfinite(x) then
 y := sign(x) * pi() / 2.0;
 else
 y := inverse of tan(x) in the range -pπ/2 < y < pπ/2;
 end if;
*/ end atan;

function atan2
 input Real y;
 input Real x;
 output Real z;
algorithm /*
 z := (if x > 0.0 then atan(y / x)
 elseif x < 0.0 and y >= 0.0 then atan(y / x) + pi()
 elseif x < 0.0 and y < 0.0 then atan(y / x) - pi()
 elseif y > 0.0 then pi() / 2.0
 elseif y < 0.0 then -pi() / 2.0
 else nan());
 if signal in NAN then
 z := nan();
 end if;
*/ end atan2;

function sinh
 input Real x;

 output Real y;
algorithm /*
 y := (euler()^x - euler()^-x) / 2.0;
*/ end sinh;

function cosh
 input Real x;
 output Real y;
algorithm /*
 y := (euler()^x + euler()^-x) / 2.0;
*/ end cosh;

function tanh
 input Real x;
 output Real y;
algorithm /*
 y := sinh(x) / cosh(x);
*/ end tanh;

function safe_tan
 signals NAN;
 input Real x;
 output Real y;
algorithm /*
 y := (if x >= pi() / 2.0 then plusInfinite()
 elseif x <= -pi() / 2.0 then minusInfinite()
 else tan(x));
 if signal in NAN then
 signal NAN;
 y := nan();
 end if;
*/ end safe_tan;

function safe_asin
 signals NAN;
 input Real x;
 output Real y;
algorithm /*
 y := asin(if x > 1.0 then 1.0 elseif x < -1.0 then -1.0 else
x)
*/ end safe_asin;

function safe_acos
 input Real x;
 output Real y;
algorithm /*
 y := acos(if x > 1.0 then 1.0 elseif x < -1.0 then -1.0 else
x)
*/ end safe_acos;

/**

 Systems of linear equations:

****************************/

function solveLinearEquations
 signals SOLVE_LINEAR_EQUATIONS_FAILED;
 input Real A[:, size(A,1)];
 input Real b[size(A,1)];
 output Real x[size(A,1)];
algorithm /*
 Solve system of linear equations A*x = b for x. Hereby it is
assumed that matrix A is

 regular. Typically, the function implements a direct Gaussian
elimination with partial
 pivoting. If A is singular, SOLVE_LINEAR_EQUATIONS_FAILED is
signaled
 and at least on element of x is set to qNaN.
*/ end solveLinearEquations;

function luFactorize
 signals SOLVE_LINEAR_EQUATIONS_FAILED;
 input Real A[:, size(A, 1)];
 output Real LU[:, size(A, 1)];
 output Integer pivots[size(A, 1)];
 /*
 The function returns the LU decomposition with partial
pivoting of the square,
 matrix A: P*L*U = A where P is the permutation matrix
(implicitely defined by vector
 pivots), L is a lower triangular matrix with unit diagonal
elements and U is an upper
 triangular matrix. Matrices L and U are stored in matrix LU
on return (the diagonal of
 L is not stored). With the companion function luSolve, the
factorization is used to
 solve the linear system L*U*x = b[pivots] with different
right hand side vectors b.

 If A is singular, SOLVE_LINEAR_EQUATIONS_FAILED is signaled.

 The algorithm below is "conceptual". A more efficient
implementation uses
 BLAS functions, see, e.g., LAPACK function DGETRF.
 */
protected
 Integer n;
 Integer p; // Pivot index.
 Integer pk;
 Real temp;
 Real eta;
 Real d;
 Real d_max;
 Real di;
 Real di_abs;
algorithm
 n := size(A,1);
 LU := A;
 p := 1:n;
 if n < 1 then
 return;
 end if;

 for k in 1:n-1 loop
 // Find pivot
 p :=k;
 d := LU[k,k];
 d_max :=absolute(d);
 for i in k+1:n loop
 di := LU[i,k];
 di_abs := abs(di);
 if di_abs > d_max then
 p := i;
 d := di;
 d_max := di_abs;
 end if;
 end for;

 // Test pivot for singularity
 if d == 0 then
 signals SOLVE_LINEAR_EQUATIONS_FAILED;
 else
 // Swap LU[k,j] and LU[p,j], for j = 1,....,n
 // as well as pivots[k] and pivots[p]
 if k <> p then
 for j in 1:n loop
 temp :=LU[k, j];
 LU[k,j] :=LU[p, j];
 LU[p,j] :=temp;
 end for;
 pk :=pivots[k];
 pivots[k] :=pivots[p];
 pivots[p] :=pk;
 end if;

 // LU factors
 for i in k+1:n loop
 eta :=LU[i,k]/d;
 LU[i,k] :=eta;

 for j in k+1:n loop
 LU[i,j] :=LU[i,j] - eta*LU[k,j];
 end for;
 end for;
 end if;
 end for;
end luFactorize;

function luSolve
 signals SOLVE_LINEAR_EQUATIONS_FAILED;
 input Real LU[:, size(LU, 1)]; // Returned from
luFactorize.
 input Integer pivots[size(LU, 1)]; // Returned from
luFactorize.
 input Real b[size(LU, 1)];
 output Real x[size(LU, 1)];
 /*
 The function returns the solution x of the linear system of
equations:
 L*U*x = b[pivots]
 where L*U and pivots are computed by the companion function
luFactorize.
 If a unique solution cannot be computed (i.e., U is
singular),
 SOLVE_LINEAR_EQUATIONS_FAILED is signaled and at least one
element of x is qNaN.

 The algorithm below is "conceptual". A more efficient
implementation uses
 BLAS functions, see, e.g., LAPACK function DGETRS.
 */
protected
 Integer n=size(LU,1);
 Real y[size(LU,1)];
algorithm
 if n < 1 then
 return;
 end if;

 // Forward elimination
 for i in 1:n loop

 y[i] := b[pivots[i]];
 for j in 1:i-1 loop
 y[i] :=y[i] - LU[i, j]*y[j];
 end for;
 end for;

 // Backward substitution
 for i in n:-1:1 loop
 x[i] :=y[i];
 for j in i+1:n loop
 x[i] := x[i] - LU[i,j]*x[j];
 end for;
 x[i] := x[i]/LU[i,i];
 if isNaN(x[i])
 signals SOLVE_LINEAR_EQUATIONS_FAILED;
 end
 end for;
end luSolve;

/**

 Interpolation in 1D/2D/3D:

 In all functions the following options are used:
 - interpolation = 1: constant bottom interpolation
 = 2: linear interpolation
 - extrapolation = 1: hold last value
 = 2: linear extrapolation through last two
boundary points

 A production code generator would typically trigger an error,
if the folloing
 conditions are not fulfilled when calling one of the
interpolation functions:
 - The values in x1_data[1:nx1], x2_data[1:nx2],
x3_data[1:nx3] are
 strict monotonically increasing.
 - The data arguments (x1_data, x2_data, x3_data, nx1, nxs2,
nx3) are parameters.
 - The option arguments (interpolation, extrapolation) are
literal constants.

 The production code generator decides which "search" method
to use to find the
 respective interval, or whether it can be directly found
because there is an
 equidistant grid.

****************************/

function interpolation1D
 input Real x1;
 input Real x1_data[:]; // strict
monotonically increasing values
 input Integer nx1; // 2 =≤ nx1 =≤
size(x1_data, 1)
 input Real y_data[size(x1_data, 1)];
 input Integer interpolation;
 input Integer extrapolation;
 output Real y;
algorithm /*
 Constant or linear interpolation in [x1_data[1:nx1],
y_data[1:nx1]]

 given the abszissa value x1.
*/ end interpolation1D;

function interpolation2D
 input Real x1;
 input Real x2;
 input Real x1_data[:]; // strict
monotonically increasing values
 input Integer nx1; // 2 =≤ nx1 =≤
size(x1_data, 1)
 input Real x2_data[:]; // strict
monotonically increasing values
 input Integer nx2; // 2 =≤ nx2 =≤
size(x2_data, 1)
 input Real y_data[size(x1_data, 1), size(x2_data, 1)];
 input Integer interpolation;
 input Integer extrapolation;
 output Real y;
algorithm /*
 Constant or linear interpolation with x1_data[1:nx1],
x2_data[1:nx2]
 abszissa values and y_data[1:nx1, 1:nx2] ordinate values,
given the abszissa value x1, x2.
*/ end interpolation2D;

function interpolation3D
 input Real x1;
 input Real x2;
 input Real x3;
 input Real x1_data[:]; // strict
monotonically increasing values
 input Integer nx1; // 2 =≤ nx1 =≤
size(x1_data, 1)
 input Real x2_data[:]; // strict
monotonically increasing values
 input Integer nx2; // 2 =≤ nx2 =≤
size(x2_data, 1)
 input Real x3_data[:]; // strict
monotonically increasing values
 input Integer nx3; // 2 =≤ nx3 =≤
size(x3_data, 1)
 input Real y_data[size(x1_data, 1), size(x2_data, 1),
size(x3_data, 1)];
 input Integer interpolation;
 input Integer extrapolation;
 output Real y;
algorithm /*
 Constant or linear interpolation with x1_data[1:nx1],
x2_data[1:nx2], x3_data[1:nx3]
 abszissa values and y_data[1:nx1, 1:nx2, 1:nx3] ordinate
values,
 given the abszissa value x1, x2, x3.
*/ end interpolation3D;

Cbuiltin2 defines builtin functions for Integer division:

function divisionTowardsZero
 input Integer dividend;
 input Integer divisor;
 output Integer quotient;
algorithm /*
 quotient := integer(roundTowardsZero(real(dividend) /
real(divisor)));

*/ end divisionTowardsZero;

function remainderTowardsZero
 input Integer dividend;
 input Integer divisor;
 output Integer remainder;
algorithm /*
 remainder := dividend - divisor *
divisionTowardsZero(dividend, divisor);
*/ end remainderTowardsZero;

Cbuiltin3 defines builtin functions for Real division, where the quotient is forced to be an integer
according to a rounding strategy:

function realRemainderTowardsZero
 input Real dividend;
 input Real divisor;
 output Real remainder;
algorithm /*
 remainder := dividend - divisor * roundTowardsZero(dividend /
divisor);
*/ end realRemainderTowardsZero;

Cbuiltin4 lifts builtin functions with scalar in- and output parameters for usage with multi-
dimensions. For every function named aα of Cbuiltin1,…,Cbuiltin3 with a scalar input parameter
 code>β and a scalar output parameter dδ of types T1,T3?{∀{Boolean, Integer, Real}/߻
respectively, Cbuiltin4 contains the character sequence:

function a1Dα1D

 input T1 ߛ:];β[:];

 output T3 dδ[size(߬ (β, 1)];
algorithm /*

 for i in 1:size(߬ (β, 1) loop

 dδ[i] := a(ߛiα(β[i]);
 end for;
*/ end a1Dα1D;

function a2Dα2D

 input T1 ߛ:,β[:, :];

 output T3 dδ[size(߬ (β, 1), size(߬ (β, 2)];
algorithm /*

 for i in 1:size(߬ (β, 1) loop

 for j in 1:size(߬ (β, 2) loop

 dδ[i, j] := a(ߛiα(β[i, j]);
 end for;
 end for;
*/ end a2Dα2D;

For every function named aα of Cbuiltin1,…,Cbuiltin3 with two scalar input parameters ߻/code>β
and ?γ and a scalar output parameter dδ of types T1,T2,T3?{∀{Boolean, Integer, Real}
respectively, Cbuiltin4 contains the character sequence:

function a1Dα1D

 input T1 ߛ:];β[:];

 input T2 ?[γ[size(߬ (β, 1)];

 output T3 dδ[size(߬ (β, 1)];
algorithm /*

 for i in 1:size(߬ (β, 1) loop

 dδ[i] := a(ߛi], ?[α(β[i], γ[i]);
 end for;

*/ end a1Dα1D;

function a2Dα2D

 input T1 ߛ:,β[:, :];

 input T2 ?[γ[size(߬ (β, 1), size(߬ (β, 2)];

 output T3 dδ[size(߬ (β, 1), size(߬ (β, 2)];
algorithm /*

 for i in 1:size(߬ (β, 1) loop

 for j in 1:size(߬ (β, 2) loop

 dδ[i, j] := a(ߛiα(β[i, j], ?(γ(i, j));
 end for;
 end for;
*/ end a2Dα2D;

Above functions are in lexical order w.r.t. their names; they constitute Cbuiltin4 in its entirety.

L-1 (semantic of builtin functions / Runtime-semantic): Cbuiltin defines the semantic of each
builtin function in prose via the multi-line-comment part of it; the actual implementation is up
to Production Code generators however (cf. L-2).

The builtin functions divisionDown, divisionUp and divisionTowardsZero are also
known as floored division, ceiled division and truncated division respectively.

According to their definition, the remainder returned by remainderDown,
remainderTowardsZero and remainderEuclidean is signed like the divisor,
dividend or always positive respectively.

R-1: Builtin functions are derived by the { function-declaration } factor of G-2.1 in
the order of their definition in Cbuiltin and — because Cbuiltin is appended — follow user-defined
functions.

R-2: Builtin functions are without 6’th child, i.e., without statements and therefore
implementation body. The motivation to implicitly append their signatures and thereby
making them part of blocks as described in R-1 is to cover builtin functions under the umbrella
of functions, such that the common syntactic and semantic rules for such apply for builtin as
well as user-defined functions; only exceptional cases for either have to be additionally
defined. In fact, S-2.9 already encapsulates all differences between builtin and user-defined
functions. For example, according to S-2.5, functions must have unique names, implying that
user-defined functions must not be named like a builtin function. And considering Cbuiltin and S-
2.3, all builtin functions are stateless. Likewise, according to S-2.10, builtin functions do not
locally — and therefore neither transitively — call functions.

L-2 (target-specific builtin function implementation; statically-evaluated builtin
functions / Runtime-semantic): The actual implementation of builtin functions is up to
Production Code generators, which are supposed to optimize such for the targeted runtime
environment. The only restrictions are, that the execution of builtin functions must always
terminate and be side-effect-free — i.e., not change or depend on the control-state.

Optimizations include, for example, the implementation of builtin functions in terms of inlined
code or even the replacement of builtin function calls and sequences thereof by target-

specific — but semantic-wise equivalent — hardware operations. The roundHalfToEven
builtin function for example is the default rounding mode used in the IEEE 754-2019 standard
for floating-point arithmetic and therefore likely hardware supported. Also integer is often
provided as single CPU-instruction like CVTTSS2SI or CVTTSD2SI of Streaming SIMD
Extensions 2 (SSE2); and roundDown, roundUp, roundTowardsZero and
roundHalfToEven are provided by ROUNDSS and ROUNDSD of SSE4. Particularly the multi-

dimensions support of Cbuiltin4 likely can be much more efficient than the given naجميnaïve

iterative solution; SSE4 for example provides for most single data instructions corresponding
multiple data instructions (SIMD hardware operations: single instruction, multiple data).

Builtin functions that are part of statically-evaluated expressions must be applied already for
Production Code generation since they define dimensional-sizes, multi-dimension queries or
loop iteration bounds which are subject to well-formedness constraints. The well-formedness
and results of such statically-evaluated builtin function calls depend on the targeted runtime
environment. For example, in a 32-bit environment integer(roundUp(2.0^31 -
1.0)) likely is an error due to an integer overflow, which in turn would result in integer
signaling OVERFLOW which is not permitted within statically-evaluated expressions (cf. S-
X:TODO:error-signal-freeness-of-statically-evaluated-expressions).

E-1: The following block uses the builtin function solveLinearEquations to compute a
control-output vector based on a single control-input:

block TestSolveLinearEquations
 input Real u;
 output Real y[2];

protected

public
 method Startup
 protected
 algorithm
 self.y := {0.0, 0.0};
 end Startup;

 method DoStep
 protected
 algorithm
 self.y := solveLinearEquations(
 {
 {1.0 , 2.0*self.u},
 {4.0*self.u, 5.0}
 },
 {-2.0 , 4.0*self.u});
 /* Rudimentary error handling */
 if signal or hasNaN(self.y) then
 self.y = {0.0, 0.0}
 end;
 end DoStep
end TestSolveLinearEquations;

E-2: The following block uses luFactorize and luSolve to solve two systems of linear
equations A*x = b for the same regular matrix A but varying b:

block TestLuSolve
 input Real u;

 output Real y[2];

protected

public
 method Startup
 protected
 algorithm
 self.y := {0.0, 0.0};
 end Startup;

 method DoStep
 protected
 Real LU[2,2];
 Real pivots[2];
 algorithm
 (LU, pivots) := luFactorize(
 {
 {1.0, 2.0*self.u},
 {4.0*self.u, 5.0}
 });
 self.y := luSolve(
 LU,
 pivots,
 luSolve(
 LU,
 pivots,
 {-2.0, 4.0*self.u})
 + {-3.0, 6.0*self.u});
 /* Rudimentary error handling */
 if signal or isNaN(self.y) then
 self.y = {0.0, 0.0}
 end;
 end DoStep;
end TestLuSolve;

LU decomposition typically is more efficient than naجميlynaïvely using several

solveLinearEquations calls, at least when A has more realistic sizes than the tiny 2x2 in
above example which has been selected for demonstration purposes only.

E-3: The following block interpolates in a vector of data points:

block TestInterpolation
 input Real x;
 output Real y;

 parameter Real x_data[7]; // Define x-axis data points as
tuneable parameter vector.
 parameter Real y_data[7]; // Define y-axis data as tuneable
parameter vector.
 parameter Integer nx; // Number of elements to
interpolate (1 =≤ nx =≤ 7).

protected

public
 method Startup
 protected
 Real x;
 algorithm

 x := 0.0;
 self.nx := 4;
 self.x_data := {1.0, 2.0, 3.0, 4.0 , 0.0, 0.0, 0.0};
 self.y_data := {1.0, 4.0, 9.0, 16.0, 0.0, 0.0, 0.0};
 self.y := interpolation1D(x, self.x_data, self.nx,
self.y_data, 2, 2);
 end Startup;

 method DoStep
 protected
 algorithm
 self.y := interpolation1D(2*self.x, self.x_data, self.nx,
self.y_data, 2, 2);
 end DoStep;
end TestInterpolation;

4.2.7. Example Application Scenarios

Modelica-modeled PID-controller

The following example has its origin in a Modelica model for a speed controller — a PID
controller with output limitations — of a DC motor. The block diagram of the Modelica model
has two input signals wLoadRef and wMotor. The input signal wLoadRef is the desired
value of the speed of the motor load whereas wMotor is the current speed of the motor. The
output of the controller is vMotor — the voltage to be applied to the DC motor.

It follows one possible transformation of this Modelica model into an eFMI GALEC program.
The discretization of the dynamic parts of the PID controller is realized by the Explicit Euler
method. The respective eFMI GALEC program is:

block PID_Controller

 input Real wLoadRef(min = -1.0e5, max = 1.0e5);
 input Real wMotor (min = -1.0e5, max = 1.0e5);
 output Real vMotor (min = -1.0e7, max = 1.0e7);

 // Tunable parameters (can be changed via recalibration):
 parameter Real 'limiter.uMax'(min = 1.0, max = 1.0e5);
 parameter Real gearRatio(min = 10.0, max = 500.0);
 parameter Real Ti(min = 1.0e-7, max = 100.0);
 parameter Real Td(min = 1.0e-7, max = 100.0);
 parameter Real kd(min = 0.0, max = 1000.0);
 parameter Real k(min = 0.0, max = 1000.0);
 parameter Real stepSize // Can be local constant (if
recalibration is not supported).
 (min = 1.0e-10, max = 0.01 /* in physics-simulation
tested sampling-range */);

protected
 // Dependent parameters:
 parameter Real 'limiter.uMin'(min = -1.0e5, max = -1.0);

 // Discrete states:
 Real 'PID.I.x';
 Real 'PID.D.x';
 Real 'previous(feedback.y)';
 Boolean firstTick;

public
 method Startup
 algorithm
 // Initialize tunable parameters:
 self.'limiter.uMax' := 400.0;
 self.gearRatio := 105.0;
 self.Ti := 0.1;
 self.Td := 0.1;
 self.kd := 0.1;
 self.k := 10.0;
 self.stepSize := 1e-3;

 // Initialize dependent parameters:
 self.'limiter.uMin' := -self.'limiter.uMax';

 // Initialize discrete states:
 self.'PID.I.x' := 0.0;
 self.'PID.D.x' := 0.0;
 self.'previous(feedback.y)' := 0.0;
 self.firstTick := true;

 // Initialize outputs:
 self.vMotor := 0.0;
 end Startup;

 method Recalibrate
 algorithm
 // Update dependent parameters:
 self.'limiter.uMin' := -self.'limiter.uMax';
 end Recalibrate;

 /*
 Control-cycle function: Called at every clock tick.
 */
 method DoStep
 protected

 Real 'gain.y';
 Real 'feedback.y';
 Real 'derivative(PID.I.x)';
 Real 'derivative(PID.D.x)';
 Real 'PID.D.y';
 Real 'PID.y';
 algorithm

 if self.firstTick then
 self.firstTick := false;
 else
 'derivative(PID.I.x)' := self.'previous(feedback.y)'
/ self.Ti;
 'derivative(PID.D.x)' := (self.'previous(feedback.y)'
- self.'PID.D.x') / self.Td;

 self.'PID.I.x' := self.'PID.I.x' +
self.stepSize * 'derivative(PID.I.x)';
 self.'PID.D.x' := self.'PID.D.x' +
self.stepSize * 'derivative(PID.D.x)';
 end if;

 'gain.y' := self.gearRatio * self.wLoadRef;
 'feedback.y' := 'gain.y' - self.wMotor;

 'PID.D.y' := self.kd * ('feedback.y' - self.'PID.D.x') /
self.Td;
 'PID.y' := self.k * ('PID.D.y' + self.'PID.I.x' +
'feedback.y');

 self.vMotor := (
 if 'PID.y' > self.'limiter.uMax' then
 self.'limiter.uMax'
 elseif 'PID.y' < self.'limiter.uMin' then
 self.'limiter.uMin'
 else
 'PID.y'
);

 self.'previous(feedback.y)' := 'feedback.y';
 end DoStep;
end PID_Controller;

The manifest for the controller, just describing its interface, is:

<?xml version="1.0" encoding="UTF-8"?>
<Manifest
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="../schemas/AlgorithmCode/efmiAlgor
ithmCodeManifest.xsd"
 xsdVersion="0.1113.0"
 kind="AlgorithmCode"
 efmiVersion="1.0.0"
 id="{1e111db5-90e6-4e17-b2e5-4e215dbbdd49}"
 name="PID controller discretized by Explicit Euler method"
 version="0.1"
 generationDateAndTime="2020-11-10T12:33:22Z"
 generationTool="Manual"
 license="MIT">

 <ManifestReferences>

 <ManifestReference id="ID_EquationCodeManifest"
manifestRefId="{45e8177d-7d1b-4e0e-95d1-ab777bb508b0}"
checksum="" origin="false"/>
 </ManifestReferences>

 <Files>
 <File
 name="Controller.alg"
 id="FileID_1"
 path="."="./"
 needsChecksum="false"
 role="Code"/>
 </Files>

 <Clock id="ID_Clock" variableRefId="ID_7"/>

 <BlockMethods fileRefId="FileID_1"
writeOutputs="AsSoonAsPossible">
 <BlockMethod id="ID_Startup" kind="Startup"/>
 <BlockMethod id="ID_Recalibrate" kind="Recalibrate"/>
 <BlockMethod id="ID_DoStep" kind="DoStep"/>
 </BlockMethods>

 <ErrorSignalStatus id="ID_ErrorSignalStatus"/>

 <Variables>
 <RealVariable
 name="'limiter.uMin'"
 id="ID_1"
 blockCausality="dependentParameter"
 start="-400.0"
 min="-1.0e5"
 max="-1.0"/>
 <RealVariable
 name="'limiter.uMax'"
 id="ID_2"
 blockCausality="tunableParameter"
 start="400.0"
 min="1.0"
 max="1.0e5"/>
 <RealVariable
 name="Ti"
 id="ID_3"
 blockCausality="tunableParameter"
 start="0.1"
 min="1.0e-7"
 max="100.0"/>
 <RealVariable
 name="Td"
 id="ID_4"
 blockCausality="tunableParameter"
 start="0.1"
 min="1.0e-7"
 max="100.0"/>
 <RealVariable
 name="kd"
 id="ID_5"
 blockCausality="tunableParameter"
 start="0.1"
 min="0.0"
 max="1000.0"/>
 <RealVariable
 name="k"
 id="ID_6"

 blockCausality="tunableParameter"
 start="10.0"
 min="0.0"
 max="1000.0"/>
 <RealVariable
 name="stepSize"
 id="ID_7"
 blockCausality="tunableParameter"
 start="1e-3"
 min="1.0e-10"
 max="0.01"/>
 <RealVariable
 name="gearRatio"
 id="ID_8"
 blockCausality="tunableParameter"
 start="105.0"
 min="10.0"
 max="500.0"/>
 <RealVariable
 name="wLoadRef"
 id="ID_9"
 blockCausality="input"
 start="0.0"
 min="-1.0e5"
 max="1.0e5">

 <ForeignVariableReference
manifestReferenceRefId="ID_EquationCodeManifest"
foreignRefId="wLoadRef"/>
 </RealVariable>
 <RealVariable
 name="wMotor"
 id="ID_10"
 blockCausality="input"
 start="0.0"
 min="-1.0e5"
 max="1.0e5">

 <ForeignVariableReference
manifestReferenceRefId="ID_EquationCodeManifest"
foreignRefId="wMotor"/>
 </RealVariable>
 <RealVariable
 name="vMotor"
 id="ID_11"
 blockCausality="output"
 start="0.0"
 min="-1.0e7"
 max="1.0e7">

 <ForeignVariableReference
manifestReferenceRefId="ID_EquationCodeManifest"
foreignRefId="vMotor"/>
 </RealVariable>
 <RealVariable
 name="'PID.I.x'"
 id="ID_12"
 blockCausality="state"
 start="0.0"/>
 <RealVariable
 name="'PID.D.x'"
 id="ID_13"
 blockCausality="state"

 start="0.0"/>
 <RealVariable
 name="'previous(feedback.y)'"
 id="ID_14"
 blockCausality="state"
 start="0.0"/>
 <BooleanVariable
 name="firstTick"
 id="ID_15"
 blockCausality="state"
 start="true"/>
 </Variables>

</Manifest>

Mathematical Example using builtin Functions

The following example implements a linearly implicit second order differential equation
system of the form M(x)*x'' = F(x,u), y = g(x) with an invertible matrix M(x) for a state vector x,
inputs u and outputs y. The vector functions F and g describe the right hand sides of the
dynamical system and the output equation respectively.

The following implementation in eFMI GALEC code is based on a discretization by the Explicit
Euler method. Further, there are several expressions in M and F that use builtin functions like
sin, cos and exp. Additionally, the builtin function solveLinearEquations is used to
solve the linear system of equations. The respective eFMI GALEC program is:

block LinearEquationSystem
 input Real u[4];] (min=-1.0e7, max=1.0e7);
 output Real y[4];

protected
 // Constants:
 constant Real pi;
 constant Real stepSize;

 // Discrete states:
 Real x[4];
 Real v[4];
 Real 'derivative(x)'[4];
 Real 'derivative(v)'[4];

public
 /*
 Startup function: Called once at startup to initialize
the
 internal memory of the block and return initial
outputs.
 */
 method Startup
 algorithm
 // Initialize constants
 self.pi := 3.141592653589793;
 self.stepSize := 1.0e-2;

 // Initialize discrete states:
 self.x := {-3.0, 7.0, 19.0, 1.0};
 self.v := {0.0, 0.0, 0.0, 0.0};

 // Initial values for derivatives:
 self.'derivative(x)' := {0.0, 0.0, 0.0, 0.0};

 self.'derivative(v)' := {0.0, 0.0, 0.0, 0.0};

 // Return initial control-outputs:
 self.y := {0.0, 0.0, 0.0, 0.0};
 end Startup;

 method Recalibrate
 algorithm
 end Recalibrate;

 /*
 Control-cycle function: Called at every clock tick.
 */
 method DoStep
 protected
 Real M[4,4];
 Real F[4];

 algorithm
 self.x := self.x + self.stepSize * self.'derivative(x)';
 self.v := self.v + self.stepSize * self.'derivative(v)';

 self.y := {
 sin(self.x[1]) + self.x[3],
 -self.x[2],
 self.pi * 2.0 * cos(self.x[4] - self.x[2]),
 self.x[3] + self.x[1] / self.x[4]
 };

 // Check for NaN, e.g. if there was no solution of the
linear system in the previous call
 if isNaN(self.y[1]) or isNaN(self.y[2]) or
isNaN(self.y[3]) or isNaN(self.y[4]) then
 // Re-initialize the whole system to its start state
 self.x := {-3.0, 7.0, 19.0, 1.0};
 self.v := {0.0, 0.0, 0.0, 0.0};
 self.y := {0.0, 0.0, 0.0, 0.0};
 end if;

 M := {
 {
 -sin(self.x[3] + self.x[4]),
 self.x[4]^2 - self.x[2]^3,
 -4.0 * exp(self.x[3] * self.x[1]),
 cos(-self.x[2]) * self.x[3]
 },
 {
 (self.x[2] + 2.0 * self.x[4]) / self.x[1],
 -self.x[1],
 self.x[1] * self.x[2],
 sin(self.x[1] * self.x[2] * self.x[3])
 },
 {
 -self.x[4] + self.x[2] * self.x[1],
 6.0 * self.pi * cos(self.x[2]),
 -self.x[2],
 2.0 * (self.x[1] + sin(self.x[3] * self.pi))
 },
 {
 self.x[1]+cos(self.x[3]),
 -2.0*self.x[3]*self.x[4],
 -4.0 * self.x[3] * cos(self.x[2]),

 self.x[4] - self.x[1] * self.x[2]
 }
 };
 F := {
 self.u[1] - self.x[3]^2,
 -self.u[4] + self.x[2] * cos(self.x[1]),
 -self.u[4] + self.u[2] * self.x[4],
 self.u[2] + self.u[3]
 };

 self.'derivative(v)' := solveLinearEquations(M, F);
 self.'derivative(x)' := self.v;

 end DoStep;
end LinearEquationSystem;

The manifest summarising the controller’s interface is:

<?xml version="1.0" encoding="UTF-8"?>
<Manifest
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="../schemas/AlgorithmCode/efmiAlgor
ithmCodeManifest.xsd"
 efmiVersion="1.0.0"
 xsdVersion="0.1113.0"
 id="{351131cd-1e50-46d0-913a-240451d247c7}"
 kind="AlgorithmCode"
 name="Dynamic system discretized by Explicit Euler method"
 generationDateAndTime="2020-10-15T16:49:20Z"
 version="0.4.0"
 generationTool="Manual"
 license="MIT">

 <ManifestReferences>
 <ManifestReference id="ID_MNFST_1"
manifestRefId="{45e8177d-7d1b-4e0e-95d1-ab777bb508b0}"
checksum="" origin="false"/>
 </ManifestReferences>

 <Files>
 <File
 name="Controller.alg"
 id="FileID_1"
 path="."="./"
 needsChecksum="false"
 role="Code"/>
 </Files>

 <Clock id="ID_Clock" variableRefId="ID_2"/>

 <BlockMethods fileRefId="FileID_1"
writeOutputs="AsSoonAsPossible">
 <BlockMethod id="ID_Startup" kind="Startup"/>
 <BlockMethod id="ID_Recalibrate" kind="Recalibrate"/>
 <BlockMethod id="ID_DoStep" kind="DoStep"/>
 </BlockMethods>

 <ErrorSignalStatus id="ID_ErrorSignal"/>

 <Variables>
 <RealVariable

 name="pi"
 id="ID_1"
 blockCausality="constant"
 start="3.141592653589793"/>
 <RealVariable
 name="stepSize"
 id="ID_2"
 blockCausality="constant"
 start="1e-2"/>
 <RealVariable
 name="u"
 id="ID_3"
 blockCausality="input"
 start="0.0 0.0 0.0 0.0">"
 min="-1.0e7"
 max="1.0e7">
 <Dimensions>
 <Dimension number="1" size="4"/>
 </Dimensions>

 <ForeignVariableReference
manifestReferenceRefId="ID_MNFST_1" foreignRefId="u"/>
 </RealVariable>
 <RealVariable
 name="y"
 id="ID_4"
 blockCausality="output"
 start="0.0 0.0 0.0 0.0">
 <Dimensions>
 <Dimension number="1" size="4"/>
 </Dimensions>

 <ForeignVariableReference
manifestReferenceRefId="ID_MNFST_1" foreignRefId="y"/>
 </RealVariable>
 <RealVariable
 name="v"
 id="ID_5"
 blockCausality="state"
 start="0.0 0.0 0.0 0.0">
 <Dimensions>
 <Dimension number="1" size="4"/>
 </Dimensions>
 </RealVariable>
 <RealVariable
 name="x"
 id="ID_6"
 blockCausality="state"
 start="-3.0 7.0 19.0 1.0">
 <Dimensions>
 <Dimension number="1" size="4"/>
 </Dimensions>
 </RealVariable>
 <RealVariable
 name="'derivative(x)'"
 id="ID_7"
 blockCausality="state"
 start="0.0 0.0 0.0 0.0">
 <Dimensions>
 <Dimension number="1" size="4"/>
 </Dimensions>
 </RealVariable>
 <RealVariable

 name="'derivative(v)'"
 id="ID_8"
 blockCausality="state"
 start="0.0 0.0 0.0 0.0">
 <Dimensions>
 <Dimension number="1" size="4"/>
 </Dimensions>
 </RealVariable>
 </Variables>

</Manifest>

Vehicle model with implicit integration method

The following example presents a discretized vehicle model. The model equations and
parameters are according to Section 6.8 Rollover Avoidance of the book J. Ackermann et al.:
Robust Control, Springer 2002 with some further assumptions. The vehicle model is a single
track model with roll augmentation. The discretization is realized by a linear implicit Runge-
Kutta method of order 1 (Rosenbrock method, linear implicit Euler method) suited for stiff
systems. For such methods the input signals have to be differentiated, therefore the
derivatives of the original input variables are added as inputs of the discretized model.

The example demonstrates the use of for-loops, vectors and matrices as well as several builtin
functions, particularly for solving linear equation systems. The eFMI GALEC program is:

block VehicleModel
 input Real u[2];](min=-1.0e7, max=1.0e7);
 input Real 'derivative(u)'[2];](min=-1.0e7, max=1.0e7);
 output Real x[8];

 // Tunable parameters (can be changed via recalibration):
 parameter Real FdF;
 parameter Real m;
 parameter Real m2;
 parameter Real h;
 parameter Real lF;
 parameter Real lR;
 parameter Real g;
 parameter Real Jx2;
 parameter Real mu;
 parameter Real cF;
 parameter Real cR;
 parameter Real Jz1;
 parameter Real Jz2;
 parameter Real Jy2;
 parameter Real cphi;
 parameter Real dphidot;
 parameter Real b1;
 parameter Real b2;
 parameter Real stepSize;

protected
 // Dependent parameters:
 parameter Real FlV;
 parameter Real FzR;
 parameter Real FzF;

 // Discrete states:
 Real q[4];
 Real dx[8];

public

 /*
 Startup function: Called once at startup to initialize
the
 internal memory of the block and return initial
outputs.
 */
 method Startup
 algorithm
 // Initialize tunable parameters
 self.FdF := 15.0;
 self.m := 14300.0;
 self.m2 := 12487.0;
 self.h := 1.15;
 self.lF := 1.95;
 self.lR := 1.54;
 self.g := 9.81;
 self.Jx2 := 24201.0;
 self.mu := 1.0;
 self.cF := 582.0e+3;
 self.cR := 783.0e3;
 self.Jz1 := 3654.0;
 self.Jz2 := 34917.0;
 self.Jy2 := 3491.7;
 self.cphi := 457.0e+3;
 self.dphidot := 100.0e3;
 self.b1 := 0.2;
 self.b2 := 0.1;
 self.stepSize := 1.0e-2;

 // Initialize dependent parameters
 self.FlV := self.FdF;
 self.FzR := self.m*self.g*self.lF/(self.lR + self.lF);
 self.FzF := self.m*self.g - self.FzR;

 // Initialize inputs
 // u = {0.0, 0.0};
 // 'derivative(u)' = {0.0, 0.0};

 // Initialize states and outputs
 self.q := {0.0, 0.0, 0.0, 0.0};
 self.dx := {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
 self.x := {0.0, 0.0, 0.0, 0.0, 10.0, 0.0, 0.0, 0.0};
 end Startup;

 /*
 Recalibration function: Called to change tunable
parameters
 during operation.
 */
 method Recalibrate
 algorithm
 // Update dependent parameters:
 self.FlV := self.FdF;
 self.FzR := self.m*self.g*self.lF/(self.lR + self.lF);
 self.FzF := self.m*self.g - self.FzR;
 end Recalibrate;

 /*
 Control-cycle function: Called at every clock tick.
 */
 method DoStep
 protected
 Real sx;
 Real sy;

 Real psi;
 Real phi;
 Real vx;
 Real vy;
 Real r;
 Real phidot;
 Real delta;
 Real FyD;
 Real q1;
 Real q2;
 Real q3;
 Real q4;
 Real deltadot;
 Real FyDdot;

 Real FdF;
 Real FlV;
 Real m;
 Real m2;
 Real h;
 Real lF;
 Real lR;
 Real g;
 Real Jx2;
 Real mu;
 Real cF;
 Real cR;
 Real Jz1;
 Real Jz2;
 Real Jy2;
 Real FzR;
 Real FzF;
 Real cphi;
 Real dphidot;
 Real b1;
 Real b2;

 Real G[4,4];

 Real rs2[4];
 Real dx1[4];

 Real help1;
 Real help2;
 Real help3;

 algorithm

 for i in 1:8 loop
 self.x[i] := self.x[i] + self.dx[i];
 end for;

 for i in 1:4 loop
 self.q[i] := self.dx[4+i]/self.stepSize;
 end for;

 sx := self.x[1];
 sy := self.x[2];
 psi := self.x[3];
 phi := self.x[4];
 vx := self.x[5];
 vy := self.x[6];
 r := self.x[7];
 phidot := self.x[8];

 delta := self.u[1];
 FyD := self.u[2];

 q1 := self.q[1];
 q2 := self.q[2];
 q3 := self.q[3];
 q4 := self.q[4];

 deltadot := self.'derivative(u)'[1];
 FyDdot := self.'derivative(u)'[2];

 FdF := self.FdF;
 FlV := self.FlV;

 m := self.m;
 m2 := self.m2;
 h := self.h;
 lF := self.lF;
 lR := self.lR;
 g := self.g;
 Jx2 := self.Jx2;

 mu := self.mu;
 cF := self.cF;
 cR := self.cR;

 Jz1 := self.Jz1;
 Jz2 := self.Jz2;
 Jy2 := self.Jy2;
 FzR := self.FzR;
 FzF := self.FzF;
 cphi := self.cphi;
 dphidot := self.dphidot;

 b1 := self.b1;
 b2 := self.b2;

 help1 := sqrt(vx^2 + vy^2);
 help2 := (vx^2 + vy^2)^1.5;
 help3 := h^2*m2 + Jy2 - Jz2;

 G[1,1] :=
 (
 mu*(lF*r*vx +
help1*vy)*self.stepSize*cF*sin(delta)
 + help2*m
)
 / (help2*self.stepSize);
 G[1,2] :=
 -(
 mu*(-lF*r*vy + help1*vx)*cF*sin(delta)
 + help2*r*m
)
 / help2;
 G[1,3] :=
 (
 2.0*h*m2*phidot*cos(phi)*self.stepSize*help1
 - mu*cF*lF*sin(delta)*self.stepSize
 + h*m2*sin(phi)*help1
 - m*vy*self.stepSize*help1
)
 / (self.stepSize*help1);
 G[1,4] :=

 h*m2*(
 -2.0*sin(phi)*phidot*r*self.stepSize
 + cos(phi)*q3*self.stepSize
 + 2.0*r*cos(phi)
);
 G[2,1] :=
 (
 (-cos(delta)*cF*mu*vy - cR*mu*vy +
m*r*(vx^2+vy^2))*help1
 - r*mu*vx*(cos(delta)*cF*lF - cR*lR)
)
 / help2;
 G[2,2] :=
 (
 (cos(delta)*cF*mu*vx*self.stepSize +
cR*mu*vx*self.stepSize + m*(vx^2 + vy^2))*help1
 - self.stepSize*r*mu*vy*(cos(delta)*cF*lF -
cR*lR)
)
 / (help2*self.stepSize);
 G[2,3] :=
 (
 2.0*h*m2*r*sin(phi)*help1
 + mu*cF*lF*cos(delta)
 + m*vx*help1
 - mu*cR*lR
)
 / help1;
 G[2,4] :=
 m2*(
 (-1.0 + (phidot^2 +
r^2)*self.stepSize^2)*cos(phi)
 + self.stepSize*sin(phi)*(q4*self.stepSize +
2.0*phidot)
)
 * (h/self.stepSize);
 G[3,1] :=
 (
 (
 -cos(delta)*cF*lF*mu*vy*self.stepSize
 + h*m2*(vx^2 + vy^2)*sin(phi)
 + cR*lR*mu*vy*self.stepSize
) * help1
 - self.stepSize*r*mu*vx*(lF^2*cF*cos(delta) +
lR^2*cR)
)
 / (help2*self.stepSize);
 G[3,2] :=
 -(
 (-cos(delta)*cF*lF*mu*vx + h*r*m2*(vx^2 +
vy^2)*sin(phi) + cR*lR*mu*vx)*help1
 + vy*r*mu*(lF^2*cF*cos(delta) + lR^2*cR)
)
 / help2;
 G[3,3] :=
 2.0*(
 (
 (-0.5*h^2*m2 - 0.5*Jy2 +
0.5*Jz2)*cos(phi)^2
 +
phidot*self.stepSize*sin(phi)*help3*cos(phi)
 - 0.5*sin(phi)*h*m2*vy*self.stepSize
 + 0.5*h^2*m2
 + 0.5*Jy2

 + 0.5*Jz1
) * help1
 + 0.5*mu*self.stepSize*(lF^2*cF*cos(delta) +
lR^2*cR)
)
 / (help1*self.stepSize);
 G[3,4] :=
 4.0*phidot*self.stepSize*r*help3*cos(phi)^2
 + (2.0*help3*(q3*self.stepSize + r)*sin(phi) -
h*self.stepSize*m2*(r*vy - q1))*cos(phi)
 - 2.0*phidot*self.stepSize*r*help3;
 G[4,1] := -h*m2*r*cos(phi);
 G[4,2] := -h*m2*cos(phi) / self.stepSize;
 G[4,3] := -2.0*(help3*r*sin(phi) + 0.5*h*m2*vx)*cos(phi);
 G[4,4] :=
 (
 -2.0*self.stepSize^2*r^2*help3*cos(phi)^2
 - cos(phi)*g*h*m2*self.stepSize^2
 + self.stepSize^2*h*m2*(r*vx + q2)*sin(phi)
 + (help3*r^2 + cphi)*self.stepSize^2
 + dphidot*self.stepSize
 + h^2*m2
 + Jx2
)
 / self.stepSize;

 rs2[1] :=
 2.0*(
 (
 -0.5*self.stepSize*(cF*mu*(delta -
atan2(vy, vx))*cos(delta) + sin(delta)*(cF*mu + FlV))*deltadot
 + 0.5*atan2(vy, vx)*sin(delta)*cF*mu
 - 0.5*sin(delta)*cF*delta*mu
 - 0.5*h*m2*phidot*(q3*self.stepSize +
2.0*r)*cos(phi)
 + 0.5*FlV*cos(delta)
 + r*(sin(phi)*h*m2*phidot^2*self.stepSize +
0.5*m*vy)
) * help1
 +
0.5*cF*lF*mu*r*(deltadot*cos(delta)*self.stepSize + sin(delta))
)
 / help1;
 rs2[2] :=
 -(
 (
 (
 mu*cF*(delta - atan2(vy,
vx))*sin(delta)
 - cos(delta)*(cF*mu + FlV)
) * (self.stepSize*deltadot)
 - FyDdot*self.stepSize
 + mu*(cos(delta)*cF + cR)*atan2(vy, vx)
 - cos(delta)*cF*delta*mu
 + h*m2*(phidot*q4*self.stepSize +
phidot^2+r^2)*sin(phi)
 + h*phidot*self.stepSize*m2*(phidot^2 +
r^2)*cos(phi)
 + m*r*vx
 - FlV*sin(delta)
 - FyD
) * help1
 - mu*r*(self.stepSize*sin(delta)*deltadot*cF*lF -
cos(delta)*cF*lF + cR*lR)

)
 / help1;
 rs2[3] :=
 -2.0*(
 (
 0.5*lF*(mu*cF*(delta - atan2(vy,
vx))*sin(delta) - cos(delta)*(cF*mu +
FlV))*self.stepSize*deltadot
 - 0.5*FyDdot*b1*self.stepSize
 + 0.5*mu*(cos(delta)*cF*lF - cR*lR)*atan2(vy,
vx)
 +
2.0*r*phidot^2*self.stepSize*help3*cos(phi)^2
 + phidot*(help3*(q3*self.stepSize +
r)*sin(phi) + 0.5*h*self.stepSize*m2*(-r*vy + q1))*cos(phi)
 - 0.5*sin(phi)*h*m2*r*vy
 - 0.5*cos(delta)*cF*delta*lF*mu
 - 0.5*FlV*sin(delta)*lF
 - r*phidot^2*self.stepSize*help3
 - 0.5*b1*FyD
) * help1
 -
0.5*r*mu*(deltadot*sin(delta)*cF*lF^2*self.stepSize -
lF^2*cF*cos(delta) - lR^2*cR)
)
 / help1;
 rs2[4] :=
 self.stepSize*b2*FyDdot
 + 2.0*phidot*self.stepSize*r^2*help3*cos(phi)^2
 + (r^2*help3*sin(phi) + h*m2*(g*phidot*self.stepSize
+ r*vx))*cos(phi)
 + (-phidot*(r*vx+q2)*self.stepSize + g)*h*m2*sin(phi)
 - phidot*(help3*r^2 + cphi)*self.stepSize
 - cphi*phi
 - dphidot*phidot
 + b2*FyD;

 dx1 := solveLinearEquations(G, rs2);
 for i in 1:4 loop
 self.dx[4+i] := dx1[i];
 self.dx[i] := self.stepSize*(self.x[4+i]+dx1[i]);
 end for;

 // Check for NaN, caused by e.g. a failed solution of the
linear system
 if isNaN(self.x[1]) or isNaN(self.x[2]) or
isNaN(self.x[3]) or isNaN(self.x[4]) or
 isNaN(self.x[5]) or isNaN(self.x[6]) or
isNaN(self.x[7]) or isNaN(self.x[8]) then
 self.q := {0.0, 0.0, 0.0, 0.0};
 self.dx := {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
 self.x := {0.0, 0.0, 0.0, 0.0, 10.0, 0.0, 0.0, 0.0};
 end if;

 end DoStep;
end VehicleModel;

The resulting manifest is:

<?xml version="1.0" encoding="utf-8"?>
<Manifest efmiVersion="1.0.0"
 generationDateAndTime="2020-10-15T16:52:13Z"
 generationTool="Manual"

 id="{e3eae104-6417-4783-8c05-7c14e6fab8a6}"
 kind="AlgorithmCode"
 license="MIT"
 name="Vehicle model discretized by Linearly implicit
Euler method"
 version="0.2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsdVersion="0.1113.0"

xsi:noNamespaceSchemaLocation="../schemas/AlgorithmCode/efmiAlgor
ithmCodeManifest.xsd">

 <ManifestReferences>
 <ManifestReference id="ID_MNFST_1" manifestRefId="{45e8177d-
7d1b-4e0e-95d1-ab777bb508b0}" checksum="" origin="false"/>
 </ManifestReferences>
 <Files>
 <File
 id="FileID_1"
 name="Controller.alg"
 needsChecksum="false"
 path="."="./"
 role="Code" />
 </Files>
 <Clock id="ID_Clock" variableRefId="ID_1" />
 <BlockMethods fileRefId="FileID_1"
writeOutputs="AsSoonAsPossible">
 <BlockMethod id="ID_Startup" kind="Startup" />
 <BlockMethod id="ID_DoStep" kind="DoStep" />
 <BlockMethod id="ID_Recalibrate" kind="Recalibrate" />
 </BlockMethods>
 <ErrorSignalStatus id="ID_ErrorSignal"/>
 <Variables>
 <RealVariable blockCausality="tunableParameter"
 id="ID_1"
 name="stepSize"
 start="1e-2" />
 <RealVariable blockCausality="tunableParameter"
 id="ID_2"
 name="FdF"
 start="15.0" />
 <RealVariable blockCausality="dependentParameter"
 id="ID_3"
 name="FlV"
 start="15.0" />
 <RealVariable blockCausality="tunableParameter"
 id="ID_4"
 name="m"
 start="14300.0" />
 <RealVariable blockCausality="tunableParameter"
 id="ID_5"
 name="m2"
 start="12487.0" />
 <RealVariable blockCausality="tunableParameter"
 id="ID_6"
 name="h"
 start="1.15" />
 <RealVariable blockCausality="tunableParameter"
 id="ID_7"
 name="lF"
 start="1.95" />
 <RealVariable blockCausality="tunableParameter"
 id="ID_8"
 name="lR"

 start="1.54" />
 <RealVariable blockCausality="tunableParameter"
 id="ID_9"
 name="g"
 start="9.81" />
 <RealVariable blockCausality="tunableParameter"
 id="ID_10"
 name="Jx2"
 start="24201.0" />
 <RealVariable blockCausality="tunableParameter"
 id="ID_11"
 name="mu"
 start="1.0" />
 <RealVariable blockCausality="tunableParameter"
 id="ID_12"
 name="cF"
 start="582e3" />
 <RealVariable blockCausality="tunableParameter"
 id="ID_13"
 name="cR"
 start="783e3" />
 <RealVariable blockCausality="tunableParameter"
 id="ID_14"
 name="Jz1"
 start="3654.0" />
 <RealVariable blockCausality="tunableParameter"
 id="ID_15"
 name="Jz2"
 start="34917.0" />
 <RealVariable blockCausality="tunableParameter"
 id="ID_16"
 name="Jy2"
 start="3491.7" />
 <RealVariable blockCausality="dependentParameter"
 id="ID_17"
 name="FzR"
 start="0.0" />
 <RealVariable blockCausality="dependentParameter"
 id="ID_18"
 name="FzF"
 start="0.0" />
 <RealVariable blockCausality="tunableParameter"
 id="ID_19"
 name="cphi"
 start="457.0e+3" />
 <RealVariable blockCausality="tunableParameter"
 id="ID_20"
 name="dphidot"
 start="100.0e3" />
 <RealVariable blockCausality="tunableParameter"
 id="ID_21"
 name="b1"
 start="0.2" />
 <RealVariable blockCausality="tunableParameter"
 id="ID_22"
 name="b2"
 start="0.1" />
 <RealVariable blockCausality="input"
 id="ID_23"
 name="u"
 start="0.0 0.0"> "
 min="-1.0e7"
 max="1.0e7">
 <Dimensions>

 <Dimension number="1"
 size="2" />
 </Dimensions>

 <ForeignVariableReference
manifestReferenceRefId="ID_MNFST_1" foreignRefId="u"/>
 </RealVariable>
 <RealVariable blockCausality="input"
 id="ID_24"
 name="'derivative(u)'"
 start="0.0 0.0">"
 min="-1.0e7"
 max="1.0e7">
 <Dimensions>
 <Dimension number="1"
 size="2" />
 </Dimensions>

 <ForeignVariableReference
manifestReferenceRefId="ID_MNFST_1"
foreignRefId="'derivative(u)'"/>
 </RealVariable>
 <RealVariable blockCausality="output"
 id="ID_25"
 name="x"
 start="0.0 0.0 0.0 0.0 10.0 0.0 0.0 0.0">
 <Dimensions>
 <Dimension number="1"
 size="8" />
 </Dimensions>

 <ForeignVariableReference
manifestReferenceRefId="ID_MNFST_1" foreignRefId="x"/>
 </RealVariable>
 <RealVariable blockCausality="state"
 id="ID_26"
 name="q"
 start="0.0 0.0 0.0 0.0">
 <Dimensions>
 <Dimension number="1"
 size="4" />
 </Dimensions>
 </RealVariable>
 <RealVariable blockCausality="state"
 id="ID_27"
 name="dx"
 start="0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0">
 <Dimensions>
 <Dimension number="1"
 size="8" />
 </Dimensions>
 </RealVariable>
 </Variables>
</Manifest>

5. Production Code Model Representation

5.1. Introduction

A Production Code Model Representation of an eFMU container contains the actual sources
that implement the algorithm expressed in Algorithm Code Model Representation of the same
eFMU container.

As mentioned before an eFMU container can contain any number of Production Code Model
Representations.

The following code parts may be present inside each Production Code Model Representation:

• Production Code: This section contains the actual Production Code running on the
embedded device. In later development steps it shall be compiled and linked to be
integrated on the target embedded device.

• [optional] Simulation Code: This code is used to simulate the target environment of the
Production Code. It may provide stub functions for communication with other software
functions.

• [optional] Tool Specific Code: Tool Specific Code may help tools to integrate the
Production Code in their (execution) environment.

• [optional] FMU container: This FMU container may be extracted and copied to the
surrounding FMU Data to be consumed by FMI compatible tools directly.

The structure of the Model Representation is organized in a folder structure, but not
standardized. Instead, the actual structure of the Model Representations’s content, e.g. code at
least as far as interfaces and externally accessible parts are concerned, is formally described in
the manifest file of the Model Representation. The Model Representation is "registered" in the
"__content.xml" registry of the eFMU container.

The manifest itself references to a manifest of a Algorithm Code Model Representation for
more detailed information.

For each different target - the combination of compiler and processor - there exist a dedicated
Production Code section inside an eFMU container. A special target is the generic one, where
the included C code doesn’t contain target specific parts, e.g. assember code sections or code
assuming a certain hardware platform. Such a generic C code is therefore portable, i.e.
compilable on an ARM architecture as well as on a i86 architecture. This flexibility allows for
including an FMU into the Production Code Model Representation, that uses the generated
Production Code and a FMI compatible interface.

An example use case for the FMU container is an early back-to-back test while

already using the target datatypes: After modelling an controller, developers can

easily check the resulting Production Code using FMI compatible tools.

A generic target allows for testing and simulating the Production Code in an environment
other than the target embedded device, which may require additional software parts to
interface with the environment. These software parts can simulate parts of an operating
system of the microcontroller, create stubs to represent other software functions that interact
with the software-under-test or handle inputs, outputs and the execution.

 Testing a Production Code Model Representation in a Processor-in-the-Loop

scenario, tools using their own execution frame on the targed board. To support

these use-cases this kind of code can be stored as Tool Specific Code inside the

Production Code Model Representation. The name of the tool and its version have

to be specified in the manifest file referencing the code.

5.2. Production Code Manifest

The Production Code manifest follows the general guidelines as pertaining to all manifests,
including the listing of relevant manifests and files. In addition it describes the content of the
"Code Files":

On the top level, the schema consists of the following elements:

Name Description

attributes
The attributes of the top-level element are the same for all
manifest kinds and are defined in section Section 2.3.1.
Current kind-specific values: kind =
"ProductionCode", xsdVersion (value is the current

Name Description

xsd version of the schema for the Algorithm Code model
manifest).

ManifestReferences

Reference to the manifest of the Algorithm Code on which
this Production Code manifest is based on. This element is
the same for all manifest kinds and is defined in section
Section 2.3.4.3.

Files
List of files referenced in this model representation. This
element is the same for all manifest kinds and is defined in
section Section 2.3.3.

CodeContainer
Defines the details of the production code. For details see
Section 5.2.2.

Annotations
Additional data that a vendor might want to store and that
other vendors might ignore. For details see Section 2.3.4.5.

The Production Code manifest describes the structure of the contained "Production Code".
Languages for the producion code include the "C" language and the "C++" language. The
manifest will give more detailed information on the exact requirements on the Production
Code language to integrate the code into an actual ECU software content.

The Production Code manifest focusses on aspect directly tied to the Production

Code itself in particular the technical aspects. Relevant aspect relating to the

algorithm or the "logical" concepts are referred to from the Algorithm Code

manifest (e.g. whether an object is a state or calibration parameter, input or output

etc.).

The Production Code manifest is an xml file with structured information about the Production
Code. It contains two sections:

• Production code description section: This section contains all information directly
pertaining to the code itself, i.e. the "technical realisation".

• Mapping section: this section contains all information relating to mapping the elements of
the technical realistion (aka. the C-code) to the logical elements of the Algorithm Code.

This distinction into logical (as e.g. described in the Algorithm Code) and technical parts is
crucial and is shown in one example here.

Example: Suppose a (logical) function f that computes outputs y1 and y2 from inputs x1 and
x2 and a state s1 using parameters p1 and p2. This logical function could be implemented in
several ways, e.g.:

• f1 working on global variables only. In this case the (technical) function signature is that
of a void void function and the expressions directly access the elements.

void f1() {

 ...

 s1 = ... // update of state s1

 y1 = ... // y1 expression

 y2 = ... // y2 expression

}

• f2 that takes the inputs as arguments and returns output y1 as return value and y2 via a
pointer. Access to state and parameters is through global variables

float f2(float x1, float x2, float *y2) {

 ...

 s1 = ... // update of state s1

 *y2 = ... // y2 expression

 return ...; // y1 expression

}

• f3 that that works like f2 but takes the states as a struct with two elements

… typedef struct { float s; float t; } states;

…

float f3(float x1, float x2, states myStates, float *y2) { … myStates.s = … // update of state s1
*y2 = … // y2 expression return …; // y1 expression }

• f4: In this example the parameter and the state are coupled in a data structure (e.g. a
spring with parameter being the rigidity of the spring and the state being the deflection).
As both are not in the same memory (one is in ROM the other in RAM), the one value is
referenced per pointer. The C function itselfs takes as input an array with the two pairs.

...
typedef struct {
 float *deflection;
 float rigidity;
} spring;

....

float f4(float x1, float x2, spring[] springs, float *y2) {
 ...
 springs[0].deflection = // update of state s1
 *y2 = ... // y2 expression
 return ...; // y1 expression
}

As can be easily seen by these example, there is a big difference between the logical variables
on which a function operates, and the representation of these in code. As the last two
examples show, this can even go so far that the code structure contains elements that do not
directly appear in the Algorithm Code.

Wheras the technical description part of the manifest relates solely to the technical
(realisation) aspects of the C Code, the mapping section is dedicated to bridge the gap
between the two levels of abstraction: the Algorithm Code and the Production Code.

5.2.1. Technical description of Production Code

The technical description part of the Production Code manifest specifies the following aspects
of the code:

• the underlying language including detailed information on the version of the language

o any restrictions / specification on the target (e.g. HW) for which the code is intended
for

o any restrictions / specification on the compilers to be used included specifics on
compiler versions and configuration

• Definition of the type (numeric) type system on the target. This section maps the
standardized (eFMI-) types onto the target types available on that specific target. These
may depend on the compiler (e.g. some compilers use "int" for 32 bit and "long" for 64 bit,
others use "long" for 32 bit and "long long" for 64 bit).

• Definition of the code itself. The code is thereby grouped in "Modules" which contain
source files (for the language "C" normally a module contains a ".c" and a ".h" file).

For each file the content (as far as relevant and accessible) is described. This includes:

• references ("includes") to other files (defined in the Production Code manifest).

• defined types in that file (refering to the defined and standardized target types). Usually
these are specifically defined names for the type like e.g. "uint8" that are used in the
actual Production Code. These defined types also contain definitions for structured types

• defined macros (if any)

• defined variables in the file

• defined functions in the file.

For Production Code Model Representations that contain e.g. AUTOSAR Classic or Adaptive
code, there exist additional so-called description files, describing the technical aspects of the
code. Those description files must be listed in the Code Container and are the alternative to
the above mentioned details in the manifest and must be use instead.

5.2.2. Code Container

The code container groups the actual Production Code Model Representaion content, and
gives specification for the following details:

Descript

ion

Name

language

Languag
e to be
used.
Currentl
y, the
following
values

are
possible:
"C" or
"C++".

standard

Relevant
language
standard
to be
used.

platform

The
target
platform.
Currentl
y, the
following
values
are
possible:
"Legac
y" (=
xxx)
"Class
ic" (=
xxx)
"AUTOS
AR" (=
xxx)
"Adapt
ive
AUTOSA
R" (=
xxx)

floatPrecision

Floating
point
precision
of the
target
platform.
Currentl
y, the
following
values
are
possible:
"32-
bit" or
"64-
bit".

description
Optional
descripti
on

Target

Unique
identifier
, if the
producti
on code
uses
target-
speciic
code
parts, for
example
assemble
r op
codes;
otherwis
e the
identifier
is the
default
Generi
c.

CompilerOptions

List of
Compiler
Options
for
Producti
on or
Binary
Code.
For more
details,
see
section
Section
5.2.2.1.

LinkerOptions

List of
Linker
Options
for
Producti
on or
Binary
Code.
For more
details,
see
section
Section
5.2.2.4.

TargetTypes

Defines
which
kind of
data type
(kind) in
the eFMI

specifica
tion is
mapped
to a
certain
platform
type.
Usually
all kinds
are listed
although
they are
not used
in the
producti
on code
containe
r. E.g. a
kind
"Bool"
may be
mapped
to
unsigned
char in
case of
C89; and
using
C99, the
kind
shall be
mapped
to _Bool.
For each
coded
type,
there
exists a
unique
TargetTy
pe in
order to
abstract
from the
platform
types.
For more
details,
see
section
Section
5.2.2.7.

CodeFiles

List of
files in
model
represen
tation,
i.e.
source
file

and/or
header
file
including
any
informat
ion
needed
to
integrate
the code
in an
environ
ment.
For more
details,
see
section
Section
5.2.3.

DescriptionFiles

List of
files in
model
represen
tation;
files
containi
ng
descripti
ve
content,
e.g.
AUTOSA
R files
(.arxml).
For more
details,
see
section
Section
5.2.4.

TechnicalInformationLookUps

Facilitate
s a quick
access to
informat
ion in the
manifest
and the
associate
d C files.
For more
details,
see
section
Section
5.2.5.

LogicalData

Defines
how the
logical
elements
(variable
s,
functions
etc.) are
mapped
to the
actual
data
structure
s and
elements
of
functions
and
defined
variables
. For
more
details,
see
section
Section
5.2.6.

Compiler Options

Name

Descript

ion

compileRoot

Director
y where
compilati
on
should
be
perform
ed.

CompilerSwitch

Compiler
switch,
see
Section
5.2.2.2.

Name

Descript

ion

PreprocessorDefinition

Preproce
ssor
definitio
n, see
Section
5.2.2.2.

AdditionalIncludeDirectory

Addition
al
include
directory
, see
Section
5.2.2.2.

OptionReferenceCompilerOptionReference Referenc
e to

Name

Descript

ion

option in
another
manifest
file, see
Section
5.2.2.3.

Compiler Option Type

Name

Descripti

on

id
Id of
option.

name
Name of
option.

value
Value of
option.

description

Optional
descriptio
n of
option.

optional

Definition
of option
is
optional.
Possible
values:
"false"
(default)
or
"true".

Compiler Option Reference

Name

Descript

ion

index

Index of
the
linker
option
reference
in the list
of
options
(first
linker
option =
1, second
linker
option =

Name

Descript

ion

2, etc).
The
indices of
the
choice
elements
of each
'LinkerO
ptions'
must be
consecuti
ve,
unique
and one
element
must
have

Name

Descript

ion

index
1referen
ces.

id

Id of
option
reference
.

manifestReferenceRefId If of
foreign

Name

Descript

ion

manifest
file.

foreignRefId

Id of
option in
foreign
manifest
file.

Linker Options

Name

Description

LinkerSwitch

The linker
switches of
type
[LinkerOptionT
ype].

Library
Library of type
[LinkerOptionT
ype].

AdditionalLibraryDirectory

Additional
library
directory of
type
[LinkerOptionT
ype].

OptionReferenceLinkerOptionReference

A list of option
references, see
[OptionReferen
ce].

Linker Option Type

Linker Option Type

Name

Description

Name

Descripti

on

id
Id of
option.

name
Name of
option.

value
Value of
option.

description

Optional
descriptio
n of
option.

optional

Definition
of option
is
optional.
Possible
values:
"false"
(default)
or
"true".

Linker Option Reference

Name

Descript

ion

Name

Descrip

tion

index

Index of
the
option
referenc
e in the
list of
option
referenc
es.

Name

Descrip

tion

id

Id of
option
referenc
e.

manifestReferenceRefId If of foreign manifest file.

manifestReferenceRefId Id of foreign manifest file.

foreignRefId Id of option in foreign manifest file.

Target Types

Target types define which kind of data type (kind) in the eFMI specification is mapped to a
certain platform type. Usually all kinds are listed although they are not used in the production
code container. E.g. a kind "Bool" may be mapped to unsigned char in case of C89; and using
C99, the kind shall be mapped to _Bool. For each coded type, there exists a unique TargetType
in order to abstract from the platform types.

Name

Description

id
The unique id of
the target type.

kind

The kind of the
target type. The
value must be
one of the
predefined kinds
from the
following list:
"efmiInteger
8",
"efmiUnsigne
dInteger8", …
,
"efmiUnsigne
dInteger64",
"efmiFloat32
",
"efmiFloat64
",
"efmiFloat12
8,

Name

Description

"efmiBoolean
", "efmiVoid".

codedType

The actual
Production Code
type to be used,
e.g. "unsigned
char".

Example:

<TargetType id="TT_float64" kind="efmiFloat64"
codedType="double"/>

5.2.3. Code Files

The code file section describes the actual content of a (production) code file. It refers to one of
the files listed in the "Files" section, so it is clear which file’s content it actually species

Description

Name

id Unique id.

fileType

Type of the
file. Allowed
values:
"Producti
onCode",

"Simulati
onCode",
"ToolSpec
ificCode"
.

codeType

Type of the
code.
Allowed
values:
"SourceFi
le",
"HeaderFi
le".

FileReferece

Reference to
a file
element in
this manifest
file, see
Section
2.3.4.2.

Includes

Definition of
include files,
see Section
5.2.3.1.

Typedefs

Definition of
typedefs, see
Section
5.2.3.2.

Macros

Definition of
macros, see
Section
5.2.3.2.3.

Variables

Definition of
variables,
see Section
4.1.6.

Functions

Definition of
functions,
see Section
5.2.3.2.5.

Example:

<CodeFile id="C_1" fileType="ProductionCode"
codeType="SourceFile">
 <FileReference fileRefId="F_22" kind="code"/>

</CodeFile>

Includes

Includes represent include preprocessor statements. Linker dependencies to certain libraries
are part of the linker sections of the BuildInformation.

Name

Descript

ion

codeFileRefId

id of the
included
file. This
attribute
might be
empty if
the
include
is of a
library.

Example:

 <Include codeFileRefId="F_1"/>

Typedefs

Typdefs are used to either define structured types, array types or alias types (of predefined
types).

Descript

ion

Name

id
Unique
id of
typedef.

name
name of
the type

Alias

Alias
means
renamin
g of
types,
e.g.
"typed
ef

unsign
ed
char
MyUint
8_t;".
Therefor
e the
target
TypeRe
fId is
always
set and
referenc
es the
certain
TargetTy
pe in the
target
type list
and in
cases of
cascaded
Typedefs
, also the
typeDe
fRefId
is set.
Usually,
a
TargetTy
pe is
referenc
ed by a
most one
Typedef
statemen
t. If a
basetype
is
renamed
(e.g.
Int16 →
MyInt16)
or a user
type
based on
an
existing
type is
defined,
two or
more
Typedef
statemen
ts may
point to
a single
TargetTy
pe.

Pointer

Declares
a type
that is a
pointer
to
another
type.
This type
can be
any
other
defined
type.

Components

Definitio
n of a
struct.
Structs
in structs
are
allowed
but
Dimensi
ons have
to be
specified
at
variable
definitio
ns only.
For
details
see
Section
5.2.3.2.1.

EnumerationItems

Definitio
n of an
enum.
For
details
see
Section
5.2.3.2.2.

The following is an example of a simple alias declaration

Example:

 <Typedef name="Float32" id="TD_F32">
 <Alias targetTypeRefId="TT_float32" />
 </Typedef>

The more complex data structure of function spring of the fourth example would be
described by the following snipppet:

 <Typedef name="spring" id="TD_spring">
 <Components>
 <Component id="C_1" name="deflection" typeRefId="TD_F32"
pointer="true">
 <Component id="C_2" name="rigidity" typeRefId="TD_F32">
 <Components>
 <Alias targetTypeRefId="TT_float64" />
 </Typedef>

Components (struct)

Components declare a structure and are a list of Component:

Name

Descrip

tion

id
Unique
id.

Name Name of
the field.

Name

Descrip

tion

Must be
unique
within
one
<Compo

Name

Descrip

tion

nents>
tag.

typeDefRefId Referenc
e of the

Name

Descrip

tion

type of
the field.

pointer Boolean
flag on

Name

Descrip

tion

whether
the field
is a
referenc
e or not

Name

Descrip

tion

(optiona
l field).

Each field can be an array. This is indicated with the subelement <Dimensions> that
contains a list of <Dimension> elements, each with the following attributes:

Name Description

number The index of the dimension.

size The size (number of elements) of that dimension.

valueMacroRefId
Instead of the size a reference to the value macro defining the
size.

Enumeration Items (enum)

<EnumerationItems> declares an enumeration type with the list of enumeration items.
Each <EnumerationItem> has the following fields

Name Description

id Unique id.

name
Name of the enumeration literal. This name must be unique within an
enumeration definition (`<EnumerationItems>)

value Encoded value (this field is optional).

Macros

Here all macro definitions in the source and header file of the module are listed that are
relevant to integrate the code. For example system constants used to define integration
relevant vector variables must be part of the list, whereas macros in the code used as guards
must not be part of the list.

There are two kind of macros "ValueMacro" and "ParameterizedMacro". Both are contained as
children in the "Macros" tag.

A value macros defines a symbol and assigns a value to it. The value must be a number

Name Description

id Unique id.

Name Description

name Name of the macro variable.

value Concrete value of the macro variable.

Annotations
Additional data that a vendor might want to store and that other
vendors might ignore. For details see Section 2.3.4.5.

A parameterized macro defines however only the signature of a macro with parameters.
Thereby each parameter is given as a "Parameter" element with attrubtes for its name and its
position (since xml is not guaranteed to be order-preserving). The positions must be the
values 0 … n-1 where n is the number of parameters.

Name Description

name Name of the macro argument.

Number Position of the macro argument.

The following example shows the declaration of a value and a parametrized macro

 <Macros>
 <ValueMacro id="VM_1" name="num_Cyl" value="4"/>
 <ParameterizedMacro id="PM_1" name="myMax">
 <Parameter name="a" number="0">
 <Parameter name="b" number="1">
 </ParameterizedMacro>
 </Macros>

Variables

<Variable> elements are grouped in the <Variables> element.

Each variable has the

following attributes:

Name Description

id Unique id of the variable.

name Name of the variable.

typedefRefId id of the defined type of the variable.

address Optional address.

value

Optional initial value of that variable that must be consistent which
the initial value in Algorithm Code. Value might be different because
of a decision to implement the Algorithm Code variable in a different
datatype, for example Algorithm Code variable is Float64 and
Production Code variable is Float32.

min Optional minimum value (see value).

max Optional maximum value (see value).

const Optional Boolean value on whether the variable is constant.

volatile Optional Boolean value on whether the variable is volatile.

pointer
Optional Boolean value whether the variable is a pointer of the type
or a variable of that type.

Name Description

constPointer Optional Boolean value whether the variable is a const pointer.

static Optional Boolean value on whether the variable is static.

Similar like a field in a <Component> a <Variable> can also be multidimensional by
adding the <Dimensions> element. The following example defines a 2x2 array of variables
with name "T".

 <Variable id="V_33" name="T" typeDefRefId="TD_F64"
pointer="false" value="0.1" const="false" volatile="true"
static="false">
 <Dimensions>
 <Dimension number="0" size="2">
 <Dimension number="1" size="2">
 </Dimensions>
 </Functions>

Functions

The described functions of (production) code files are grouped in the "Functions" tag. Each
function has an "id" and a "name". In addition it has a subelement for the return parameter
(if the function is void, the subelement is not present) and a list of "formal parameter". The
return parameter (if present) and the formal parameters list.

Example:

<Functions>
 <Function id="Func_1" name="doStep">
 <FormalParameters>
 <FormalParameter id="V_33" name="T" number="0"
typeDefRefId="TD_F64">

 </FormalParameters>
 <Function/>
 <Function id="Func_2" name="doStep2">
 <ReturnParameter id="Func_2_ret"
typeDefRefId="TD_F64" pointer="false">
 <Function/>
<Functions/>

5.2.4. Description Files

List of files containing descriptive content, for example AUTOSAR files (.arxml). Those files are
the alternative to the detailed code description by e.g. typedefs, variables, etc. Usually all kinds
of description files are allowed, but as they are used as alternative to the detailed description,
elements that should be mapped to elements in the algorithm code manifest must be uniquely
identifyable, e.g. they must have identifiers that are unique within a file, similar to identifiers
used in manifests, or reachable by a given path expression.

Technically, a DescriptionFile has a FileReference pointing to a file in the manifest’s file
list and additional optional Properties as property value list.

5.2.5. Technical Information Lookups

Facilitates a quick access to information in the manifest and the associated C files.

Name

Desc

ripti

on

DeclaredTypeDefs

List
of all
typed
ef
state
ment
s in C
code

GlobalAccessableDataElements

List
of all
globa
l
varia
bles
and
globa
l
avail
able
acces
s
functi
ons

Both lists consist of elements, DeclaredTypedef and
GlobalAccessableDataElement respectively, that only have a reference attribute to a
certain kind of element.

Attribute of DeclaredTypedef:

Name Description

typeDefRefId Reference to a TypeDef element in the manifest.

Attribute of GlobalAccessableDataElement:

Name Description

variableRefId Reference to a Variable element in the manifest.

5.2.6. Logical Data

Defines how the logical elements (variables, functions etc.) are mapped to the actual data
structures and elements of functions and defined variables.

The description in the code files basically describes only Production Code parts. As shown in
the beginning of this section the mapping to the Algorithm Code is sometimes not obvious, for
example because variables in the Algorithm Code do only appear as arguments or are may be
part of structures or arrays. Therefore we describe this mapping explicitely.

The mapping is given in the element LogicalData which contains the DataReferences
and the FunctionReferences.

A DataReference itself contains the following attributes and elements to identify the
variable in the Production Code and the mapped variable in the Algorithm Code

Description

Name

ForeignVariableReference

Subelement of
type
ForeignRef
erence to the
element in the
Algorithm
Code.

GlobalVariable

Reference to a
declared
global
accessible
variable in the
current
manifest. If the
referenced
variable is of a

complex type,
the
componentI
dentifier
gives the
"path" within
that complex
variable. The
"." is used as
component
separator,
brackets are
used for array
index, e.g.
"a.b[3].c"
means that the
refered
variable has a
field "a" that
itself contains
a field "b"
which is an
array of a
complex type
that contains a
field "c".

FormalParameter

Reference to a
formal
parameter of a
global
accessible
function by
the
formalPara
meterRefId
attribute in
the current
manifest. If the
referenced
parameter is
of a complex
type, the
componentI
dentifier
gives the
"path" within
that complex
parameter.
The "." is used
as component
separator,
brackets are
used for array
index, e.g.
"a.b[3].c"
means that the
referred
parameter has
a field "a" that
itself contains

a field "b"
which is an
array of a
complex type
that contains a
field "c".

ExternalDefinitionReference

Reference to
an item by the
qualifiedN
ame attribute
inside a
referenced
description
file by a
descriptio
nFileRefId
attribute.

A FunctionReference is similar to the DataReferences mapping Algorithm Code functions,
mainly the block interface functions, to functions in the Production Code.

Name

Description

ForeignFunctionReference

Subelement of
type
ForeignRef
erence to
the element in
the Algorithm
Code.

GlobalFunction

Reference to a
declared
global
accessible
function in the
current
manifest by
functionRe
fId attribute.

ExternalDefinitionReference

Reference to
an item by the
qualifiedN
ame attribute
inside a
referenced
description
file by a
descriptio
nFileRefId
attribute.

5.3. Production Code Language

A Production Code Model Representation includes code files that are modules in terms of the
C or C++ programming language.

The C programming language is descripteddescribed in [KR79] and in a destilled version in
[CLangWiki]. A similar description of the C++ programming language gives [Str13] or as a
destilled version [CPPLangWiki].

For both programming languages, the Motor Industry Software Reliability Association
(MISRA) has published a set of guidelines to facilitate code safety, security, portability and
reliability in the context of embedded software systems, see [MISRA12], [MISRA08]. In cases
where the C code is not hand-coded but generated by a tool different guidelines [MISRA04]
shall be fulfilled.

An example is the calling of an algorithm to solve a scalar nonlinear function, where a function
pointer and a void pointer for the context is passed. (This is necessary, as the function
depends on the internal state of the model.)

int solveOneNonlinearEquation (Real_t (*f_Nonlinear)(Real_t u,

void* data), Real_t u_min, Real_t u_max,

 Real_t tolerance, Real_t *u, void

*data)

This could be called from C Code, e.g., by

err = solveOneNonlinearEquation(my_f_Nonlinear, 1.0, 8.0, tol,

&u, &mydata);

where the function 'my_f_Nonlinear' is defined by

 Real_t f_Nonlinear_3(Real_t u, void *data) {

 myDataType *mydata = (myDataType*)data;

 return mydata->p[0] + log(mydata->p[1]*u) - u;

}

This is considered safe for the usage for auto-generated code, where the void pointer is passed
together with a function pointer to the function that uses this void pointer as one of its
arguments.

For individual Production Code sections, compliance with Coding Guidelines like MISRA:2012
is annotated in the manifest xml-File.

Common for both languages is that especially for resource limited embedded systems a
number of language features are limited or at least not available. For example:

• dynamic memory handling

• only compile-time fixed array sizes

• functions typically offered by operating system

• availability of mathematical functions

• no runtime type information

• …

Both languages are standardized by the International Organization for Standardization (ISO)
and the following table lists an excerpt of different standards and their informal name(s):

Reference Name(s)

ISO/IEC 9899:1990 ANSI C, ISO C, C89, C90

ISO/IEC 9899/AMD1:1995 C95

ISO/IEC 9899:1999 C99

ISO/IEC 9899:2011 C11

ISO/IEC 9899:2018 C18

ISO/IEC 14882:1998 C++98

ISO/IEC 14882:2003 C++03

ISO/IEC 14882:2011 C++11, C++0x

ISO/IEC 14882:2014 C++14, C++1x

ISO/IEC 14882:2017 C++17, C++1z

A Production Code Model Representation must indicate the actualactually used language and
standard of the modules in the manifest file.

6. Binary Code Model Representation

6.1. Introduction

The Binary Code Model Representation is intended to be a container to exchange software
artifacts in binary form. Such binaries can be directly integrated with other embedded
software running on an ECU. The main purpose of this format is the protection of intellectual
property. Shareholders can exchange a software solution without revealing crucial
implementation or algorithm details to the user of a particular solution. Beside the protection
of intellectual property, the Binary Code Model Representation also provides protection of
integrity of the solution. The software solution cannot be altered except for the intended
interface such as calibration parameters. Furthermore the binary representation unitizes

separate functionalities into dedicated binary files. These binary files can be used
independently in different contexts.

An eFMU container might consist of multiple Binary Model Representations which may
originate from the same Production Code Model Represention.

Figure 1. Structure of Binary Model Represention

A Binary Code Model Representation consists at least of the following items:

• Object files or static libraries in Executable and Linking Format (ELF) for the use for
embedded devices or dynamic linked libraries for co-simulation purposes in Windows
environments

• Container manifest

Furthermore, it might include a file containing information necessary for calibration,
measurement and diagnosis purposes and a linker script that contains the necessary
information in order to link the software for a particular target.

6.2. Manifest

Since a binary container is subject to an integration on a particular target ECU, its manifest has
to provide any necessary information about

• the components interface,

• the compiler and its configuration,

• the linker and its configuration,

• the target

Optionally, there might exists

• information about the run time behavior

• meta information regarding the source code (e.g. MISRA Compliance, Code Quality
reports, etc.)

• Calibration

The Binary Code manifest is an XML file with structured information about the Binary Model
Representation.

Some of the above points are already available in the Production Code Model

Representation. Such information (interface, MISRA Compliance) will be referenced

by the Binary Code manifest from the Production Code manifest.

6.2.1. Structure of the Manifest

The Binary Code manifest:

consists of the following elements:

On the top level, the schema consists of the following elements:

Name Description

attributes The attributes of the top-level element are the same for all
manifest kinds and are defined in section Section 2.3.1.
Current kind-specific values: kind = "BinaryCode",

Name Description

xsdVersion (value is the current xsd version of the
schema for the Binary Code model manifest).

ManifestReferences

Reference to the manifest of the Production Code on which
this Binary Code manifest is based on. This element is the
same for all manifest kinds and is defined in section Section
2.3.4.3.

Files
List of files referenced in this model representation. This
element is the same for all manifest kinds and is defined in
section Section 2.3.3.

BinaryContainer
Defines the essential content of the actual container. For
details see Section 6.2.2.

Annotations
Additional data that a vendor might want to store and that
other vendors might ignore. For details see Section 2.3.4.5.

The following subsections focus on the BinaryContainer element which represents the
actual Binary Model Representation.

6.2.2. Binary Container

Element BinaryContainer

consists of the following elements:

Name Description

BuildConfiguration
The BuildConfiguration describes the actual build
environment used to create the binary objects in the
container. For more details see Section 6.2.2.1.

Modules

The Modules section describes all relevant binaries and
source code references required or available for the binary
model representation container. For more details see
Section 6.2.3.

BinaryContainerInfo
The BinaryContainerInfo element contains
additional and optional information relevant to the end
user. For more details see Section 6.2.4.

Each of the above listed elements has to exist exactly once in a BinaryContainer.
Additionally, the the BinaryContainer has the following Attributes:

Name Description

toolVersion
This attribute is used by the the generating tool to store its Name and
Version.

BuildConfiguration

Element BuildConfiguration consists of all information related to the compilation and
linking of the model representation:

This element

contains exactly one of each of the following elements:

Name Description

Compiler
This element unambigously describes the compiler
that has been used to create the binary artifacts. For
details see Section 6.2.2.2.

Linker
This element unambigously describes the linker that
has been used to create the binary artifacts. For details
see Section 6.2.2.3.

CompilerOptionSets
This element stores all possible compiler settings used
to create any binary element in the container. For
details see Section 6.2.2.4.

DefaultCompilerOptions
This element refers to a CompilerOptionSet that
has to be used to create the binary. For details see
Section 6.2.2.5.

LinkerOptionSet This element describes the relevant linker option for
the above linker that has been used to create the

Name Description

binary object. For details see [definition-of-linker-
option-set].

CompileTarget
This element describes the target platform, the binary
has been compiled for. For details see [definition-of-
compile-target].

It is possible that a Binary Code Model Representation needs to be combined with

some source from the Simulation Code, Tool-specific code of the Production Code

model or even from external generators in order to analyze, integrate or test the

model. In such cases additional sources need to be compiled and linked together.

To support such a use case, the BuildConfiguration of a Binary Model

Representation needs to provide all required information to be able to compile and

link additional sources with the binary artifacts.

Compiler

In order to integrate the object code, it is required to have all relevant information about the
compile process of a binary specified. Hence, the compiler is to be specified in the manifest as
follows:

All attributes are mandatory and are

defined as follows:

Name Description

id
A unique id that has to be referenced by any corresponding
CompilerOptionSet.

vendor
The name of the Company/Vendor that has created or issued the
compiler.

name A unique, unambiguous name of the compiler or compiler suite.

version
The specific version of the above compiler that has been used to
create the binary.

Name Description

executableName The name of the actual executable of the compiler (suite).

The attributes vendor, name and version must clearly identify a particular compiler.
Furthermore, it should be possible to use the value executableName together with a
matching CompilerOptionSet to automatically compile a source file.

The following example depicts a compiler configuration for a target compiler for

the TriCore processor archtecture.

<Compiler id="ID_1000001" vendor="Altium"
 name="TASKING VX-toolset for TriCore: C compiler"
version="v4.2r2" executableName="ctc"/>

Linker

Similar to the definition of the compiler infrastructure and options, the linker and link options
have to be declared to be known to the integration engineer.

All attributes are mandatory and

defined as follows:

Name Description

vendor
The name of the Company/Vendor that have created or issued the
linker.

name Unique, unambiguous name of the linker .

version
The specific version of the above linker that have been used to
create the binary.

executableName The name of the actual executable of the linker (suite).

The attributes vendor, name and version must clearly identify a particular linker.
Furthermore, it should be possible to use the value executableName together with the
below defined LinkerOptionSet to automatically link object files together.

The following example depicts an linker configuration for the TriCore processor

architecture.

<Linker id="ID_1000002" vendor="Altium" name="TASKING VX-toolset
for TriCore: object linker" version="v4.2r2"
executableName="ltc"/>

CompilerOptionSets

The CompilerOptionSets contains one or more CompilerOptionSet which defines
settings and switches used to create at least one of the contained binary artifacts.

Name

Description

id

The unique
identifier of
the the
CompilerO
ptionSet
within the
manifest.

compilerRefId

A reference
to a
configured
compiler for
the
Compilers
Section.

CompilerOptions

List of
compiler
options for
Production
or Binary
Code, see
[CompilerOp
tions]

The CompilerOptions list is defined as:

Name

Description

compileRoot

Directory where
compilation
should be
performed.

CompilerSwitch

The compiler
switches of type
[CompilerOption
Type].

PreprocessorDefinition

Preprocessor
definitions of
type
[CompilerOption
Type].

Name

Description

AdditionalIncludeDirectory

Additional
include directory
of type
[CompilerOption
Type].

OptionReferenceCompilerOptionReference

A list of option
references, see
[CompilerOption
Reference].

The CompilerOptionType attributes are defined as:

Name

Description

index

Index of the
compiler
option in the
list of options
(first
compiler

Name

Description

option = 1,
second
compiler
option = 2,
etc). The
indices of the

Name

Description

choice
elements of
each
'CompilerOpt
ions' must be
consecutive,

Name

Description

unique and
one element
must have
index 1.

Name

Description

id
Unique id of
compiler
option.

Name

Description

name
Name of
option.

Name

Description

value
Optional
value of
option.

Name

Description

description
Optional
description of
option.

Name

Description

optional

Optional
Boolean with
default
false,
defining
whether the

Name

Description

option is
optional.

The OptionReferenceCompilerOptionReference list is defined as:

Name

Descripti

on

index

Index of
the
compiler
option in
the list of
options
(first
compiler
option = 1,

Name

Descripti

on

second
compiler
option = 2,
etc). The
indices of
the choice
elements
of each
'Compiler

Name

Descripti

on

Options'
must be
consecutiv
e, unique
and one
element
must have
index 1.

Name

Descripti

on

id
Unique id
of option
reference.

ForeignOptionReference Reference
to another
manifest

Name

Descripti

on

file of type
ForeignRe
ference.
For details
see
Section
2.3.4.3.

The following example depicts some of the options that have to be provided in

order to compile code for the Infineon Tricore TC27x family. Most options are

special to this compiler family.

<CompilerOptionSets>
 <CompilerOptionSet id="ID_1001" compilerRefId="ID_1000001">
 <CompilerOptions>
 <CompilerSwitch>
 <id>ID_100010</id>
 <name>--iso</name>
 <value>90</value>
 </CompilerSwitch>
 <CompilerSwitch>
 <id>ID_100011</id>
 <name>--align</name>
 <value>4</value>
 </CompilerSwitch>
 <CompilerSwitch>
 <id>ID_100012</id>
 <name>--optimize</name>
 <value>3</value>
 </CompilerSwitch>
 <CompilerSwitch>
 <id>ID_100013</id>
 <name>--tradeoff</name>
 <value>4</value>
 </CompilerSwitch>
 <CompilerSwitch>
 <id>ID_100014</id>
 <name>--source</name>
 </CompilerSwitch>
 <CompilerSwitch>
 <id>ID_100015</id>
 <name>--error-file</name>
 </CompilerSwitch>
 <CompilerSwitch>
 <id>ID_100016</id>
 <name>--rename-sections=sect</name>
 </CompilerSwitch>
 <CompilerSwitch>
 <id>ID_100017</id>
 <name>--core</name>
 <value>tc1.6.x>
 </CompilerSwitch>
 <CompilerSwitch>
 <id>ID_100018</id>
 <name>-Hsfr/regtc27x.sfr</name>
 </CompilerSwitch>
 <CompilerSwitch>
 <id>ID_100019</id>
 <name>--default-near-size</name>
 <value>0</value>
 </CompilerSwitch>
<CompilerOptionSets>

Default Compiler Options

While each module might have its own compiler options referenced from the
CompilerOptionsSets of the BinaryContainer, a default option set for the container
can be defined. The default compiler options are used in any case where no other
CompilerOptionsSet is provided.

The DefaultCompilerOptions are specified as follows:

Name

Description

compilerOptionsRefId

Reference to a
previously defined
CompilerOption
Set to be used as
default.

The following example depicts an default option set that refers to the

CompilerOptionSet defined in the parent BinaryContainer element.

<DefaultCompilerOptions compilerOptionsRefId="ID_1001" />

LinkerOptionSet

The LinkerOptionSet contains one LinkerOptions which defines linker settings and
switches.

Name

Description

LinkerOptions

List of linker
options for
Production or
Binary Code,
see
[LinkerOption
s]

FileReference

The linker
script is
referenced
with a
FileRefere
nce element.

The LinkerOptions list is defined as:

Name

Description

LinkerSwitch

The linker
switches of type
[LinkerOptionTy
pe].

Library
Library of type
[LinkerOptionTy
pe].

AdditionalLibraryDirectory

Additional library
directory of type
[LinkerOptionTy
pe].

Name

Description

OptionReferenceLinkerOptionReference

A list of option
references, see
[LinkerOptionRef
erence].

The LinkerOptionType attributes are defined as:

Name

Descript

ion

index
Index of
the
option in
the linker

Name

Descript

ion

comman
d line.

Name

Descript

ion

id
Unique id
of linker
option.

Name

Descript

ion

name
Name of
option.

Name

Descript

ion

value
Optional
value of
option.

Name

Descript

ion

description

Optional
descripti
on of
option.

Name

Descript

ion

optional

Optional
Boolean
with
default
false,
defining

Name

Descript

ion

whether
the
option is
optional.

The OptionReferenceLinkerOptionReference list is defined as:

Name

Descriptio

n

index

Index of
the option
in the
linker
command
line.

Name

Descriptio

n

id
Unique id
of option
reference.

ForeignOptionReference
Reference
to another
manifest
file of type

Name

Descriptio

n

ForeignRef
erence. For
details see
Section
2.3.4.3.

The following example depicts some of the options that have to be provided in

order to compile code for the Infineon Tricore TC27x family. Most options are

special to this linker family.

<LinkerOptionSet>
 <LinkerOptions>
 <LinkerSwitch>
 <id>ID_100010</id>
 <name>output</name>
 <value>dummy.elf:ELF</value>
 </LinkerSwitch>
 <LinkerSwitch>
 <id>ID_100011</id>
 <name>no-warnings</name>
 </LinkerSwitch>
 <LinkerSwitch>
 <id>ID_100012</id>
 <name>incremental</name>
 </LinkerSwitch>
 <LinkerSwitch>
 <id>ID_100013</id>
 <name>lsl-file</name>
 <value>TC277.lsl</value>
 </LinkerSwitch>
 <LinkerSwitch>
 <id>ID_100014</id>
 <name>map-file</name>
 <value>mapfile.map</value>
 </LinkerSwitch>
 <LinkerOptions>
 <FileReference fileRefId="ID_999915" kind="LinkerScript" />
</LinkerOptionSet>

Target

In order to decide whether a target ECU is (technically) suitable for a particular binary with
respect to target optimization and assumptions done during Production Code generation
regarding hardware, the manifest has to specify the following items:

To define the target ECU

the binary representation is compiled for, this section defines the following attributes:

Name Description

vendor
The manufacturer of the the target
platform/processor.

Name Description

targetName The name of the architecture.

chipVersion
The exact version of processor used in the
architecture.

instructionSetArchitecture
A unique identifier for the instruction set used by
the chip.

endianess
Describes whether the target uses Big-Endian or
Little-Endian byte order.

registerWidth Declares the bit width of the registers of the chip.

addressWidth
Declares the bit width of a memory address in
the target.

The following example depicts the target information needed for a TC277

Processor within a TriCore embedded target.

<CompileTarget id="ID_100001" vendor="Infineon"
targetName="TriCore" chipVersion="TC277 C-Step"
instructionSetArchitecture="TC1.6E" endianess="LITTLE"
registerWidth="32" addressWidth="32"/>

6.2.3. Modules

The Modules section lists and describes all relevant binaries contained in the Binary Model
Representation. Furthermore, it lists all source code references to the Production Code
container that are provided with the binary files.

The Modules section consist of a list of one or more BinaryModule items.

A BinaryModule

describes a binary object in the Binary Code Model Representation. It has the following
attributes:

Name Description

id A unique identifier for further referencing.

creator The creating tool or person.

creationDate
The date, the particular binary moduel has been
created.

compilerOptionSetRefId
A reference to the CompilerOptionSet used for
generation of the object file.

A BinaryModule contains one ObjectFile element and zero or more
SourceFileReference:

Name Description

ObjectFile
The actual binary object in the container. There can be only
one object file per Binary module.

SourceFileReference
Each element refers to a code file in production Code
manifest.

SourceFileReference elements refer to possibly required CodeFile elements

from the Production Code Model. Those files are not part of the object file but

might be necessary for further processing steps, e.g., a PiL simulation of th object

file.

Each ObjectFile has the following attributes:

Name Description

id A unique identifier for further referencing.

Additionally, it consists of the following elements:

Name Description

FileReference
Reference to the actual binary object file. The kind of the
FileReference is either "RelocatableObjectFile" or
"ExecutableObjectFile". This element is mandatory.

SourceFileReference

The SourceFileReference elements refer to
CodeFile elements of the Production Code Model
Representation which have been used to generate the
binary object file. The presence of the actual source files in
the Production code container is not required. The
manifest information, however, needs to be available.

The SourceFileReference element has the following attributes:

Name Description

id A unique identifier for further referencing.

fileRefId
Reference to the code Files in the Production Code manifest
via a ForeignFile reference in the manifest Files
section.

CompilerOptionSetId
If a CompilerOptionSetId is specified, it must be used
for compiling this code artifact. Otherwise, the
DefaultCompilerOptions must be used.

Each ObjectFile has the following attributes:

Name Description

id A unique identifier for further referencing.

Additionally, it consists of the following elements:

Name Description

FileReference

Reference to the actual binary object file. The
kind of the FileReference is either
"RelocatableObjectFile" or "ExecutableObjectFile".
This element is mandatory.

ForeignSourceFileReference

The ForeignSourceFileReference
elements refer to CodeFile elements of the
Production Code Model Representation which
have been used to generate the binary object file.
The presence of the actual source files in the
Production code container is not required. The
manifest information, however, needs to be
available.

The following example shows a snippet for a very simple model. It consists of one

non-executable object file that have been generated from two ("Production Code")

source files.

<ForeignFile id="ID_999920">
 <ForeignReference foreignRefId="ID_9"
manifestReferenceRefId="ID_0000001" />
</ForeignFile>
<ForeignFile id="ID_999921">
 <ForeignReference foreignRefId="ID_10"
manifestReferenceRefId="ID_0000001" />
</ForeignFile>
<ForeignFile id="ID_999922">
 <ForeignReference foreignRefId="ID_5"
manifestReferenceRefId="ID_0000001"/>
</ForeignFile>
<ForeignFile id="ID_999923">
 <ForeignReference foreignRefId="ID_1"
manifestReferenceRefId="ID_0000001" />
</ForeignFile>
<ForeignFile id="ID_999924">
 <ForeignReference foreignRefId="ID_3"
manifestReferenceRefId="ID_0000001" />
</ForeignFile>
[...]
<Modules>

 <BinaryModule id="ID_4" creator="JDoe" creationDate="2018-08-
09">
 <ObjectFile id="ID_10">
 <FileReference fileRefId="ID_01" kind="RelocatableObjectFile"
/>
 <SourceFileReference id="ID_02" fileRefId="ID_999920" />
 <SourceFileReference id="ID_03" fileRefId="ID_999921" />
 </ObjectFile>
 <SourceFileReference id="ID_5"fileRefId="ID_999922" />
 <SourceFileReference id="ID_1" compilerOptionSetRefId="ID_46"
fileRefId="ID_999923" />
 <SourceFileReference id="ID_3" compilerOptionSetRefId="ID_46"
fileRefId="ID_999924" />
 </BinaryModule>
</Modules>

6.2.4. Binary Container Info (optional)

The previously described elements of the manifest for the Binary Code Model Representation
are mandatory. However, there is also information that might not be necessary to describe a
binary but very helpful in the actual use cases for the Binary Code Model Representation such
as integration or validation.

To store and provide this information, the manifest contains the BinaryContainerInfo
section. A BinaryContainerInfo element might contain a description for each of the
following topics

• mapping information (memory, registers, etc.)

• run time behavior

• calibration information

• measurement information

• information about the diagnosis interface

The BinaryContainerInfo element is defined as follows:

It contains the following elements:

Name Description

RunTimeComplianceInformation
Information regarding run time behavior of
the different functions provided by the Binary
Code model representation.

FileReference

In addition to the run time information, it is
also possible to provide reference to files that
give further information regarding the above
mentioned topics. The kind of the
FileReference indicates which topic is
tackled.

Possible kinds are: MapFile,
CalibrationInformationFile,
MeasurementInformationFile,
DiagnosisInformationFile,
ValidationAndVerificationFile,
ComplianceInformationFile, LicenseFile.,
ConfigurationFile.

Mapping Information

In order to provide the integration engineer with additional information about a binary file
that has already has been linked, a map file can be specified in the MapFileReference
element.

The following example shows, how a map file can be provided using the

combination of the File element declared for the Manifest and the actual

FileReference with the kind="MapFile".

<File id="ID_999913" path="/objects/" name="SpeedController.map"
role="other" needsChecksum="true"
 checksum="A43C0994FAD1247988C2AA8A90CCA2E241CF5687" />
[...]
<BinaryContainerInfo>
 <FileReference fileRefId="ID_999913" kind="MapFile" />
</BinaryContainerInfo>

The map file can be used to easily inspect information about the memory mapping

and, memory usage. Furthermore general information about estimated stack size

and the overall link process can be provided here.

Run Time Behavior

In order to integrate a function defined in an eFMI into a binary for the target ECU, it is
required to have information about the run time behavior to decide whether there are enough
resources available in order to coexist with additional functions or tasks running on the same
ECU.

This information might help the integration engineer to identify possible

bottlenecks before he starts the actual integration.

Hence, the manifest can specify RunTimeComplianceInformation as additional, optional
information.

If RunTimeComplianceInformation is provided, it can specify the run time behavior for
one or more functions as follows:

It consists of one ForeignFunctionReference that refers to the function in the manifest
of the Production Code model representation. The information about the run time behavior is
described by the following attributes:

Name Description

id A unique identifier for further referencing.

wcExecTime The maximum time consumed by the function in the worst case.

wcStackSize The maximum stack size required by the function in the worst cas.

wcMemSize The maximum memory consumed by the function in the worst case.

Note that valid units have to be used for each attribute by the author.

The following example shows how the RunTimeComplianceInformation can

be defined for some function.

<BinaryContainerInfo>
 <RunTimeComplianceInformation>
 <RunTimeCompliance id="ID_100301" wcExecTime="8.4ms"
wcStackSize="70kb" wcMemSize="840kb">
 <ForeignFunctionReference foreignRefId="ID_41"
manifestReferenceRefId="ID_0000001" />
 </RunTimeCompliance>
 </RunTimeComplianceInformation>
</BinaryContainerInfo>

Calibration

In order to be able to calibrate the binary object provided by the Binary Code Model
Representation with common, widely used calibration tools, the manifest might specify one or
more files containing calibration information. Calibration information is given using
FileReference elements with the kind="CalibrationInformationFile".

 The following code snippet shows how a calibration file can be provided.

<File id="ID_999912" path="/" name="myFunction.a2l" role="other"
checksum="0DC09613F414FFCE10865AF3AD3EC31D3ED61EA8"
needsChecksum="true" />
[...]
<BinaryContainerInfo>
 <FileReference fileRefId="ID_999912"
kind="CalibrationInformationFile" />
</BinaryContainerInfo>

 An incomplete and optional A2L file provides the symbols used for calibration

purposes. When the integrator performs the final linking, the memory addresses of

all A2L files of the used software functions are updated. The resulting A2L files can

be used by calibration tools to dynamically change parameters for example.

Measurement

In order to measure internal values of the controller software during the testing and
validation phase, the manifest might specify one or more file containing measurement
information. Measurement information is given using FileReference elements with the
kind="MeasurmentInformationFile".

The following code snippet shows how a measurement information file can be

provided. Note that in this example, in case of an A2L-File, the same file might be

used for calibration and measurement.

<File id="ID_999912" path="/" name="myFunction.a2l" role="other"
checksum="0DC09613F414FFCE10865AF3AD3EC31D3ED61EA8"
needsChecksum="true" />
[...]
<BinaryContainerInfo>
 <FileReference fileRefId="ID_999912"
kind="MeasurmentInformationFile" />
</BinaryContainerInfo>

Diagnosis

ECU software often provides some subroutines for diagnosis that is used for testing and
maintenance. Hence, the manifest of a Binary Model representation can contain one or more
files that provide information for diagnosis tools. Diagnosis information is given using
FileReference elements with the kind="DiagnosisInformationFile".

The following code snippet shows how a diagnosis information file can be

provided.

<File id="ID_999914" path="/" name="myFunction.cdd" role="other"
checksum="E7A58CD816076EE26DE1D6BF2F13630000675FB2"
needsChecksum="true" />
[...]
<BinaryContainerInfo>
 <FileReference fileRefId="ID_999914"
kind="DiagnosisInformationFile" />
</BinaryContainerInfo>

Compliance

Since the main intention of the Binary Code container is the protection of intellectual
property, the source code usually cannot be checked according to compliance to relevant
standards. However, since this information might be of interest for the integrating company,
an eFMI binary container shall have an optional section to define one or more files describing
the components compliance. Diagnosis information is provided using FileReference
elements with the kind="ComplianceInformationFile".

The following code snippet shows how a compliance information file can be

provided.

<File id="ID_999910" path="/doc/" name="MISRA.doc" role="other"
checksum="27D8D7BB69E1D7E98C7A278C5A48199CE7B65399"
needsChecksum="true" />
[...]
<BinaryContainerInfo>
 <FileReference fileRefId="ID_999910"
kind="ComplianceInformationFile" />
</BinaryContainerInfo>

A FileReference can also point to a ForeignFile element and, hence, to an

arbitrary file in the eFMU container. This means it can also point to a compliance

information file from Production Code container.

Note that the eFMI standard does not define how the integrity of the compliance

information can be ensured. It is up to the software provider and the integrating

company to ensure the validity and integrity of this compliance information.

License Information

In case that any third party licenses have to be shipped with the binary or to provide license
information is provided using FileReference elements with the kind="LicenseFile".

 The following code snippet shows how a licenese file can be provided.

<File id="ID_999911" path="/license/" name="BSD.TXT" role="other"
checksum="A7549D084CFD2F9C6DEFA940B9BD5DA402B8341D"
needsChecksum="true" />
[...]
<BinaryContainerInfo>
 <FileReference fileRefId="ID_999910" kind="LicenseFile" />
</BinaryContainerInfo>

Validation & Verification

For Verification and Validation, additional files can be provide using one or more
FileReference elements with the kind="ValidationAndVerificationFile".

The following code snippet shows how some sumulationsimulation results (e.g.,

ASAM MDF format) from a use case for back to back testing as well as some

description of equivalence classes (e.g., properitary XML format) can be specified

for th container.

<File id="ID_999920" path="/v_n_v/" name="scenario1.mdf"
role="other" checksum="DB1A8489D88604A5C896BAB2B35631314B257036"
needsChecksum="true" />

<File id="ID_999921" path="/v_n_v/" name="equivalenceclasses.xml"
role="other" checksum="F61E2D36002DD140653334E4871DEBE6EE3B721A"
needsChecksum="true" />
[...]
<BinaryContainerInfo>
 <FileReference fileRefId="ID_999910"
kind="ValidationAndVerificationFile" />
</BinaryContainerInfo>

Configuration of Runtime

Certain binary files require additional information on runtime. The Binary Code container
provides the possibility to link such information via FileReference elements with the
kind="ConfigurationFile".

The following code snippet shows how a SOME/IP stack configuration for Adaptive

AUTOSAR application is referenced.

<File id="ID_999910" path="/adaptive/" name="someip.json"
role="other" checksum="DB1A8489D88604A5C896BAB2B35631314B257036"
needsChecksum="true" />
[...]
<BinaryContainerInfo>
 <FileReference fileRefId="ID_999910" kind="ConfigurationFile"
/>
</BinaryContainerInfo>

6.3. Binary Format

The Binary Code Model Representation contains object files and libraries in binary format.

For deployment on a target architecture the object file or library must be provided as a binary
file ELF format [ELFLinux].

Hence, an ELF file should be be target specific (e.g., for a specific ECU) and,

optionally, may be executable. Executable ELF files will be used in PiL Simulation

and can contain dedicated frame code. PiL-simulation tools may also create their

own harness for PiL simulation. Non-executable ELF files (relocatable ELF) can be

used for the integration on the embedded target.

For Windows-based co-simulation a Binary Code Model Representation might also contain
Windows-compatible object files or dynamic link libraries [DLLWin].

For the (co-)simulation use case the binary artifacts support multiple use cases. On

the one hand, it may be a DLL, shared library or object file for general purpose

code for a general purpose platform (e.g., Windows or Linux) that can be used in a

Software-in-the-Loop simulation.

Additionally, the Binary Code Model Representation can refer to the following Production
Code Model Represention items:

file:///D:/otter/_gitlab/EMPHYSIS_Specification.git/5000_prod_code.html%23bookmark-5300_code_fragments
file:///D:/otter/_gitlab/EMPHYSIS_Specification.git/5000_prod_code.html%23bookmark-5300_code_fragments

• Simulation Code that might be necessary/used for a standalone SiL or PiL simulation of
the eFMU.

• Tool specific code that might be required to use simulation features of a particular tool.

An example for the tool specific code might be a TargetLink S-Function frame used

for a SiL Simulation or an TargetLink TSM-Frame used for PiL simulation. Another

example migth be a minimal stub for debugging purposes on the target

architecture.

Beside the actual binary format the Binary Code Model Representation might contain also files
including information for calibration, measurement and diagnosis purposes.

An example format for the description of calibration, measurement and diagnosis is

the ASAM A2L format. This might be an incomplete A2L since the absolute memory

addresses will be updated after the final link process is completed.

An eFMI Binary Model Represention might make use of service functions which do not
necessarily have to be contained in the binary files. Especially for the use case of ECU
integration these service functions might be provided by the ECU environment.

[] Tool Interface Standard (TIS) Executable and Linking Format (ELF) Specification.
http://refspecs.linuxfoundation.org/elf/elf.pdf, last visited 2019-03-28.

[] Dynamic-Link Libraries. https://docs.microsoft.com/en-
us/windows/desktop/Dlls/dynamic-link-libraries, last visited 2019-03-29.

7. Acronyms

Name Description

AA Adaptive AUTOSAR Application

AlgC Algorithm Code

AlgCL Algorithm Code Language

ARXML Classic AUTOSAR interface description file

AST Abstract Syntax Tree

http://refspecs.linuxfoundation.org/elf/elf.pdf
https://docs.microsoft.com/en-us/windows/desktop/Dlls/dynamic-link-libraries
https://docs.microsoft.com/en-us/windows/desktop/Dlls/dynamic-link-libraries

Name Description

Bin Code Binary Code

DAE Differential Algebraic Equation system

ECU Embedded Control Unit

eFMI FMI for embedded systems

eFMU FMU for embedded systems

ELF Executable and Linking Format

EqC Equation Code

EqCL Equation Code Language

FFT Fast Fourier Transform

FMI Functional Mock-Up interface

FMI-CS FMI for Co-Simulation

FMU Functional Mock-Up unit

GPL GNU General Public License

LPV Linear Parameter-Varying (control / controller)

LTI Linear Time-Invariant

LTV Linear Time-Varying

Name Description

ML Machine Learning

MPC Model Predictive Control

NMPC Nonlinear Model Predictive Control

NN Neural Network

ODE Ordinary Differential Equations

PID Proportional-Integral-Derivative (control / controller)

PiL Processor-in-the-Loop

Prod Code Production Code

SiL Software-in-the-Loop

SOA Service-oriented Architecture

SW Software

SWC Classic AUTOSAR Software Component

V&V Validation & Verification

8. Glossary

• Calibration Parameter - Value equals the start value and can be changed anytime during
evaluation of the system by an external source [Req_4.1.09, Req_5.1.13].

• Calibration Variables - Constant for all execution steps, but changeable by eeprom-update
[Req_6.2.05].

• Code - Formal specification of the model behavior.

o Production Code - Code intended for the execution on an embedded system.

o Target Specific Code - Production Code with specific instructions for a certain target.

• ECU software content - Pre-existing software into which the Production Code has to be
integrated.

• eFMU - Container of model representations and other artefacts according to the eFMI
standard.

• Manifest - Meta information in an extendable form describing an associated artefact.

o eFMU Manifest - Manifest describing the available model representations of the eFMU
container and how to get access to them, plus other general meta information.

o Code Manifest - Manifest describing the model interface of the associated code and
providing additional meta information on how to access and utilize the code.

• Model Representation - Compound of Code + Code Manifest representing the model in
one particular standardized form.

• Parameter - Value equals the start value and can be changed only before initialization of
the system.

• State Machine - A (finite) state machine is used to model a system fluctuating between a
fixed number of states. Transitions rules between one state to another are defined
through entry and exit actions.

• State-Space Representation - A mathematical model describing the dynamics of a system
with a set of first order differential equations. Inputs, outputs and internal state variables
are related by A, B, C, D matrices.

• System constants - Values that are constant for a specific configuration of a software
system under test (a specific variant of software and hardware components), but might
be changed if the component is used for a slightly different configuration (e.g. number of
battery cells available).

• Target - The intended productive execution environment of the software function that is
encapsulated in the eFMU. The eFMU target is characterized by the controller hardware
(processor,)…) and software (compiler, runtime environment, software architecture).

9. Tool Support

This eFMI version was evaluated with prototypes of the following tools (alphabetical list):

Tool Vendor eFMI support

AUTOSAR
Builder

Dassault Syst譥
sSystèmes

Generation of Adaptive AUTOSAR from
eFMI Production and eFMI Binary Code

Tool Vendor eFMI support

Astr饼
/strong>Astrée

AbsInt
Angewandte
Informatik GmbH

Verification of eFMI Production Code

CSD Siemens NV
Test of eFMI Production Code with eFMI
Behavioral Model; integration in existing
code and verification of code

Dymola
Dassault Syst譥
sSystèmes

Generation of eFMI Algorithm Code and
eFMI Behavioral Model (reference results)
from Modelica model

ESP
Dassault Syst譥
sSystèmes

Generation of eFMI Production Code from
eFMI Algorithm Code; Generation of eFMI
Binary Code from eFMI Production Code

Simcenter
Amesim

Siemens Digital
Industries
Software

Generation of eFMI Algorithm Code from
neural network approximation of Amesim
model

SCODE CONGRA ETAS GmbH

Generation of eFMI Production Code from
eFMI Algorithm Code; test of eFMI
Production Code with eFMI Behavioral
Model

SimulationX ESI ITI GmbH
Generation of eFMI Algorithm Code from
Modelica model

TargetLink dSPACE GmbH

Generation of eFMI Production Code from
eFMI Algorithm Code; test of eFMI
Production Code with eFMI Behavioral
Model

TPT PikeTec GmbH
Test of eFMI Production Code with eFMI
Behavioral Model

Literature

[] Blochwitz T., Otter M., Arnold M., Bausch C., ClauߠCClauß C., Elmqvist H., Junghanns A.,
Mauss J., Monteiro M., Neidhold T., Neumerkel D., Olsson H., Peetz J.-V., Wolf S. (2011): The
Functional Mockup Interface for Tool independent Exchange of Simulation Models. 8th
International Modelica Conference, Dresden 2011.
http://www.ep.liu.se/ecp/063/013/ecp11063013.pdf

http://www.ep.liu.se/ecp/063/013/ecp11063013.pdf

[] Blochwitz T., Otter M., Akesson J., Arnold M., ClauߠCClauß C., Elmqvist H., Friedrich M.,
Junghanns A., Mauss J,, Neumerkel D., Olsson H., Viel A. (2012): Functional Mockup
Interface 2.0: The Standard for Tool independent Exchange of Simulation Models. 9th
International Modelica Conference, Munich, 2012.
http://www.ep.liu.se/ecp/076/017/ecp12076017.pdf

[] The C Programming Language.
https://en.wikipedia.org/wiki/C_(programming_language), last visited 2019-02-06.

[] C++ Programming Language. https://en.wikipedia.org/wiki/C%2B%2B, last visited 2019-
02-06.

[] Dynamic-Link Libraries. https://docs.microsoft.com/en-
us/windows/desktop/Dlls/dynamic-link-libraries, last visited 2019-03-29.

[] Tool Interface Standard (TIS) Executable and Linking Format (ELF) Specification.
http://refspecs.linuxfoundation.org/elf/elf.pdf, last visited 2019-03-28.

[] Kernighan Brian W., Ritchie Dennis M. (1978): The C Programming Language (1st ed.),
Englewood Cliffs, NJ: Prentice Hall. ISBN 0-13-110163-3.

[] MISRA C:2012: Guidelines for the use of the C language in critical systems. ISBN 978-1-
906400-10-1, MIRA Limited, Nuneaton, March 2013

[] MISRA C++:2008: Guidelines for the use of the C++ language in critical systems. ISBN
978-906400-04-0, MIRA Limited, Nuneaton, March 2013

[] MISRA AC AGC: Guidelines for the application of MISRA-C:2004 in the context of
automatic code generation. ISBN ISBN 978-906400-02-6, MIRA Limited, Nuneaton, March
2004

[] Secure Hash Algorithm. https://en.wikipedia.org/wiki/Secure_Hash_Algorithms, last
visited 2019-02-08.

[] Stroustrup Bjarne (1997), The C++ Programming Language (Forth ed.), Addison-Wesley,
ISBN 0-32-156384-0.

Appendix A: eFMI Revision History

Version Date Release Status Notes

0.0.1
April
01,
2019

EMPHYSIS
internal

Initial sketch.

0.6.0
Aug.
04,
2020

EMPHYSIS
internal

Incomplete draft (for tool development).

http://www.ep.liu.se/ecp/076/017/ecp12076017.pdf
https://en.wikipedia.org/wiki/C_(programming_language
https://en.wikipedia.org/wiki/C%2B%2B
https://docs.microsoft.com/en-us/windows/desktop/Dlls/dynamic-link-libraries
https://docs.microsoft.com/en-us/windows/desktop/Dlls/dynamic-link-libraries
http://refspecs.linuxfoundation.org/elf/elf.pdf
https://en.wikipedia.org/wiki/Secure_Hash_Algorithms

Version Date Release Status Notes

1.0.0-
alpha.1

Nov.
12,
2020

EMPHYSIS
internal + shared
with FMI group

Draft of specification.

1.0.0-
alpha.2

Jan. 26,
2021

EMPHYSIS
internal + shared
with FMI group

Status before Equation Code Model
representation was moved to appendix

1.0.0-
alpha.3

Jan. 27,
2021

Publicly available

Equation Code Model representation moved
to appendix.
New section Tool Support.
License of document changed to Creative
Commons Attribution-ShareAlike 4.0
International and of accompanying code
and data to 2-Clause BSD License.

1.0.0-
alpha.4

Feb.
22,
2021

Publicly available

Remaining Equation Code references
removed.
Images of schema files updated.
License of accompanying code and data
changed to
3-Clause BSD License.
Minor improvements of some descriptions.

Version 1.0.0

Contributors of Specification

The eFMI specification was developed within the ITEA EMPHYSIS project
(https://itea3.org/project/emphysis.html) that was initiated and organized by Oliver Lenord,
Christian Bertsch (Robert Bosch GmbH), PacMagninPacôme Magnin (Siemens) and Martin
Otter (DLR-SR).

The development of the eFMI specification was headed and managed by Oliver Lenord
(Robert Bosch GmbH). The essential part of the design of this version was performed by the
following core development groups that closely worked together (alphabetical listings in the
respective subgroups) and that utilized feedback and input from Benchmark Test Cases, Tool
Assessment, as well as Demonstrators:

• Behavorial Model
Yuri Durodi頨Durodié (Siemens NV)
Andreas Pfeiffer (DLR-SR)
Robert Reicherdt (PikeTec)

• Rudimentary Equation Code
Andreas Pfeiffer (DLR-SR)
Robert Reicherdt (PikeTec)

https://itea3.org/project/emphysis.html

• Algorithm Code
Christoff BrgerBürger (Dassault Syst譥sSystèmes AB)
Martin Otter (DLR-SR)
Andreas Pfeiffer (DLR-SR)

• Production Code
JNiereJörg Niere (dSPACE GmbH)
Michael Hussmann (dSPACE GmbH)
Kai Werther (ETAS GmbH)

• Binary Code
David Brenken (EFS)
Pierre Le Bihan (Dassault Syst譥sSystèmes)
Robert Reicherdt (PikeTec)

Benchmark Test Cases

The

specification was assessed with benchmark tests cases provided in the Modelica library
EMPHYSIS_TestCases and with Simcenter Amesim models. The EMPHYSIS_TestCases library
was managed by Andreas Pfeiffer (DLR-SR) and Christoff BrgerBürger (Dassault Syst譥
sSystèmes AB).

The benchmark test cases have been developed by:

• Robert Bosch GmbH
Siva Sankar Armugham
Christian Bertsch
Oliver Lenord
Naresh Mandipalli
Jonathan Neudorfer
Christian Potthast
Vishnupriya Veeraragavan

• DLR-SR
Jonathan Brembeck
Ricardo de Castro
Michael Fleps-Dezasse
Martin Otter
Andreas Pfeiffer
Jakub Tobolar

• Siemens Digital Industries Software
J鲴me Andr鼯p> Jérôme André

Tool Assessment

The eFMI specification was assessed by implementing eFMI support in various tools whose
interoperability as a tool chain was evaluated. To that end, more than a hundred test models
and variants of the benchmark test cases provided by the EMPHYSIS_TestCases library have
been used to validate tool interoperability and correctness.

The developed and bechmarked tools are, in alphabetic order:

AUTOSAR Builder (Dassault Syst譥sSystèmes)

• Production and Binary Code → Adaptive AUTOSAR

• Developers: Fabien Aillerie

Astr饼/strong>Astrée (AbsInt Angewandte Informatik GmbH)

• Verification of Production Code

• Developers: Reinhold Heckmann

CSD (Siemens NV)

• Test of Production Code with Behavioral Model, integration in existing code and verification of code

• Developers: Jishnu Jayaram

Dymola (Dassault Syst譥sSystèmes AB)

• Modelica → Algorithm Code

• Modelica → Behavioral Model

• Developers: Christoff BrgerBürger

ESP (Dassault Syst譥sSystèmes)

• Algorithm Code → Production Code

• Production Code → Binary Code

• Developers: Samuel Devulder, Pierre Le Bihan, Laurent Le Goff

SCODE CONGRA (ETAS GmbH)

• Algorithm Code → Production Code

• Test of Production Code with BehavioralModel

• Developers: Kai Werther

Behavioral Model Scripts (DLR-SR)

• Generation of Behavioral Model

• Developers: Andreas Pfeiffer

Simcenter Amesim (Siemens Digital Industries Software)

• Amesim model → neural network approximation as Algorithm Code

• Developers: J鲴me Andr鼯p> Jérôme André

SimulationX (ESI ITI GmbH)

• Modelica → Algorithm Code

• Developers: Gerd Kurzbach

TargetLink (dSPACE GmbH)

• Algorithm Code → Production Code

• Test of Production Code with Behavioral Model

• Developers: Michael Hussmann, JNiereJörg Niere

TPT (PikeTec)

• Test of Production Code with Behavioral Model

• Developers: Robert Reicherdt

Demonstrators

The eFMI specification and the developed tools have
been assessed by industrial demonstrators:

Performance assessment (Robert Bosch GmbH)

Comparing generated Production Code of nine benchmark test cases of the EMPHYSIS_TestCases library
with manually developed code. This includes comparison of execution performance on the Bosch ECU
MDG1.

• Tooling: Performance Test Environment

• Developer: Vishnupriya Veeraragavan

Powertrain vibration reduction (Robert Bosch
GmbH)

Generate a controller with a nonlinear inverse model on the Bosch ECU MDG1 to reduce vibrations in a
powertrain.

• Tooling: Dymola, SCODE-CONGRA, TPT, Astr饠Astrée and eFMI2AUTOSAR (Robert Bosch GmbH)

• Contributors: Oliver Lenord, Kai Werther, Siva Sankar Armugham

Model-based diagnosis of thermo systems
(Robert Bosch GmbH)

Generate diagnosis functions on the Bosch ECU MDG1.

• Tooling: OpenModelica (www.openmodelica.org), SCODE-CONGRA, ECU Test Environment

• Contributors: Oliver Lenord, Christian Potthast

Virtual sensor for hybrid drivetrain
(Siemens)

Generate virtual sensor by approximating a dynamic model by means of a neural network.

• Tooling: Simcenter Amesim and TargetLink

• Contributors:

o J鲴me Andr頨Jérôme André (Siemens Digital Industries Software)

o Alexander Van Bellinghen (Siemens NV)

o Yuri Durodi頨Durodié (Siemens NV)

o Jishnu Jayaram (Siemens NV)

o Jorg Niere (dSPACE GmbH)

Semi-active damping controller and
observer (DLR-SR)

Generate a controller (with a nonlinear inverse model) and a prediction model (nonlinear extended
Kalman Filter or nonlinear unscented Kalman Filter) on a pre-development ECU from EFS and on an ECU
of KW automotive. The implementation with the KW automotive ECU has been tested in real driving tests.

• Tooling: Dymola and TargetLink

• Contributors:

o Florian Bitter (EFS)

o Jonathan Brembeck (DLR-SR)

o Daniel Baumgartner (DLR-SR)

o Christoff BrgerBürger (Dassault Syst譥sSystèmes AB)

o David Brenken (EFS)

o Dario Celan (EFS)

o Georg Hofstetter (EFS)

o Michael Hussmann (dSPACE GmbH)

o Konrad Krauter (EFS)

o Severin Kirpal (EFS)

o Jorg Niere (dSPACE GmbH)

o Andreas Pfeiffer (DLR-SR)

o Raik Ritter (EFS)

o Julian Ruggaber (DLR-SR)

o Christina Schreppel (DLR-SR)

o Jakub Tobolar (DLR-SR)

o Johannes Ultsch (DLR-SR)

o Christoph Winter (DLR-SR)

Dual-clutch use case (Daimler AG)

Standardized, parameterized, reusable module for a simplified dual clutch transmission model with state
events. The model extensively uses typically stiff components of the Modelica Standard Library
(modelica.org) like clutches with friction and non-linear springs, resulting in a stiff, mixed eqution system
with discontinous states due to gear shifts. The objective is to demonstrate the portability of the
generated module to hardware-in-the-loop (HiL) systems and to a pre-development transmission
controller unit.

• Tooling:

o Model development and eFMU generation: Dymola and TargetLink

o Software-in-the-loop tests: Dymola

o Hardware-in-the-loop tests: TargetLink, ConfigurationDesk (dSPACE GmbH) and PROVEtech
(Akka Technologies)

• Contributors:

o Zdenek Husar (Daimler AG)

o Jan RRöper (Daimler AG)

o Emmanuel Chrisofakis (Daimler AG)

o Klaus Riedl (Daimler AG)

o Christoff BrgerBürger (Dassault Syst譥sSystèmes AB)

o Hans Olsson (Dassault Syst譥sSystèmes AB)

Transmission model as virtual
sensor (Volvo Cars)

Virtual sensor for electric machine control based on a Modelica transmission model. The virtual sensor
provides vehicle state estimation used to mitigate, e.g., backlash in the electric driveline, and thereby
increase the overall performance of the whole electric driveline.

• Tooling: Dymola and TargetLink

• Contributors:

o Sarah Bellis (Volvo Cars)

o Martin Johnsson (Volvo Cars)

o Jart Hageman (Volvo Cars)

o Sabina Linderoth (Volvo Cars)

o Edvin Eriksson Johannsson (Volvo Cars)

o David KastolvoKastö (Volvo Cars)

o Aditya Naronikar (Volvo Cars)

o Ottilia Wahlgren (Volvo Cars)

o Emma Kroon (Volvo Cars)

o Johannes Emilsson (Volvo Cars)

o Joachim H䲳jolvoHärsjö (Volvo Cars)

o Per Jacobsson (Volvo Cars)

o Johan Bergeld (Volvo Cars)

o Christoff BrgerBürger (Dassault Syst譥sSystèmes AB)

AEBS: Advanced Emergency
BreakingBraking System
(Dassault Syst譥sSystèmes)

Emergency breakingAdvanced emergency braking controller derived from industrial Simulink
(MathWorks) model with enabled subsystems and signal locks. For correct handling of the side-effects of
enabled subsystems Modelica state machines are used; the signal locks are modeled using previous of
Modelica synchronous. The final objective is the generation and validation of an AUTOSAR Adaptive
Platform component starting from the Modelica model via a seamless tool chain based on eFMI.

• Tooling:

o Model development and Algorithm Code generation: Dymola

o Production and Binary Code generation: ESP

o AUTOSAR Adaptive Platform component generation: AUTOSAR Builder

• Contributors:

o Christoff BrgerBürger (Dassault Syst譥sSystèmes AB)

o Samuel Devulder (Dassault Syst譥sSystèmes)

o Fabien Aillerie (Dassault Syst譥sSystèmes)

pNMPC controller for
semi-active suspension
(GipsaGIPSA-lab)

Generate a model based controller (parameterized Nonlinear Model Predictive Controller from Gipsa-lab
+ a neural network model from Simcenter Amesim) for semi-active suspension regulation.

Model-based controller for semi-active suspension regulation with hardware-in-the-loop (HiL) test via
the INOVE vehicle suspension test rig. The controller is a parameterized nonlinear model predictive
controller (pNMPC) from GIPSA-lab using a neural network model to predict the future behavior of the
car like the response of chassis and wheel to a given road profile and suspension parameter. The
suspension control is realized by means of this simulated prediction. A Simcenter Amesim physics model
of the whole car including suspension, chassis and wheels is used to derive and train the neural network
model, for which in turn an implementation as eFMI GALEC code is generated (all within Simcenter
Amesim). Respective eFMI production code is generated using TargetLink. The final solution is deployed
on a dSPACE MicroAutoBox II ECU, based on GIPSA-lab’s pNMPC module and a S-function block wrapping
the production code.

• Tooling: pNMPC_CODEGEN, Simcenter Amesim and TargetLink

• Contributors:

o Olivier Sename (Gipsa Lab)

o Rattena Tang (Gipsa Lab)

o Suzanne De Conti (Gipsa Lab)

o Karthik Murali Madhavan Rathai (Gipsa Lab)

o Thanh-Phong Pham (Gipsa Lab)

o Manh-Hung Do (Gipsa Lab)

o Marc Alirand (Siemens Digital Industries Software)

o J鲴me Andr頨Jérôme André (Siemens Digital Industries Software)

o Joerg Niere (dSPACE GmbH)

Appendix B:

Reserved

Built-in

Functions

This section lists already
designed built-in
functions that are not yet
part of the efmi standard
but might be added to it
in the future. Therefore,
the names and
functionality of these
functions are reserved:

Overview of the

reserved built-

in functions

Function-

Name

Descri

ption

Round Real r to an
Integer

roundTo
wardsZe
ro(r)

Round
towar
ds
zero
(also
known
as
trunca
tion).

roundAw
ayZero(
r)

Round
towar
ds
infinit
y.

roundHa
lfDown(
r)

Round
half
towar
ds
negati
ve

Function-

Name

Descri

ption

infinit
y.

roundHa
lfUp(r)

Round
half
towar
ds
positiv
e
infinit
y.

roundHa
lfTowar
dsZero(
r)

Round
half
towar
ds
zero
(also
known
s as:
round
half
aways
from
infinit
y).

roundHa
lfAwayZ
ero(r)

Round
half
away
zero
(also
known
as:
round
half
towar
ds
infinit
y)

roundHa
lfToOdd
(r)

Round
half
towar
ds odd
numbe
r.

Division of Integer
variables i1, i2

Function-

Name

Descri

ption

with rounding to an
integer

divisio
nDown(i
1,i2)

intege
r(
round
Down(
i1/i2)
).

divisio
nUp(i1,
i2)

intege
r(
round
Up(i1/
i2)).

divisio
nAwayZe
ro(i1,i
2)

intege
r(
round
AwayZ
ero(i1
/i2)).

divisio
nHalfDo
wn(i1,i
2)

intege
r(
round
HalfDo
wn(i1
/i2)).

divisio
nHalfUp
(i1,i2)

intege
r(
round
HalfUp
(i1/i2)
).

divisio
nHalfTo
wardsZe
ro(i1,i
2)

intege
r(
round
HalfTo
wards
Zero(i
1/i2)
).

Function-

Name

Descri

ption

divisio
nHalfAw
ayZero(
i1,i2)

intege
r(
round
HalfA
wayZe
ro(i1/i
2)).

divisio
nHalfTo
Even(i1
,i2)

intege
r(
round
HalfTo
Even(i
1/i2)
).

divisio
nHalfTo
Odd(i1,
i2)

intege
r(
round
HalfTo
Odd(i1
/i2)).

divisio
nEuclid
ean(i1,
i2)

Euclid
ean
divisio
n of
two
intege
rs.

Integer remainder
of division of
Integer variables
i1, i2

remaind
erDown(
i1,i2)

Intege
r
remai
nder
of
round
Down(
i1/i2).

Function-

Name

Descri

ption

remaind
erUp(i1
,i2)

Intege
r
remai
nder
of
round
Up(i1/
i2).

remaind
erAwayZ
ero(i1,
i2)

Intege
r
remai
nder
of
round
AwayZ
ero(i1
/i2).

remaind
erHalfD
own(i1,
i2)

Intege
r
remai
nder
of
round
HalfDo
wn(i1
/i2).

remaind
erHalfU
p(i1,i2
)

Intege
r
remai
nder
of
round
HalfUp
(i1/i2)
.

remaind
erHalfT
owardsZ
ero(i1,
i2)

Intege
r
remai
nder
of
round
HalfTo
wards
Zero(i
1/i2).

Function-

Name

Descri

ption

remaind
erHalfA
wayZero
(i1,i2)

Intege
r
remai
nder
of
round
HalfA
wayZe
ro(i1/i
2).

remaind
erHalfT
oEven(i
1,i2)

Intege
r
remai
nder
of
round
HalfTo
Even(i
1/i2).

remaind
erHalfT
oOdd(i1
,i2)

Intege
r
remai
nder
of
round
HalfTo
Odd(i1
/i2).

remaind
erEucli
dean(i1
,i2)

Intege
r
remai
nder
of
Euclid
ean
divisio
n.

Remainder of
division of Real
variables r1, r2

realRem
ainderD

Real
remai
nder
of
round

Function-

Name

Descri

ption

own(r1,
r2)

Down(
r1/r2)
.

realRem
ainderU
p(r1,r2
)

Real
remai
nder
of
round
Up(r1
/r2).

realRem
ainderA
wayZero
(r1,r2)

Real
remai
nder
of
round
AwayZ
ero(r1
/r2).

realRem
ainderH
alfDown
(r1,r2)

Real
remai
nder
of
round
HalfDo
wn(r1
/r2).

realRem
ainderH
alfUp(r
1,r2)

Real
remai
nder
of
round
HalfUp
(r1/r2
).

realRem
ainderH
alfTowa
rdsZero
(r1,r2)

Real
remai
nder
of
round
HalfTo
wards
Zero(r
1/r2)

Function-

Name

Descri

ption

realRem
ainderH
alfAway
Zero(r1
,r2)

Real
remai
nder
of
round
HalfA
wayZe
ro(r1/
r2)

realRem
ainderH
alfToEv
en(r1,r
2)

Real
remai
nder
of
round
HalfTo
Even(r
1/r2)

realRem
ainderH
alfToOd
d(r1,r2
)

Real
remai
nder
of
round
HalfTo
Odd(r
1/r2)

Definition of

the reserved

built-in

functions

The following functions
are appended to Cbuiltin1:

/****************

 Direct
rounding to an
integer:

********/

function
roundTowardsZero
 input Real
r;
 output Real
i;
algorithm /*
 Also known
as: truncation,
round away from
infinity.
 i := (if r >=
0.0 then
roundDown(r) else
roundUp(r));
*/ end
roundTowardsZero;

function
roundAwayZero
 input Real
r;
 output Real
i;
algorithm /*
 Also known
as: round towards
infinity.
 i := (if r <=
0.0 then
roundDown(r) else
roundUp(r));
*/ end
roundAwayZero;

/****************

 Rounding to
the nearest
integer (using a
tie-breaking
rule):

********/

function
roundHalfDown
 input Real
r;
 output Real
i;
algorithm /*

 Also known
as: round half
towards negative
infinity.
 i :=
roundUp(r - 0.5);
*/ end
roundHalfDown;

function
roundHalfUp
 input Real
r;
 output Real
i;
algorithm /*
 Also known
as: round half
towards positive
infinity.
 i :=
roundDown(r +
0.5);
*/ end
roundHalfUp;

function
roundHalfTowardsZ
ero
 input Real
r;
 output Real
i;
algorithm /*
 Also known
as: round half
away from
infinity.
 i :=
roundAwayZero(r -
sign(r) * 0.5);
*/ end
roundHalfTowardsZ
ero;

function
roundHalfAwayZero
 input Real
r;
 output Real
i;
algorithm /*
 Also known
as: round half
towards infinity.
 i :=
roundTowardsZero(
r + sign(r) *
0.5);
*/ end
roundHalfAwayZero
;

function
roundHalfToOdd
 input Real
r;
 output Real
i;
algorithm /*
 i := (if
roundHalfDown(r)
< roundHalfUp(r)
 then
(if
integer(remainder
(r + 0.5, 2.0))
== 0 then r - 0.5
else r + 0.5)
 else
roundHalfDown(r))
;
*/ end
roundHalfToOdd;

/****************

***** END OF
LISTING

****/

The following functions
redefine Cbuiltin2, which
defines builtin functions
for Integer division. For
every function named
roundaroundα of Cbuiltin1
with aα an arbitrary
sequence of characters,
Cbuiltin2 contains the
character sequence:

/****************

**** BEGIN OF
LISTING

***/

function
divisionadivision
α
 input Integer
dividend;
 input Integer
divisor;
 output
Integer quotient;
algorithm /*
 quotient :=
integer(roundarou
ndα(real(dividend

) /
real(divisor)));
*/ end
divisionadivision
α;

function
remainderaremaind
erα
 input Integer
dividend;
 input Integer
divisor;
 output
Integer
remainder;
algorithm /*
 remainder :=
dividend -
divisor *
divisionadivision
α(dividend,
divisor);
*/ end
remainderaremaind
erα;

/****************

***** END OF
LISTING

****/

Further, Cbuiltin2 contains
the following character
sequence:

/****************

**** BEGIN OF
LISTING

***/

function
divisionEuclidean
 input Integer
dividend;
 input Integer
divisor;
 output
Integer quotient;
algorithm /*
 quotient :=
integer((if
divisor > 0
 then
roundDown(real(di
vidend) /
real(divisor))

 else
roundUp(real(divi
dend) /
real(divisor))));
*/ end
divisionEuclidean
;

function
remainderEuclidea
n
 input Integer
dividend;
 input Integer
divisor;
 output
Integer
remainder;
algorithm /*
 remainder :=
dividend -
divisor *
divisionEuclidean
(dividend,
divisor);
*/ end
remainderEuclidea
n;

/****************

***** END OF
LISTING

****/

Above functions are in
lexical order w.r.t. their
names; they constitute
Cbuiltin2 in its entirety.

The following functions
redefine Cbuiltin3, which
defines builtin functions
for Real division, where
the quotient is forced to
be an integer according
to a rounding strategy.
For every function named
roundaroundα of Cbuiltin1
with aα an arbitrary
sequence of characters,
Cbuiltin3 contains the
character sequence:

/****************

**** BEGIN OF
LISTING

***/

function
realRemainderarea
lRemainderα
 input Real
dividend;
 input Real
divisor;
 output Real
remainder;
algorithm /*
 remainder :=
dividend -
divisor *
round_aα(dividend
/ divisor);
*/ end
realRemainderarea
lRemainderα;

/****************

***** END OF
LISTING

****/

Above functions are in
lexical order w.r.t. their
names; they constitute
Cbuiltin3 in its entirety.

Appendix C:

Equation

Code Model

Representati

on

This section describes
rudimentary support for
the planned Equation
Code model. It is not part
of the eFMI standard,
because the development
is not yet finalized. This
appendix summarizes the
status of the
development. An
improved version might
be added to a future
version of the eFMI
standard.

Introduction

The Equation Code model
shall describe the
mathematical model of
the acausal, continuous-
time physical system with
a standardized,
intermediate language (a
subset of the Modelica
language
(https://www.modelica.o
rg/modelicalanguage),
often also referred to as
Flat Modelica).

Conceptually, the
Equation Code model
representation depicts
the earliest stage of the
model analyses. Here any
language specific
analyses, e.g. such as
syntax checks are already
done. However, the
model is still acausal, i.e.
the inputs and outputs
are not yet fixed, the
states not yet selected
and the equations are not
yet sorted and
discretized.

This representation form
is currently under
developement and is not
yet defined in this
specification, with
exception of a very
rudimentary manifest file
that is needed to connect
Behavioral Model and
Algorithm Code
representations.

Manifest

schema

The rudimentary
manifest file of the
Equation Code model
representation is an
instance of an XML
schema definition and
defines the names and
types of the variables that
are used in the interface
of the model.

Definition of an

eFMU Equation

Code

https://www.modelica.org/modelicalanguage
https://www.modelica.org/modelicalanguage

(efmiEquationCode

Manifest.xsd)

On the top level, the
schema consists of the
following elements:

Name
Descripti

on

attri
butes

The
attributes
of the top-
level
element
are the
same for
all
manifest
kinds and
are
defined in
section
Section
2.3.1.

Name
Descripti

on

Current
kind-
specific
values:
kind =
"Equati
onCode",
xsdVers
ion
(value is
the
current
xsd
version of
the
schema
for the
Equation
Code
model
manifest).

Files

List of
files
reference
d in this
model
represent
ation.
Currently,
no Files
are
defined.
This
element is
the same
for all
manifest
kinds and
is defined
in section
Section
2.3.3.

Varia
bles

A list of
the
discrete-
time
interface
variables
of the
model. A
variable
might be a

Name
Descripti

on

scalar or
an array
of an
elementar
y type. For
details see
Definition
of an
Equation
Code
Variable
(efmiEqVa
riable.xsd
).

Annot
ation
s

Additional
data that a
vendor
might
want to
store and
that other
vendors
might
ignore.
For
details see
Section
2.3.4.5.

Definition of an

Equation Code

Variable

(efmiEqVariable.xsd)

An Equation Code defines
a set of Variables. A
Variable is defined in the
following way:

The schema consists of
the following elements:

Name
Descrip

tion

id

The
unique
identific
ation of
the
variable
with
respect
to the
Equatio
nCode
manifes
t file
(can be
referenc
ed from
other
manifes
t files).

Name
Descrip

tion

name

The full,
unique
name of
the
variable.
Every
variable
is
uniquel
y
identifie
d within
an eFMI
Equatio
nCode
instance
by this
name.

type

The
base
type of
the
variable.
Valid
values
are:
Real,
Intege
r,
Boolean
`.

descri
ption

An
optional
descript
ion
string
describi
ng the
meanin
g of the
variable.

Dimens
ions

If the
variable
is an
array,
then the
fixed
dimensi
ons of
the

Name
Descrip

tion

array
are
defined
by this
element.
For
every
dimensi
on, the
number
defines
the
number
of the
dimensi
on
(must
be
consecu
tive
number
s 1, 2, …
) and
size
defines
the fixed
size of
the
dimensi
on
(must
be >=
1).

Annota
tions

Additio
nal data
of the
variable,
e.g., for
the
dialog
menu or
the
graphic
al
layout.
For
details
see
Section
2.3.4.5.

1. I.e., after detecting

an error, normal

program execution is

suspended until the

error is handled and

the current control-

cycle terminated with

the error signaled

2. Only the bounded-

iteration rule has loop-

iterator-declaration

within its definition-list.

