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Abstract 

This paper summarizes the final research results of the 

ITEA3 project EMPHYSIS (embedded systems with 

physical models in the production code software). Its core 

achievement is the new open eFMI Standard enabling 

automated workflows from high-level mathematical 

models of physical systems (referred to as physical 

models) to automotive compliant embedded software. 

eFMI (FMI for embedded systems) defines a container 

architecture for model exchange and testing. Multiple 

representations from an intermediate representation of 

sampled algorithms (GALEC) to production and binary 

code for specific embedded targets are maintained in a 

traceable workspace. The successful integration of the 

developed eFMI tooling is demonstrated by a 

comprehensive open source Modelica test cases library 

and industrial demonstrators. The readiness of the 

proposed approach is proven by compliance checks 

according to common automotive code quality standards 

like MISRA C:2012 and a performance benchmark in 

terms of runtime and resource demand in comparison with 

state-of-the-art hand coded solutions. 
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1 Introduction 

1.1 Motivation 

Software has become an innovation driver not only but 

especially in the automotive industry. This has been 

leading to new challenges in terms of maintainability of 

the growing software stack for a growing number of ECUs 

(Electronic Control Units) in vehicles. 

In the field of application software, it is the growing 

variability of the vehicles, increasingly demanding 

regulations and new powertrain solutions that add to the 

complexity of control and diagnosis functions. Original 

equipment manufacturers (OEM) as well as Tier 1 

suppliers are aiming to cope with these demands by using 

mathematical models of physical systems (referred to as 

physical models) as part of the control software. For 

example, in Zimmermann et al. (2015) physical models 

are considered essential to manage the growing 

complexity of Diesel engine control as map-based 

approaches lead to an overwhelming calibration effort to 

satisfy the requirements of real driving emissions (RDE). 

Englert et al. (2019) present a framework for embedded 

non-linear model predictive controllers (NMPC) as a very 

generic approach of integrating physical models into a 

controller. With the increased computational power of 

modern multi-core ECUs, like the Bosch MDG1 (Rüger et 

al. 2014), these advanced approaches become relevant for 

industrial applications. In addition, e.g. Bosch is holding 

patents on methods for real-time applications of physical 

models (e.g. Wagner et al. 2009) stressing the fact that 

managing this type of applications is a differentiating 

selling proposition. 

Model-based development (MBD) is an established 

paradigm for the development of control software for 

embedded targets deemed to ease these challenges. In 

practice the commonly used signal flow-oriented models, 

restricted to a predefined set of blocks, do not scale to the 

need. The models are rather a model of the software, than 

a model of the physical system with poor means to reflect 

variants of the underlying physical structure. The rather 

low-level description requires a high level of expertise of 

the modeler far beyond the physical behavior of the 

system including floating-point arithmetic, embedded 

software regulations, e.g. MISRA C:2012 rules (MISRA 

2013-03) and target architectures, e.g. the AUTomotive 

Open System Architecture (AUTOSAR) (AUTOSAR 

Consortium 2021). 

Despite valuable pioneering work on FMI (Functional 

Mock-up Interface) (Modelica Association 2021-04) in 

AUTOSAR, discussed in the following section, there is 

today no simulation solution supporting the export of 

physical models suitable for direct integration into 

controls, and no standard of any kind supporting efficient 

generation and integration processes from physical 

models to embedded software. 

The goal of FMI for embedded systems (eFMI) is to 

overcome the known limitations of FMI, to enable new 

ways of model-based development of embedded software 
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functions for arbitrary targets and architectures, based on 

advanced physical models of the underlying system. 

1.2 State of the art of FMI in AUTOSAR 

In a case study by Bertsch et al. (2015) it has been 

demonstrated that it is possible to wrap the C code from a 

Source Code FMU (Functional Mock-up Unit), that has 

been generated from a Modelica (Modelica Association 

2021-02) physical model, as AUTOSAR ASW-C 

(Application Software Component) and to execute it on a 

Bosch ECU. This study also revealed the conceptual 

weaknesses of FMI when it comes to embedded 

automotive software and safety critical applications. 

The probably most obvious weakness roots in the 

purposeful design of FMI being a standardized interface 

without being directive about the implementation of 

interface functions, except of which entry level files to 

provide and which headers to include. In contrast to that, 

the widely accepted rules of the Motor Industry Software 

Reliability Association (MISRA) are very specific about 

how a function is to be implemented in the C language to 

avoid ambiguities and runtime exceptions, while ensuring 

readability of the code. The goals of maximum flexibility 

for the exporting tool to produce any kind of simulation 

code to be wrapped into a black box running on a personal 

computer (PC) vs. high quality embedded production code 

being subject to thorough code reviews before being 

deployed to a dedicated target according to a certified 

procedure are contradicting. FMI is not designed to 

provide production code and binaries that are ready to 

satisfy the requirements of automotive embedded software 

quality gates. There are no mechanisms for the traceability 

of the code and no attributes about the used compilers and 

compiler settings to ensure the repeatability of the build 

process of a binary targeting a dedicated application in a 

specific runtime environment with the type of 

microcontroller already defined. 

The prototypical tooling developed by Bertsch et al. 

(2015) enhanced by Neudorfer et al. (2017) is focusing on 

the technical aspect of translating a Source Code FMU 

into an AUTOAR SW-C. The aspects of which meta data 

has to be provided to support an end-to-end tool chain 

from the original model to the deployed binary is not 

discussed and remains as an unresolved issue of the 

prototypical work not intended for productive usage. 

In terms of code quality Bertsch et al. (2015) state that 

none of the inspected source codes of the evaluated tools 

fulfilled their requirements and that the “C-code from 

many commercial tools is not suitable to run on an ECU 

due to its size and complexity since it was not intended to 

run on an embedded system”. 

The tooling presented by Bertsch et al. (2015) translates 

in a first step the FMI modelDescription.xml file into 

a corresponding AUTOSAR .arxml file, based on a 

number of design decisions made on the desired 

representation as SW-C. The second step involves the 

translation of the C code of the Source Code FMU into C 

code that can be processed by build tools from Bosch for 

engine control software. After inspection of the source 

code generated by three different Modelica tools certain 

patterns were identified, such as:  moving declarations to 

public or private headers, exclusion of functions from, 

e.g., stdio.h and math.h (ISO/IEC 2018-06) which are 

not supported on embedded devices, taking care of proper 

assignment of float values and avoiding implicit type 

casts. This process had been automated to a large extent, 

but made assumptions on the structure of the code and was 

finally still relying on the expertise of an embedded 

software developer to inspect the translated code and to fix 

remaining issues before further compilation.  

This involved procedure illustrates that, if the generator 

of the C code is not giving any guarantees on its code, then 

it is very difficult, if not impossible, for the consuming 

tool to enforce these afterwards. From a workflow 

perspective, it is also highly objectionable when only after 

importing and processing of an FMU deficits are revealed 

that have to be addressed by the exporting tool. 

All these issues are only about just compiling the code; 

but to fulfill the requirements of an embedded software the 

following aspects regarding the behavior and resource 

demand of the code have to be addressed as well: 

� Limited data memory and code memory. 

� Limited computation power of the target. 

� Limitations on supported data types: 32-bit vs. 64-bit 

floating-point precision, fixed-point arithmetic etc. 

� Static memory allocation only. 

� Guaranteed exception freeness: Programs never fail 

due, e.g., unavailable/busy external devices, writing 

read-only memory, accessing multi-dimensions out-

of-bounds, running out of stack memory etc. 

� Guaranteed execution time within the limits of the 

available target system resources and the minimal 

sampling period required for correct physical 

behavior. 

� Proper error handling: Handling of Not a Number 

(NaN) (IEEE 2019-07), mathematical functions that 

are undefined for some arguments, linear systems 

without unique solution etc. 

� In bound guarantees of signals. 

Simulation code generated by today’s FMU generating 

tools is optimized for runtime performance on a PC. The 

memory required by the FMU is allocated dynamically. 

The sizes of the data and program code are not considered 

limiting factors and therefore not minimized. This renders 

existing FMI solutions unsuited for application in the 

embedded domain. 

For co-simulation FMUs (CS-FMU) there are no 

restrictions for the type of solver being used. For real-time 
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applications, variable-step-size solvers are not suitable, as 

they cannot guarantee the execution time on an equidistant 

time grid. Event handling and non-linear algebraic loops 

are particularly challenging, since self-evident unbounded 

iterative solutions of such cannot be used; instead, such 

have to be expressed as upper-bounded iterative 

algorithms with execution time guarantees. If this is not 

possible, the system is not suited for embedded real-time. 

Hence, the consumer of an FMU fully depends on the 

modeler and exporting tool to have made appropriate 

choices in setting up the model and making the settings for 

the solver and the compiler to meet the basic runtime 

requirements. An FMU by itself gives no guarantees 

further processing can rely upon. 

Furthermore, FMUs are expected to run in a simulation 

or co-simulation environment that provides exception 

handling mechanisms. Messages may be dumped into a 

log file in case of exceeded value ranges based on the 

assert statements in the code for the simulation engineers 

to verify that they can trust the results. In safety critical 

applications, there is no second attempt. The software 

must guarantee exception free execution and a predictable 

behavior under all circumstances. FMI does not provide 

any means to cope with this requirement. 

Despite the fact that one can find ways to translate the 

C code from a Source Code FMU to compile and being 

executed on an embedded target, one has to state that FMI 

has no means to guarantee that the source code fulfills 

basic prerequisites for embedded real-time execution, nor 

does it provide a rich enough model description to support 

an end-to-end build chain in terms of traceability, 

transparency and repeatability of the process. 

1.3 eFMI vs. FMI 

eFMI helps to overcome the shortcomings of FMI, 

explained in Section 1.2, for the development of 

embedded software based on physical models. eFMI is not 

just an extension of FMI; it is an orthogonal, new standard 

that is maintained and further developed in a separate 

Modelica Association Project. Entirely new concepts are 

introduced, but at the same time, a high degree of 

consistency with FMI has been achieved. Whereas FMUs 

are ready-made “consumer” products for exchanging 

simulation models, an FMU for embedded systems 

(eFMU) is a shared development workspace for step-wise, 

semi- and full-automatized refinement from a high-level 

intermediate representation of a sampled algorithm (in the 

GALEC language, see Section 2.4) to an implementation 

of the algorithm for an embedded target. The development 

of a single eFMU is shared between varying eFMI tools 

and developers. Throughout its development, the eFMU 

very likely is in intermediate stages not suited for 

simulation. The developed final solution can be wrapped 

by a respective FMI interface such that it behaves like a 

regular FMU. Doing so, the outer FMI shell allows any 

FMI supporting tool to load and execute the eFMU as CS-

FMU, accessing the actual production code through 

appropriate wrappers. This enables verification and 

validation (V&V) of the target code in a Software-in-the-

Loop (SiL) environment without restricting the target code 

to satisfy a static C interface. 

1.4 eFMI Workflow   

Key differentiator of the proposed eFMI workflow (see 

Figure 1) is a multistep approach reflected by different 

types of so-called model representations that are stored in 

containers within the same eFMU. Each model 

representation addresses a different aspect and refinement 

step of a physical model to embedded software in the 

development process. The intention is to provide an 

automatable workflow, where the model representations 

can be generated, with tool-supported refinement along 

the “Transform” boxes in Figure 1. 

The Algorithm Code model representation (see Section 

2.4) provides a target independent, intermediate 

representation for upper-bounded algorithmic 

Figure 1. eFMI workflow with its different model representations (red boxes). 
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computations. It serves as code generation target for 

(physics-based) modeling tools, allowing them to 

concentrate on the general concern of finding a sequence 

of computations that satisfies real-time constraints, i.e., is 

algorithmically well-defined with an upper-bound of 

computational steps. 

Such algorithmic solutions are further refined to actual 

implementation code that is best suited for a specific target 

environment in terms of performance, memory 

consumption, software architecture and applicable rules 

and regulations by Production Code model 

representations (see Section 2.5). For a single Algorithm 

Code container, several Production Code containers can 

be given to address varying target platforms, e.g., 

alternative chip sets or customer specific code guidelines. 

For each production code, arbitrarily many compiled 

binaries, tailored for embedded system integration within 

a specific ECU/target platform, can be included via Binary 

Code model representations (see Section 2.6). Besides 

defining a target specific build and integration, Binary 

Code containers can also protect intellectual property by 

only providing the binaries as such without sources. 

Finally, validation and verification (V&V) is covered 

by means of Behavioral Model model representations (see 

Section 2.3), which allow to store reference results for 

later back-to-back testing of other model representations 

like Production and Binary Code containers. 

Starting from an Algorithm Code container, there is no 

further stringent order in which traceable containers must 

be provided or updated throughout eFMU development 

iterations. This enables full flexibility in the software 

development process supporting all kinds of model and 

software sharing schemes for OEMs and suppliers, with 

eFMI as open standard giving maximum freedom in the 

choice of tools. An eFMU is a standardized workspace for 

collaborative development of embedded solutions from 

(physical) models. 

1.5 Structure of the paper 

This paper gives a coarse introduction to the basic 

concepts of the eFMI Standard (Section 2) and highlights 

the achieved goals in terms of readiness and applicability 

to industrial grade problems (Sections 3, 4), before 

summarizing the future work and the conclusions 

(Sections 5, 6). 

2 eFMI Standard 

The following description of the eFMI Standard is 

according to version 1.0.0-alpha.4 (EMPHYSIS 2021-07) 

published in February 2021; on the same web page an 

example eFMU can be downloaded. 

2.1 Mathematical description of eFMI 

As described in Section 2.6, the starting point of eFMI 

workflows are typically physical models for some 

independent modeling and simulation environment, e.g., a 

Modelica tooling (Modelica Association 2021-02). Such 

original models can be described by (unsorted) equations, 

algorithms or functions, which have to be transformed to 

eFMI Algorithm Code model representations. This 

requires a causal, discretized algorithmic solution to be 

found for the acausal physics equations – hence the 

modeling environment must provide a GALEC code 

generation backend (see Section 2.6). 

Mathematically, an algorithmic solution can be 

described as a sampled input/output block with one 

(potentially varying) sample period 𝑇௜ ൌ 𝑡௜ାଵ െ 𝑡௜ for the 

whole block. Inputs 𝒖௜ ൌ 𝒖ሺ𝑡௜ሻ  and previous block 

internal states 𝒙௜ are provided at sample time 𝑡௜ whereas 

outputs 𝒚௜ ൌ 𝒚ሺ𝑡௜ሻ and new states 𝒙௜ାଵare computed in 

the block (see Figure 2).  

 
Figure 2. Mathematical description of an algorithmic 

solution as supported by eFMI Algorithm Code model 

representations and the GALEC language. 

All variables of the block have a defined type and all 

statements of the block are sorted and explicitly solved for 

a particular variable. Functions are provided to execute the 

relevant parts of the block, especially to initialize it 

(Startup() function) and to perform one step 

(DoStep() function). 

To find an upper-bounded algorithmic solution for 

acausal equation systems is a non-trivial task, with 

reasonable solution strategies highly depending on 

characteristics of the original modeling language. The 

eFMI Standard therefore is not covering, or in any way 

restricting on how to find suited solutions; it solely 

concentrates on defining how such solutions must look 

like (see Section 2.4) to be processable by further eFMI 

tooling like production code generators. 

2.2 eFMU Container Architecture 

The basic file structure of eFMUs is: 
 

 /eFMU ; eFMU root directory 
    /<directories> ; Model representations 
    /schemas ; eFMI XML Schema definitions 

    __content.xml ; eFMU content-manifest 
 

The only mandatory file is the eFMU content-manifest 

(__content.xml) at the root of the eFMU folder. In 

addition, an eFMU includes the XML Schema files 

defined by the eFMI Standard (/schemas) to become 

self-contained; these XML Schemas restrict the structure 

and content of the manifests of the varying eFMI model 

representations and thereby enable automatic processing 

of eFMUs and their content. All other directory and file 

names within an eFMU can be freely chosen by the tools 
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generating and processing the varying eFMI model 

representations. The directories containing some model 

representation, like an Algorithm Code or Production 

Code container, are denoted in the eFMU content-

manifest, which also lists the type of model representation 

and other meta information like checksums. Each model 

representation further supplies its own manifest according 

to its type of representation; manifests of model 

representations typically list all files of the representation, 

their checksums and other representation specific meta 

information, like the in- and outputs of GALEC programs 

(Algorithm Code containers) or the compiler settings used 

to produce some binary code (Binary Code containers). 

The structure of a typical eFMU could look like this: 
 

 /eFMU 
    /BehavioralModel 
       manifest.xml ; Container manifest 
       <other files> 
    /AlgorithmCode 
       manifest.xml ; Container manifest 
       <other files> 
    /ProductionCode_Generic_C_Float32 
       manifest.xml ; Container manifest 
       <other files> 
    /ProductionCode_Generic_C_Float64 
       manifest.xml ; Container manifest 
       <other files> 
    /ProductionCode_Autosar_Float32 
       manifest.xml ; Container manifest 
       <other files> 
    /schemas 
    __content.xml ; eFMU content-manifest 
 

An eFMU can be packed in different formats. 

1. The eFMU root directory is a standard directory in the 

file system. This is useful to hold an eFMU in a text-

based version control system, such as git or SVN. 

2. The eFMU root directory is zipped with the eFMU-

content and is stored in a zip-file with the extension 

.efmu. This is useful to ship or distribute an eFMU. 

3. The eFMU root directory is path extra/org.efmi-

standard inside a standard FMU. The path is 

defined according to the current FMI-3.0-beta.1 pre-

release of the FMI specification (Modelica 

Association 2021-04). With attribute activeFMU 

inside the eFMU content-manifest  it is defined which 

of the Algorithm, Production or Binary Code 

representations is used as basis of the FMU. This 

package format is useful to ship or distribute an 

eFMU for Model/Software/Hardware-in-the-Loop 

(MiL/SiL/HiL) simulation by further FMU tooling. 

Note, that Algorithm Code, Production Code and Binary 

Code representations can optionally store associated 

FMUs. For example, Algorithm Code representations can 

store a Model-in-the-Loop FMU and Production Code 

representations for different targets can store Software-in-

the-Loop FMUs. To execute these FMUs, they must be 

extracted from the respective model representation – 

manually or by a tool. If an eFMU is organized according 

to package format (3), a selected FMU from a model 

representation has to be copied to the root level so that the 

eFMU behaves as an ordinary FMU and can be simulated 

by any FMI tool. 

2.3 Behavioral Model Representation 

The Behavioral Model representation of eFMI is designed 

to describe functional and behavioral aspects of the 

original (physical) model/system/controller with the goal 

of enabling the validation of other generated model 

representations within the same eFMU. The central 

question is how to define and include reference behavior 

for varying model representations and their respective 

software? As an example, one can think about a controller 

model in Modelica represented by ordinary or differential 

algebraic equation systems that shall be exported as 

eFMU. Reference result data may be important for several 

use case scenarios, e.g. simulation runs of the controller 

model in a Modelica tool: 

� with a complex variable step-size integration 

algorithm to define a highly accurate reference 

solution, 

� with a fixed step-size algorithm like the Explicit 

Euler method and a fixed step-size to get a reference 

solution of the discretized sampled data system, 

� in different model setups like open and/or closed 

loop scenarios to cover a broad range of possible 

input value combinations, 

� in other test scenarios to test specific 

features/requirements of the controller – like unit 

tests in software development – and 

� all the tests may be run using the floating-point 

precision typically used in offline simulations of 64-

bit or/and the more common precision for embedded 

systems of 32-bit. 

To structure this variety of possible reference data a rather 

simple format with only two hierarchies (scenarios and 

scenario parts) has been designed: An eFMI Behavioral 

Model representation consists of scenario parts grouped in 

one or more use case scenarios. Each scenario part 

represents a single behavioral aspect of the original model 

given by different time dependent input/output data in a 

comma-separated values (CSV) file, e.g. a closed loop 

scenario with an Explicit Euler discretization of the 

controller model. Absolute and relative error tolerances or 

time dependent lower and upper bounds can be defined for 

each variable in the Behavioral Model manifest, to 

account for deviations resulting from discretization 

methods, implementation data types and floating-point 

imprecision. 
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Since variable names as well as data types might differ 

between the different eFMI representations within the 

same eFMU (e.g., different production code variants 

might map GALEC variables to different C identifiers to 

satisfy naming conventions of varying target 

environments), every variable of a Behavioral Model 

container is linked with its corresponding variable of the 

Algorithm Code container such that reference result data 

can be provided easily and fully automatic for each model 

representation. This means for example, that later added 

Production Code containers can be automatically tested 

using existing Behavioral Model containers thanks to the 

trace-links between variables of the manifests of 

Behavioral Model and Production Code containers to the 

manifest of the Algorithm Code container. 

A typical validation approach consists of the execution 

of compiled eFMI production or binary code with input 

data from the CSV files. These simulation results are 

compared with the expected output data of the Behavioral 

Model representation according to the given error 

tolerances or bounds to validate the contained eFMI 

representations against the “behavior” of the source of the 

generated eFMU. This approach enables tools (such as 

testing tools) to perform a fully automatic validation of 

other eFMI representations (Algorithm Code, Production 

Code and Binary Code representations) within an eFMU 

w.r.t. behavioral and functional equivalence to the 

physical model using a back-to-back testing approach. 

2.4 Algorithm Code Model Representation  

All containers in an eFMU are related to the Algorithm 

Code container of which exists exactly one in each eFMU. 

It provides a high-level intermediate representation of a 

sampled algorithm by means of a GALEC block and a 

description of the block’s interface by means of an XML 

manifest. The manifest is used by other containers to trace 

their dependencies on the block and avoid processing 

GALEC programs if just in need of a description of the 

block interface. The GALEC block can define any kind of 

finite sampled computation that is subject to embedded 

integration (controller, virtual sensor etc.). In terms of the 

Modelica language, a GALEC block is a causal solution 

for the sampled system defined by a clocked partition. 

GALEC is a new imperative programming language 

part of the eFMI Standard. Its name is an abbreviation for 

guarded algorithmic language for embedded control. It is 

an intermediate representation between the (physics) 

modeling and embedded programming domains. 

GALEC Characteristics: The language characteristics 

C1-11 of GALEC, making it a suitable intermediate 

representation between modeling and embedded software, 

are: 

(C1) Target independence: Arithmetic and algorithms 

are on an ideal machine, with built-in functions for 

abstract handling of target dependent operations like 

retrieving the fraction part of a real or checking if such is 

Not a Number (NaN) (IEEE 2019-07). 

(C2) Explicit language semantics: No implicit casts 

between integer and real, no hidden side effects and no 

default arguments; simple name space without shadowing, 

overloading or polymorphic functions. These restrictions 

are kind of language-enforced MISRA C:2012 rules. 

(C3) Multi-dimensional arithmetic: Support for 

vectors, matrices and higher dimensions with respective 

scalar and matrix multiplication, addition etc. Production 

code generators can leverage on (C4) to map multi-

dimensional operations to efficient implementations, for 

example Streaming SIMD Extensions 4 (SSE4) machine 

instructions (Intel Corporation 2021-06). 

(C4) Powerful static evaluation: GALEC expressions 

are separated into three kinds: (1) declarative sizes, (2) 

algorithmic indexing and (3) algorithmic runtime 

computations, with the former two being subject to static 

evaluation for mandatory well-formedness analyses. 

Algorithmic indexing hereby includes for-loop iterators 

and static evaluation of their ranges. Indexing expressions 

can depend on loop iterators but must not refer to any other 

variables for their value. Otherwise, statically evaluated 

expressions can be arbitrary complex, including calls of 

built-in functions. 

(C5) Upper-bounded: GALEC programs must be non-

recursive; the only iteration construct are for-loops, 

which according to (C4) can be unrolled. Thus, every 

program can be unfolded to an iteration-free sequence of 

conditional assignments defining an upper bound of 

algorithmic steps. This characteristic enables worst time 

execution analyses and advanced optimizations. 

(C6) Computational-safe: The static unfolding-

characteristics of (C4) and (C5) are used to guarantee all 

indexing is within bounds. Production code generators can 

avoid dynamic memory allocation, optimize the memory 

mapping and eventually ensure a target’s resources are 

always sufficient for exception-free program execution. 

(C7) Control-flow integrated error signal handling: 

Language constructs to signal errors and handle signaled 

errors using ordinary control-flow conditions. All 

potentially signaled errors must be handled or explicitly 

exposed to the runtime environment; they cannot slip 

through unnoticed. Automatic error signal propagation 

enables delayed error handling, avoiding the need for 

immediate checks of each operation that might fail. 

(C8) Safe floating-point numerics: Guaranteed quiet 

NaN and infinity propagation according to IEEE 754-2019 

(IEEE 2019-07), with relational operations signaling pre-

defined errors when called with NaN arguments. Such 

integration with the error signaling concept of (C7) means, 

that NaNs can never slip through unnoticed. 

(C9) Safe built-in functions: Rich set of safe built-in 

functions for casting, numeric limits, rounding, 

trigonometric operations, 1/2/3D interpolation, solving 

systems of linear equations etc. If arguments are out of 
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range, the error signaling of (C7) is used to denote so and 

returned values are precisely defined (typically NaN or 

infinity) to avoid undefined, implementation dependent, 

behavior; in line with (C8), NaN arguments are preferably 

silently propagated. 

(C10) Call-by-value semantic with well-defined side 

effects: Function arguments are passed by value; and, 

although an imperative language, GALEC has well-

defined side-effect rules that guarantee (1) each 

expression is free of competing side effects and (2) which 

statements are mutual independent. Production code 

generators can leverage on these characteristics for 

automatic, lock-free program parallelization and to avoid 

unnecessary copying of multi-dimensional values. 

(C11) Block life-cycle with well-defined layers of 

modification: GALEC supports a layered modification 

concept distinguishing constants from semi-constant 

tunable parameters from dependent parameters, 

parameters from block in- and outputs and such from inner 

states. Only tunable parameters and inputs can be directly 

changed by the runtime environment, but only in-between 

two sampling steps, never while sampling. Whenever 

tunable parameters are changed, dependent parameters 

must be recomputed based on the new tunable parameters 

only (Recalibrate() interface function); dependencies 

on states, in- or outputs are forbidden. In addition, 

initialization is clearly encapsulated (Startup() 

interface function) with mandatory data-flow analyses 

guaranteeing every block variable is assigned an initial 

value based only on literal values or already initialized 

variables. Initialization code can contain arbitrary 

complex algorithms; its clear encapsulation enables static 

evaluation. The actual sampling code, which computes 

new outputs for given inputs considering the current block 

state, is encapsulated in the DoStep() interface function; 

its implementation must not change inputs nor parameters. 

All block interface functions automatically saturate 

variables with declared ranges (ranged variables) at the 

very beginning and ending of their execution. This 

guarantees, for example, that inputs and outputs are 

always within their ranges when DoStep() starts and 

terminates, yielding the behavior of a saturated controller. 

Not only block interface variables are saturated, but also 

inner states if respectively ranged, or ranged parameters 

when recalibrating. The whole block life cycle is formally 

defined via a state machine. 

For details, readers are encouraged to consult the public 

alpha draft of the eFMI specification (EMPHYSIS 2021-

07). 

GALEC Example: To give at least a glimpse on how 

GALEC programs look like, particularly error handling, a 

short artificial example is given in the following. A typical 

GALEC block looks like the following ([[...]] denotes 

removed code snippets): 
 

block Controller 

  // Block interface variables: 

  input  Real u[10] (min = -1.5, max = 1.5); 

  output Real y[20] (min = -1.0, max = 1.0); 
  parameter Real tP;    // tunable parameter 

  parameter Real tV[20];// tunable parameter 

 

protected 

  // Internal block variables and functions: 

  parameter Real dP; // dependent parameter 

  Real M1[20,10]     // state 

    (min = -1.0, max = 1.0); 

  Real M2[10,20]     // state 

    (min = -1.0, max = 1.0); 

  function checked_transpose 

    signals UNDERFLOW, NAN [[...]]; 

  function sum [[...]]; 

 

public 

  // Block interface functions: 

  method Recalibrate 

    signals INVALID_ARGUMENT [[...]]; 

  method Startup [[...]]; 

  method DoStep 

    signals NO_SOLUTION_FOUND [[...]]; 

end Controller; 
 

First, the block interface variables that can be set (inputs 

and tunable parameters) and read (outputs) by the runtime 

environment are declared. Like any variable, such can be 

multi-dimensions and ranged. E.g., y is an output vector 

of size 20, with each of its elements in the range [-1.0, 1.0]. 

Then the section with the internal block variables and 

functions follows, first the dependent parameters, then the 

states and finally functions. Note, that any errors a 

function can signal to callees are part of its interface. 

checked_transpose for example can signal 

UNDERFLOW and NAN error signals. Finally, the section 

with the block interface functions follows. These are 

Recalibrate(), Startup() and DoStep(). Note, 

that in the example, a sampling step can signal that no 

solution has been found via the NO_SOLUTION_FOUND 

signal; the signal is used in the example to denote that a 

fallback controller has been used due to an unexpected 

error. The INVALID_ARGUMENT of the Recalibrate() 

function is used to denote to the runtime environment that 

given new tunable parameters are invalid and another 

recalibration is required. Of course, these error signals are 

just examples; the interface functions of other blocks may 

signal different, or no errors at all. 

Assume checked_transpose is defined as follows: 
 

function checked_transpose 

  signals UNDERFLOW, NAN; 

  input Real In[:, :]; 

  output Real Out[size(In, 2), size(In, 1)]; 

algorithm 

  for i in 1 : size(I, 1) loop 

    for j in 1 : size(I, 2) loop 

      Out[j, i] := In[i, j]; 

      // Signals NAN if any argument is NAN: 
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      if absolute(In[i, j]) < 

        epsReal() * self.dP 

      then 

        signal UNDERFLOW; 

      end if; 

    end for; 

  end for; 

end checked_transpose; 
 

Its in- and output are any matrices of reversed 

dimensionality. If used in a context where the output is not 

an 𝑛 ൈ 𝑚 matrix for an 𝑚 ൈ 𝑛 input, static dimensionality 

analyses will fail with an error (cf. (C6)). The for-loop 

uses the matrix dimensions to traverse all elements; it 

computes the transpose of In in Out. Thereby every 

element is checked to be non-zero around an epsilon based 

on the target machine’s minimal precision (epsReal() 

built-in function) and the block’s dependent parameter dP; 

the latter is accessed directly via self.dP. If the check 

fails, UNDERFLOW is signaled. The < check itself will 

signal NAN if any of its arguments is NaN. This behavior 

is guaranteed by GALEC (cf. (C8)). Since neither of both 

signals is handled within checked_transpose, both 

must be exposed to callees as denoted in the function’s 

interface (the signals UNDERFLOW, NAN; following 

the function name). 

Assume the sampling function is:  
 

method DoStep 

  signals NO_SOLUTION_FOUND; 

algorithm 

  self.M1 := sum(self.u) / 

    real(size(self.u, 1)) * self.M1; 

  self.y := solveLinearEquations( 

    self.dP * self.M1 * self.M2, 

    self.tV); 

  self.M2 := checked_transpose(self.M1); 

  // Catch any error signals 

  // or NaN/∞ in self.y: 
  if signal or not(allFinite(self.y)) then 

    [[ ...fallback controller code... ]] 

    // Expose use of fallback controller: 

    signal NO_SOLUTION_FOUND;  

  end if; 

end DoStep; 
 

At the very end of all computations, a simple conditional 

control-flow checks for any kind of errors, and in case of 

any error, uses some fallback controller and signals its 

usage by exposing the NO_SOLUTION_FOUND signal to the 

runtime environment. This delayed error handling is 

achieved by the conditional: 
 

 if signal or not(allFinite(self.y)) 
 

The if signal construct can be used to check for any, 

only specific or any except certain error signals (if 

signal, if signal in E1, E2, …, En and if 

signal not in E1, E2, …,En respectively). The body 

of the check is executed if any of the checked signals was 

set; if so, the signals are automatically unset. In the 

example’s case, all error signals are handled. The or 

condition is optional; it is used in the example to check if 

any value of the block’s output vector y is NaN or +/-∞ 

via the allFinite built-in function. Error signal checks 

are ordinary control-flow conditionals and can be 

combined with any other if, elseif and else 

conditioned branches. In the example, errors might be 

signaled by the checked_transpose call or the 

solveLinearEquations call. The latter built-in 

function fails with a predefined error if the linear equation 

system Ax = b cannot be solved, with A being its first 

argument, b the second and x its result. Note, that in the 

example, the first argument is computed using multi-

dimensional arithmetics: the scalar dependent parameter 

dP is multiplied to the 20ൈ 10 matrix M1, the resulting 

20 ൈ 10 matrix in turn is multiplied to the 10 ൈ 20 matrix 

M2 yielding a quadratic 20 ൈ 20 A matrix as required by 

solveLinearEquations. Finally, DoStep() will 

according to (C11) implicitly, at the very end, saturate the 

block output y and all elements of matrices M1 and M2 to 

be in the range [-1.0, 1.0], as it will implicitly saturate the 

block input u to be in range [-1.5, 1.5] at its very beginning 

(since these block variables are declared with ranges). Of 

course, only non-NaN values can be saturated; NaNs stay. 

Tool challenges: A Modelica tool (or any other 

modeling tool) targeting GALEC for code generation can 

concentrate on the actual computation by leveraging on its 

high-level abstractions for multi-dimensional arithmetic, 

whereas embedded tooling benefits from the inherent 

language guarantees every GALEC program will satisfy 

and these are of uttermost importance for embedded 

software (like guaranteed termination with upper-bound 

of algorithmic steps or exception-freeness). Of course, a 

major challenge for Modelica tools is to actually find an 

upper-bounded causal solution for a given acausal 

equation system; this is a non-trivial task with many 

challenges on developing suited integration schemes. 

Once developed, respective approaches are however 

naturally/conveniently expressed as GALEC programs. 

2.5 Production Code Model Representation 

The previously described formal representation of a 

control algorithm in the GALEC language must be 

transformed into executable code for a target machine. For 

the generation of this code (production code) there are 

many degrees of freedom. In contrast to FMI, eFMI does 

not enforce a strict code and API format but allows the 

actual Production Code representation of an algorithm to 

be adjusted to the context in which the code is to be 

integrated into. The container architecture of an eFMU 

allows to hold several such Production Code model 

representations. An integrator of production code can pick 

the one that is suitable for his integration context. 

The integration context determines several 

characteristics including the available bit size (e.g. integer 
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as well as single or double precision floating-point), 

different data interfaces (e.g. functions without arguments 

working on global data vs. functions with arguments), 

target and compiler specific optimization, as well as 

completely different platforms (such as e.g. AUTOSAR 

vs. plain C code). The different production codes for the 

same GALEC program and their integration contexts are 

described in their respective manifest. Each manifest 

contains all information to enable an integration of its 

production code into a test or execution environment. 

We would like to illustrate the impact of the integration 

context onto the actual production code by giving 

alternative C18 (ISO/IEC 2018-06) code realizations for 

the GALEC example of Section 2.4. In the first “software 

architecture”, all block variables are realized as global 

variables: 
 

 float u[10]; 

 float y[20]; 

 

 float tP; 

 float tV[20]; 

 float dp; 

 float M1[20][10]; 

 float M2[10][20]; 

 
 unsigned int DoStep(void) 

 {  
   unsigned int signals = 0U; 

   [[...]] 
   return signals; /* NO_SOLUTION_FOUND? */ 

 } 
 

In the second architecture below, the input-output notion 

of the block is mapped to an input/output of the DoStep 

function itself and the block state (parameters and inner 

states) is encapsulated in a passed struct which must be 

allocated by the embedded runtime environment (note that 

the block state and output are passed by reference, thus are 

writeable by DoStep): 
 

 typedef struct 

 { 
   unsigned int signals; 

   float tP; 
   float tV[20]; 
   float dp; 
   float M1[20][10]; 
   float M2[10][20]; 

 } BlockState; 

  
 void DoStep( 
   BlockState* const state, 
   const float const u[10],  
   const float y[20]) 

 { 
   state->signals = 0U; 
   [[...]] 
 } 

 

This scheme allows multiple, independent instances of the 

block to be allocated by the runtime environment 

(DoStep itself is stateless). 

A third architecture could be the AUTOSAR Classic 

Platform. Here, variables are accessed using macros 

provided by a centrally generated middleware.  

Note, that independent of the software architecture, 

many characteristics of GALEC (e.g. no need for dynamic 

memory allocation, bounded execution time with bounded 

loop iterations) are intrinsically also properties of derived 

production code. 

Other characteristics such as the handling of error 

signals or the support of multi-dimensional arithmetic let 

more room for production code generating tools to exploit 

different solution alternatives and are not straightforward. 

For multi-dimensional arithmetic, specific libraries could 

be included, and for error signal handling a low-level 

mapping using bit masking logic can be performed in the 

transformation process from GALEC to production code. 

The representation of error signals using bit-masking 

logic, for example, allows for fast (simultaneous) check of 

several conditions and the efficient setting and resetting of 

all concerned signal values. A GALEC snippet like 
 

 if signal in OVERFLOW, NAN then 

   y := y + 1.0; 

 end if; 
 

could be translated into C18 production code like 
 

 if ((signals & 0x6U) != 0U) 

 { 
   /* First, reset the checked signals: */ 
   signals = signals & 0xfffffff9U; 
   /* Then, proceed with body: */ 
   y = y + 1.0F; 
 } 

 

with proper encoding of the signal values for OVERFLOW 

and NAN in bit positions 2 and 3. 

For multi-dimensional arithmetic and interpolation 

routines, usually libraries optimized for the target platform 

will be used. The production code generator has to make 

sure that used data structures of matrices and vectors 

match the format of the used libraries. Furthermore, the 

production code generator has to take care that the value-

semantic of the GALEC language is preserved by taking 

adequate precaution like copying data when using library 

algorithms that alter the input data (e.g. when solving 

linear systems). Data flow analysis on the GALEC 

program enables optimizations that can avoid unneeded 

copy operations. Operations that are “simple/atomic” in 

GALEC code (like chained arithmetic expressions on 

multidimensional elements) may require a “flattening” in 

the generated production code and a proper non-trivial 

management of intermediate results. 

In the example of Section 2.4, the multi-dimensional 

arithmetic expression 
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self.y := solveLinearEquations( 

  self.dP * self.M1 * self.M2, 

  self.tV) 
 

for example requires to store the intermediate result of 

multiplying the scalar dP with the 20 ൈ 10 matrix M1; the 

resulting 20 ൈ 10 matrix has to be multiplied with the 10 ൈ
20 matrix M2, yielding a temporary 20 ൈ 20 matrix which 

is passed as A argument to solveLinearEquations. 

Other optimizations on the production code generator 

side include analysis of value ranges to be able to omit 

unnecessary saturation operations for in-, outputs and 

states in case it can be determined that the values are 

always within bounds. 

Another aspect of the production code generation step 

is to make the generated production code accessible and 

interpretable by consumers of it in subsequent phases like 

testing or integrating into an ECU SW. With the large 

degrees of freedom in generating production code for a 

given GALEC program, the structure of the production 

code may vary greatly, but must be described 

unambiguously at least in the interface parts and must be 

made accessible to anyone who would like to interact with 

it. This is made possible by the Production Code manifest, 

which precisely describes the code structure and interfaces 

(e.g. types, variables, functions) as well as their 

association to the corresponding elements of the GALEC 

code. This association is important to map information 

available only on the GALEC level also to the production 

code elements and enable traceability of the multi-step 

generation process. For example, stimulation data in a 

Behavioral Model container that is mapped to GALEC 

block variables can be applied also to their counterparts in 

the production code, or attributes of these variables (like 

ranges, units) can be associated to their respective 

production code counterparts. The required cross-

referencing between different eFMU containers, e.g., to 

the manifest of the Algorithm Code container, uses a 

unified referencing scheme. 

Besides the integration interface, Production Code 

manifests give, for example, a precise description of the 

target (like target language, target platform, target type, 

compiler and linker options) and the code files that make 

up the production code. The content of such code files is 

described in terms of XML elements and attributes like 

Includes, TypeDefs, Macros, Variables and Functions 

with FormalParameter and ReturnParameter, including 

both a mapping to target specific realizations (e.g. target 

types) as well as a “backward” reference to the 

corresponding elements in the Algorithm Code container. 

With the help of the meta information of Production 

Code manifests, other widely used standards like 

AUTOSAR and FMI can be supported. In case of an 

AUTOSAR platform, the code files are complemented 

with specific description files that contain all information 

to integrate the production code w.r.t. the used AUTOSAR 

standard. In case of the AUTOSAR Classic Platform for 

example, such description files are the .arxml files 

shipped with the software component. 

2.6 Binary Code Model Representation 

The eFMI Binary Code model representation contains 

binaries that have been derived from a Production Code 

representation for a dedicated target architecture. It mainly 

serves two purposes: 

1. Support the creation (build process) and integration 

of binaries on an embedded ECU target. 

2. Protect intellectual properties when software 

artifacts are shared in a collaborative development 

process with multiple parties. 

The first purpose is achieved by providing (a) the actual 

binaries and (b) the relevant build information like 

compilation and linking steps to create these binaries for a 

certain target platform. (b) is done in the manifest of the 

respective Binary Code container and can also be used to 

rebuild the binaries in case they are stale due to later 

production code changes, whereas production code cross-

referencing with mandatory checksums enables to 

automatically deduce if binaries are stale. Note, that 

existing compiler and linker information of production 

code manifests can be referenced and further refined by 

the manifests of Binary Code containers, enabling a 

stepwise specialization and dedication towards a target 

platform. Integrators can use the build information to 

integrate the binaries on their embedded target ECUs. 

Additionally, the manifest can list run time compliance 

information such as execution times and further 

information relevant for the integration (e.g., a calibration 

file describing memory addresses and value ranges for 

calibration). 

Intellectual property protection is achieved by 

removing the source code of the Algorithm Code and 

Production Code containers a Binary Code container is 

derived from, such that they are left with their manifest 

files only. Doing so, binary implementations can be shared 

without exposing actual source codes to third parties, 

whereas the meta information required for embedded 

software integration are still provided by the manifests. 

An example for the stepwise derivation of dedicated 

binaries is the AEBS demonstrator mentioned in 

Section 4.1, where a generic production code is refined 

with integration code for the AUTOSAR Adaptive 

Platform, from which eventually platform-specific 

binaries with accompanying AUTOSAR Adaptive 

Platform manifests are generated. 

3 eFMI Readiness 

3.1 eFMI Tool Support 

The EMPHYSIS Consortium (EMPHYSIS 2021) with its 

25 partners from Belgium, Canada, France, Germany and 
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Sweden covered the entire value chain from vendors of 

modeling and simulation tools, code generators and V&V 

tools over embedded software developers and integrators 

to automotive Tier 1 suppliers and OEMs. This allowed to 

develop the eFMI specification along with reference 

implementations that have been thoroughly tested (cf. 

Section 3.2) and applied to challenging industrial 

applications (cf. Section 4). 

By the end of the project in February 2021, already 13 

different tools covering the entire eFMI workflow plus the 

open source eFMI Compliance Checker were available as 

prototypes. Soon after the official release of the eFMI 

Standard, these tools are expected to be available on the 

market. 

3.2 Test Cases and Coverage 

A set of dedicated test cases has been extensively used for 

testing the eFMI workflow with implementations in 

different prototype tools during the EMPHYSIS project. 

Most of the test cases are part of the Modelica library 

eFMI_TestCases that has recently been published under a 

3-Clause BSD license (Modelica Association 2021-07). A 

few other test cases are AMEsim models or manually 

implemented Algorithm Code containers. For each of the 

test cases automatically generated reference results are 

provided in respective Behavioral Model containers. 

By altogether 48 test cases (including variants) the 

following partially very advanced features are covered: 

non-linear inverse models, feedback linearization based 

controllers, explicit and implicit integration schemes, 

event-based re-initialization of continuous states, neural 

networks, error handling, implicit saturation and 

important built-in functions like solving linear equation 

systems as well as 1-D and 2-D interpolation tables. Each 

feature is supported by at least one eFMI prototype tool 

generating Algorithm Code containers. 

All generated Algorithm Code containers have been 

successfully imported by the involved production code 

tools. For each Algorithm Code container, two production 

code variants have been generated: A double precision 

floating-point (64-bit) and a single precision floating-

point (32-bit) version, each with respective 

implementations of higher-level built-in functions. 

A testing tool chain has been set up to automatically 

check all generated production code variants, create test 

harnesses, compile the code, execute it and compare the 

results with the reference results contained in the 

Behavioral Model containers of each eFMU with respect 

to given error tolerances. In total, 538 execution runs are 

necessary to assess all production code variants generated 

by the varying combination of tools along the eFMI 

workflow. More than 96% of these runs successfully 

passed. The unsuccessful tests are all a result of a currently 

incomplete initialization mechanism in one test case and 

its variations that will be the subject of investigation in 

future work. Nevertheless, the very positive test rate 

impressively shows the maturity of the tool prototypes and 

their compatibility. 

3.3 Performance Benchmarks 

Performance benchmarks of the generated production 

code against state of the art manually implemented C 

solutions have been conducted. The target was the Bosch 

Multicore ECU MDG1 (Rüger et al. 2014). Six test cases 

addressing known difficulties of physical models on ECUs 

by using automatic model to code transformations have 

been contributed to the eFMI_TestCases library. In the 

following, these test cases are denoted by their IDs in 

eFMI_TestCases; the addressed challenges, in ascending 

order w.r.t. difficulty, are: 

� DC motor speed control with PID controller 

(M03_B): Minimal footprint of code with saturated 

inputs and outputs. 

� Air system controller (M15_A): Stiff ODE with 

delay operator.  

� Drivetrain torque controller based on inverse model 

(M04_A): Linear inverse physical model. 

� Inverse slider crank (M10_B): Non-linear inverse 

physical model (DAE Index-1). 

� Reduced order model of a thermal heat transfer 

(M16_A): Efficient handling of matrix operations 

and large two-dimensional maps. 

� Ideal rectifier (M14_A/B): Advanced symbolic 

transformation to derive a compact state space form.  

All models are tested in an open loop setup using the 

recorded data from their Behavioral Model container as 

stimulus. The execution time is captured based on the 

CPU ticks elapsed, right from the start of calling the model 

interface function (e.g. DoStep) until the function 

execution is completed (note, that the MDG1 ECU enables 

precise and reliable counting of elapsed CPU cycles 

without any caching effects). As they have a significant 

impact, boundary and error checks are considered. 

Boundary checks saturate the in- and outputs to their limit 

values. Error handling will check for non-plausible values 

like NaN and infinity. More details are provided in 

Armugham et al. (2021). 

 
Figure 3. Run time measurements of eFMU production 

code with respect to manually coded solutions 
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The results of the performance benchmarks are shown in 

Figure 3. In 4 out of 6 examples (counting M14_A and 

M14_B as one), there is at least one eFMI tool chain setup 

that outperforms the manual implementation. 

In case of M10_B, the manually derived solution of the 

inverse slider crank mechanism did not show a stable 

behavior unless two of the state variables were computed 

in double precision, while the auto-generated solution 

worked fine in single precision due to a more appropriate 

state selection. 

The eFMU derived from the component-oriented 

rectifier model (M14_A) did not lead to the desired most 

compact and efficient formulation of the problem but gave 

very good results after reformulating the problem in the 

Modelica code (M14_B). 

The reduced order model (ROM) of a thermal heat 

transfer test case (M16_A) has been processed by the tool 

chain starting from a manual implementation of the matrix 

equation system in GALEC code. As discussed in Agosta, 

et al. (2019), rigid scalarization, as applied by today’s 

Modelica compilers, leads to an undesired code 

expansion. Here is room for improvement of the GALEC 

code generating tools. However, as the results show, the 

GALEC language is expressive enough to formulate this 

type of problem in a way that can be handled by the 

production code generating tools in a highly efficient way 

(the manually written GALEC code leverages on multi-

dimensional arithmetic to avoid scalarization of the two-

dimensional maps of the test case). 

3.4 Code Quality Assessment 

For all the test cases in Section 3.1, the code quality of the 

generated C code has been assessed by a static code 

analysis tool to find runtime issues such as variable 

overflows, possible division by zero, array index out of 

bounds, etc. or prove their absence. Also, the compliance 

of the code with the MISRA C:2012 rules has been 

checked. A static analysis is sound, but not necessarily 

complete. Hence, checked errors and rule violations are 

never overlooked, but may yield false alarms. Manual 

inspections resolved many of the false alarms so that in the 

402 Production Code containers finally only 1% definite 

errors and 9% rule violations were detected. The main part 

of rule violations was detected in the implementations of 

built-in functions not being in the focus so far. It was 

assumed, that target-specific libraries realizing built-in 

functions will be used. Since then the tool prototypes have 

been further improved aiming for a full coverage of the 

MISRA C:2012 rules relevant for generated code. 

3.5 Gain in Productivity 

Aiming to put the time saving of an automated tool chain 

into perspective of the overall development effort of an 

embedded function, the working hours for modeling, 

implementation in C and validation of the results on the 

ECU have been counted for both the eFMI workflow and 

the manual development for the six benchmark examples. 

The comparison of the results shows that in those cases 

based on a component-oriented modeling (M03_B, 

M04_A and M10_A) with a high level of reuse, the eFMI 

workflow took about 10 times less effort. For M15_A and 

M16_A the models have been implemented from scratch 

in Modelica based on a known state space formulation, but 

still gave a gain by a factor of 2.0 and 1.2 respectively. 

This stresses the high business value of eFMI for 

embedded software development especially for advanced 

physics-based control functions. 

4 eFMI Applications 

4.1 EMPHYSIS Demonstrators 

The developed demonstrators, presented to the ITEA 

review board on Feb. 10, 2021 and summarized in the final 

demonstrator report of EMPHYSIS (2021-08), illustrate 

the application of the eFMI tool chain in concrete and 

realistic usage scenarios. These cover the domains vehicle 

dynamics, powertrain (internal combustion engine, 

battery electric vehicle, hybrid electric vehicle) and 

thermal systems and they are applied to advanced non-

linear controllers, model-based diagnosis, virtual sensors 

and HiL simulation.  

Renault demonstrated in two applications how a neural 

network trained by a high-fidelity model can be integrated 

as very accurate approximation into the embedded 

software running on a car by using the eFMI tool chain. 

DLR-SR realized an advanced vertical dynamics 

controller and observer for semi-active damping (see 

Figure 4) using an inverse non-linear model and a non-

linear Kalman filter running on a small series ECU in real 

driving tests. Never before for the institute, C code derived 

from a Modelica model has been directly integrated into 

the application software as in this case from the generated 

eFMI Production Code container. 

GIPSA-lab demonstrated how eFMI can be utilized to 

derive a parametric Non-linear Model Predictive 

Controller (pNMPC) and deploy its production code to a 

dSPACE MicroAutoBox II ECU. The developed 

controller uses a neural network model to predict the 

future behavior of the car like the response of chassis and 

wheel to a given road profile and suspension parameter; 

this prediction is used for suspension control. 

Volvo Cars demonstrated the development of an 

embedded virtual sensor for electric machine control 

based on a Modelica transmission model. The virtual 

sensor provides vehicle state estimation used to mitigate, 

e.g., backlash in the electric driveline, and thereby 

increase the overall performance of the whole electric 

driveline. The transmission model physics comprise non-

linearities and discrete events for handling brake-torques 

at low speeds, resulting in a stiff discontinuous system 

with mixed equations that has been successfully 
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transformed by Modelica-tooling to a real-time suited 

GALEC solution. 

Dassault Systèmes demonstrated the generation and 

validation of an AUTOSAR Adaptive Platform 

component starting from a Modelica model via a seamless, 

eFMI-based tool chain, for an advanced emergency 

braking (AEBS) controller. The AEBS controller is 

modeled in a classic block-diagram style with embedded 

physics. The blocks include enabled subsystems and 

signal locks, whereas the side effects of such are correctly 

handled using Modelica state machines.  

4.2 OEM Advisory Board Feedback: Dual-

clutch Transmission Demonstrator 

The EMPHYSIS project has been accompanied by the so-

called OEM Advisory Board with representatives from 

European and Japanese automotive OEMs. During half-

day workshops, intermediate results of the project have 

been presented and discussed. An OEM Advisory Board 

usage scenario – a virtual sensor for a dual-clutch 

transmission – has been defined and a corresponding 

demonstrator implemented and evaluated in close 

collaboration between EMPHYSIS partners and the 

experts at Mercedes-Benz AG that provided the plant 

model of the dual-clutch transmission. 

The objective of the virtual sensor is to use the physical 

model of a dual-clutch transmission to estimate the torque 

of clutches during shifting to avoid, for example, clutch 

over-burn and improve the driving-comfort during 

transmission shifting. The used transmission model had 

been derived from an existing high-fidelity system 

simulation model used in the product development of 

Mercedes-Benz AG; the most challenging system 

properties for a real-time application are therefore 

preserved. This includes the stiff dynamics of a hydraulic 

piston being tightly coupled with the discontinuous mode 

switching behavior of the clutches due to Coulomb 

friction, yielding a mixed equation system with undesired 

                                                        
1  The model has been used for real-time simulation by 

Mercedes-Benz AG before, but not for developing a software 

jittering even at a very small step-size of 0.1 ms with 

Explicit Euler. 

By using a Rosenbrock method of order 1 (Hairer 1996) 

this problem could be drastically relaxed towards a jitter 

free behavior at a fixed step-size of 0.1 ms and robust but 

slightly jittering at a step-size of 10 ms. Compared to 

Explicit Euler, the Rosenbrock method therefore enables 

a factor 100 lower sampling rate, enabling the usage of the 

dual-clutch transmission model for embedded1 real-time 

simulation for the very first time. 

According to Mercedes-Benz AG, this result was 

considered a big progress towards using eFMI to derive 

very accurate plant models for SiL, HiL and embedded 

observer applications in a seamless fashion from a high-

fidelity system simulation. It was confirmed that there is 

currently no better automated solution available for this 

task. As of today, a dedicated real-time model must be 

derived and individually fitted for each application 

causing significant repeated effort.  

The eFMI container architecture with its built-in 

traceability and safety mechanisms has been praised by all 

members of the OEM Advisory Board as making eFMI a 

promising candidate to become the prescribed format for 

embedded software deliverables in OEM supplier 

collaborations. Especially for advanced functions like 

observers, the proposed eFMI workflow was considered 

as game changing technology to revolutionize the 

embedded software development. 

5 Future Work 

From the very beginning of the EMPHYSIS project 

(Lenord, 2019), also an Equation Code model 

representation has been investigated as an optional first 

intermediate target representation for acausal equation-

based modeling tools. The motivation is that on the one 

hand Algorithm Code model representations can be 

generated from such a standardized, universal – but still 

simple – equation language, whereas on the other hand 

further equation analysis tooling could be integrated to 

solution that can be deployed on the embedded device; this 

became possible only with eFMI. 

Figure 4. High fidelity vehicle model and advanced non-linear semi-active damping controller. 
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refine equations or derive system characteristics of interest 

in the embedded domain like fault-behavior/safety, 

numeric stability etc. 

To that end, a collaborative working group between 

EMPHYSIS partners and the Modelica Language working 

group has been formed, with the objective to define a 

proposal of a standardized Flat Modelica language as 

basis for a more restricted equation code language. A 

subset of Modelica keywords and a modified grammar 

have been proposed (Modelica Association 2021-06). 

By implementing a prototypical Flat Modelica parser 

and pretty-printer for a non-Modelica tool within a few 

person months, it was demonstrated that other, already 

existing equation-based modeling tools (with their 

existing model representations, analyses capabilities and 

code generation back ends) can be integrated into the 

acausal modeling process with comparatively small effort. 

This early prototype tooling has been applied to two Bosch 

use cases: (1) inversion of a plant model of a drivetrain 

and (2) structural analysis of a thermal system to evaluate 

the detectability of system faults (EMPHYSIS 2021-08). 

The work on a standardized Flat Modelica language 

and Equation Code model representation is planned to be 

continued and incorporated into a later version of the 

eFMI Standard. 

6 Conclusions 

This paper presented eFMI, a new workflow and open 

standard for the automatic generation of embedded 

software from physical models. The novelty of eFMI is its 

tooling-open, standardized exchange format by means of 

a container architecture with various standardized, 

traceable model representations for behavioral reference 

results, abstract algorithmic solutions, actual production 

codes and target-specific binary codes, bridging the gap 

between physics-modeling and embedded software. 

A broad set of test cases, including technically 

challenging models, has been used to rigorously test and 

crosscheck the developed prototypical eFMI tools and 

their interoperability in the eFMI workflow. Together with 

performance benchmarks and code quality assessments, a 

high level of maturity has been testified. 

The eFMI container architecture, with its various model 

representations, has been successfully applied to industrial 

usage scenarios. Automotive OEMs and Tier 1 suppliers 

confirmed the benefits of the proposed workflow over the 

state-of-the-art development processes in terms of 

repeatability, traceability and overall gain in productivity 

for embedded software development. 

The work of EMPHYSIS and the eFMI Standard is 

continued in a new Modelica Association Project eFMI 

(MAP eFMI), successfully founded by core partners of the 

EMPHYSIS project. The work to further develop the 

eFMI specification towards a first official release 

according to established Modelica Association processes 

has already started. Companies and other organizations 

are encouraged to join MAP eFMI, leverage on the already 

developed tooling and foster the eFMI ecosystem. 
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