
© 2021-2023, Modelica Association and contributors.

This work is licensed under a CC BY-SA 4.0 license.

Modelica® is a registered trademark of the Modelica Association.

eFMI® is a registered trademark of the Modelica Association.

FMI® is a registered trademark of the Modelica Association.

SSP® is a registered trademark of the Modelica Association.

DCP® is a registered trademark of the Modelica Association.

https://modelica.org/
https://creativecommons.org/licenses/by-sa/4.0/

This page is intentionally left blank.

eFMI: An open standard for

physical models in embedded software

Oliver Lenord1 Martin Otter2 Christoff Bürger3 Michael Hussmann4

Pierre Le Bihan5 Jörg Niere4 Andreas Pfeiffer2 Robert Reicherdt6 Kai Werther7
1Robert Bosch GmbH, Germany, 2DLR-SR, Germany,

3Dassault Systèmes AB, Sweden, 4dSPACE GmbH, Germany, 5Dassault Systèmes SE, France,
6PikeTec GmbH, Germany, 7ETAS GmbH, Germany

Abstract

This paper summarizes the final research results of the

ITEA3 project EMPHYSIS (embedded systems with

physical models in the production code software). Its core

achievement is the new open eFMI Standard enabling

automated workflows from high-level mathematical

models of physical systems (referred to as physical

models) to automotive compliant embedded software.

eFMI (FMI for embedded systems) defines a container

architecture for model exchange and testing. Multiple

representations from an intermediate representation of

sampled algorithms (GALEC) to production and binary

code for specific embedded targets are maintained in a

traceable workspace. The successful integration of the

developed eFMI tooling is demonstrated by a

comprehensive open source Modelica test cases library

and industrial demonstrators. The readiness of the

proposed approach is proven by compliance checks

according to common automotive code quality standards

like MISRA C:2012 and a performance benchmark in

terms of runtime and resource demand in comparison with

state-of-the-art hand coded solutions.

Keywords: embedded software, model-based

development, code generation, model exchange,

Modelica, FMI, eFMI, GALEC

1 Introduction

1.1 Motivation

Software has become an innovation driver not only but

especially in the automotive industry. This has been

leading to new challenges in terms of maintainability of

the growing software stack for a growing number of ECUs

(Electronic Control Units) in vehicles.

In the field of application software, it is the growing

variability of the vehicles, increasingly demanding

regulations and new powertrain solutions that add to the

complexity of control and diagnosis functions. Original

equipment manufacturers (OEM) as well as Tier 1

suppliers are aiming to cope with these demands by using

mathematical models of physical systems (referred to as

physical models) as part of the control software. For

example, in Zimmermann et al. (2015) physical models

are considered essential to manage the growing

complexity of Diesel engine control as map-based

approaches lead to an overwhelming calibration effort to

satisfy the requirements of real driving emissions (RDE).

Englert et al. (2019) present a framework for embedded

non-linear model predictive controllers (NMPC) as a very

generic approach of integrating physical models into a

controller. With the increased computational power of

modern multi-core ECUs, like the Bosch MDG1 (Rüger et

al. 2014), these advanced approaches become relevant for

industrial applications. In addition, e.g. Bosch is holding

patents on methods for real-time applications of physical

models (e.g. Wagner et al. 2009) stressing the fact that

managing this type of applications is a differentiating

selling proposition.

Model-based development (MBD) is an established

paradigm for the development of control software for

embedded targets deemed to ease these challenges. In

practice the commonly used signal flow-oriented models,

restricted to a predefined set of blocks, do not scale to the

need. The models are rather a model of the software, than

a model of the physical system with poor means to reflect

variants of the underlying physical structure. The rather

low-level description requires a high level of expertise of

the modeler far beyond the physical behavior of the

system including floating-point arithmetic, embedded

software regulations, e.g. MISRA C:2012 rules (MISRA

2013-03) and target architectures, e.g. the AUTomotive

Open System Architecture (AUTOSAR) (AUTOSAR

Consortium 2021).

Despite valuable pioneering work on FMI (Functional

Mock-up Interface) (Modelica Association 2021-04) in

AUTOSAR, discussed in the following section, there is

today no simulation solution supporting the export of

physical models suitable for direct integration into

controls, and no standard of any kind supporting efficient

generation and integration processes from physical

models to embedded software.

The goal of FMI for embedded systems (eFMI) is to

overcome the known limitations of FMI, to enable new

ways of model-based development of embedded software

DOI
10.3384/ecp2118157

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

57

functions for arbitrary targets and architectures, based on

advanced physical models of the underlying system.

1.2 State of the art of FMI in AUTOSAR

In a case study by Bertsch et al. (2015) it has been

demonstrated that it is possible to wrap the C code from a

Source Code FMU (Functional Mock-up Unit), that has

been generated from a Modelica (Modelica Association

2021-02) physical model, as AUTOSAR ASW-C

(Application Software Component) and to execute it on a

Bosch ECU. This study also revealed the conceptual

weaknesses of FMI when it comes to embedded

automotive software and safety critical applications.

The probably most obvious weakness roots in the

purposeful design of FMI being a standardized interface

without being directive about the implementation of

interface functions, except of which entry level files to

provide and which headers to include. In contrast to that,

the widely accepted rules of the Motor Industry Software

Reliability Association (MISRA) are very specific about

how a function is to be implemented in the C language to

avoid ambiguities and runtime exceptions, while ensuring

readability of the code. The goals of maximum flexibility

for the exporting tool to produce any kind of simulation

code to be wrapped into a black box running on a personal

computer (PC) vs. high quality embedded production code

being subject to thorough code reviews before being

deployed to a dedicated target according to a certified

procedure are contradicting. FMI is not designed to

provide production code and binaries that are ready to

satisfy the requirements of automotive embedded software

quality gates. There are no mechanisms for the traceability

of the code and no attributes about the used compilers and

compiler settings to ensure the repeatability of the build

process of a binary targeting a dedicated application in a

specific runtime environment with the type of

microcontroller already defined.

The prototypical tooling developed by Bertsch et al.

(2015) enhanced by Neudorfer et al. (2017) is focusing on

the technical aspect of translating a Source Code FMU

into an AUTOAR SW-C. The aspects of which meta data

has to be provided to support an end-to-end tool chain

from the original model to the deployed binary is not

discussed and remains as an unresolved issue of the

prototypical work not intended for productive usage.

In terms of code quality Bertsch et al. (2015) state that

none of the inspected source codes of the evaluated tools

fulfilled their requirements and that the “C-code from

many commercial tools is not suitable to run on an ECU

due to its size and complexity since it was not intended to

run on an embedded system”.

The tooling presented by Bertsch et al. (2015) translates

in a first step the FMI modelDescription.xml file into

a corresponding AUTOSAR .arxml file, based on a

number of design decisions made on the desired

representation as SW-C. The second step involves the

translation of the C code of the Source Code FMU into C

code that can be processed by build tools from Bosch for

engine control software. After inspection of the source

code generated by three different Modelica tools certain

patterns were identified, such as: moving declarations to

public or private headers, exclusion of functions from,

e.g., stdio.h and math.h (ISO/IEC 2018-06) which are

not supported on embedded devices, taking care of proper

assignment of float values and avoiding implicit type

casts. This process had been automated to a large extent,

but made assumptions on the structure of the code and was

finally still relying on the expertise of an embedded

software developer to inspect the translated code and to fix

remaining issues before further compilation.

This involved procedure illustrates that, if the generator

of the C code is not giving any guarantees on its code, then

it is very difficult, if not impossible, for the consuming

tool to enforce these afterwards. From a workflow

perspective, it is also highly objectionable when only after

importing and processing of an FMU deficits are revealed

that have to be addressed by the exporting tool.

All these issues are only about just compiling the code;

but to fulfill the requirements of an embedded software the

following aspects regarding the behavior and resource

demand of the code have to be addressed as well:

� Limited data memory and code memory.

� Limited computation power of the target.

� Limitations on supported data types: 32-bit vs. 64-bit

floating-point precision, fixed-point arithmetic etc.

� Static memory allocation only.

� Guaranteed exception freeness: Programs never fail

due, e.g., unavailable/busy external devices, writing

read-only memory, accessing multi-dimensions out-

of-bounds, running out of stack memory etc.

� Guaranteed execution time within the limits of the

available target system resources and the minimal

sampling period required for correct physical

behavior.

� Proper error handling: Handling of Not a Number

(NaN) (IEEE 2019-07), mathematical functions that

are undefined for some arguments, linear systems

without unique solution etc.

� In bound guarantees of signals.

Simulation code generated by today’s FMU generating

tools is optimized for runtime performance on a PC. The

memory required by the FMU is allocated dynamically.

The sizes of the data and program code are not considered

limiting factors and therefore not minimized. This renders

existing FMI solutions unsuited for application in the

embedded domain.

For co-simulation FMUs (CS-FMU) there are no

restrictions for the type of solver being used. For real-time

eFMI: An open standard for physical models in embedded software

58 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118157

applications, variable-step-size solvers are not suitable, as

they cannot guarantee the execution time on an equidistant

time grid. Event handling and non-linear algebraic loops

are particularly challenging, since self-evident unbounded

iterative solutions of such cannot be used; instead, such

have to be expressed as upper-bounded iterative

algorithms with execution time guarantees. If this is not

possible, the system is not suited for embedded real-time.

Hence, the consumer of an FMU fully depends on the

modeler and exporting tool to have made appropriate

choices in setting up the model and making the settings for

the solver and the compiler to meet the basic runtime

requirements. An FMU by itself gives no guarantees

further processing can rely upon.

Furthermore, FMUs are expected to run in a simulation

or co-simulation environment that provides exception

handling mechanisms. Messages may be dumped into a

log file in case of exceeded value ranges based on the

assert statements in the code for the simulation engineers

to verify that they can trust the results. In safety critical

applications, there is no second attempt. The software

must guarantee exception free execution and a predictable

behavior under all circumstances. FMI does not provide

any means to cope with this requirement.

Despite the fact that one can find ways to translate the

C code from a Source Code FMU to compile and being

executed on an embedded target, one has to state that FMI

has no means to guarantee that the source code fulfills

basic prerequisites for embedded real-time execution, nor

does it provide a rich enough model description to support

an end-to-end build chain in terms of traceability,

transparency and repeatability of the process.

1.3 eFMI vs. FMI

eFMI helps to overcome the shortcomings of FMI,

explained in Section 1.2, for the development of

embedded software based on physical models. eFMI is not

just an extension of FMI; it is an orthogonal, new standard

that is maintained and further developed in a separate

Modelica Association Project. Entirely new concepts are

introduced, but at the same time, a high degree of

consistency with FMI has been achieved. Whereas FMUs

are ready-made “consumer” products for exchanging

simulation models, an FMU for embedded systems

(eFMU) is a shared development workspace for step-wise,

semi- and full-automatized refinement from a high-level

intermediate representation of a sampled algorithm (in the

GALEC language, see Section 2.4) to an implementation

of the algorithm for an embedded target. The development

of a single eFMU is shared between varying eFMI tools

and developers. Throughout its development, the eFMU

very likely is in intermediate stages not suited for

simulation. The developed final solution can be wrapped

by a respective FMI interface such that it behaves like a

regular FMU. Doing so, the outer FMI shell allows any

FMI supporting tool to load and execute the eFMU as CS-

FMU, accessing the actual production code through

appropriate wrappers. This enables verification and

validation (V&V) of the target code in a Software-in-the-

Loop (SiL) environment without restricting the target code

to satisfy a static C interface.

1.4 eFMI Workflow

Key differentiator of the proposed eFMI workflow (see

Figure 1) is a multistep approach reflected by different

types of so-called model representations that are stored in

containers within the same eFMU. Each model

representation addresses a different aspect and refinement

step of a physical model to embedded software in the

development process. The intention is to provide an

automatable workflow, where the model representations

can be generated, with tool-supported refinement along

the “Transform” boxes in Figure 1.

The Algorithm Code model representation (see Section

2.4) provides a target independent, intermediate

representation for upper-bounded algorithmic

Figure 1. eFMI workflow with its different model representations (red boxes).

Verification of

eFMI C-Code

Testing of

eFMI C-Code

Software-in-the-Loop

Simulation (SiL)

Causal and acausal modeling tools

Model
(AMEsim, Modelica, syq, ...)

Algorithm Code

eFMU
(𝒚௜ାଵ,𝒙௜ାଵሻ ∶ൌ 𝒇஽ாௌ 𝒙௜,𝒖௜ TransformTransform

Execution in

Target Env.
(compiled prod. C-Code)

Binary Code

eFMU
PC binary + SOA app +

target specific binary

Transform

� inputs + outputs

� integrator

� interfaces of services functions
� generic or specific target configuration

(access of variables, services functions, ...)

� extract prod. C-code

� link service functions

� compile + integrate

ECU, Realtime-PC,

AUTOSAR (Adaptive), ...

Simulations of

Model

Production Code

eFMU
production C/C++ Code +

FMI for Co-Sim. C-wrapper

Behavioral Model

eFMU
Reference results: (𝑡௜ ,𝒖௜ ,𝒚௜ሻ
csv-files + XML manifest

GALEC-code + XML manifest C/C++ code + XML manifest object-code +

XML manifest

Session 1A: Open standards (1) FMI/SSP

DOI
10.3384/ecp2118157

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

59

computations. It serves as code generation target for

(physics-based) modeling tools, allowing them to

concentrate on the general concern of finding a sequence

of computations that satisfies real-time constraints, i.e., is

algorithmically well-defined with an upper-bound of

computational steps.

Such algorithmic solutions are further refined to actual

implementation code that is best suited for a specific target

environment in terms of performance, memory

consumption, software architecture and applicable rules

and regulations by Production Code model

representations (see Section 2.5). For a single Algorithm

Code container, several Production Code containers can

be given to address varying target platforms, e.g.,

alternative chip sets or customer specific code guidelines.

For each production code, arbitrarily many compiled

binaries, tailored for embedded system integration within

a specific ECU/target platform, can be included via Binary

Code model representations (see Section 2.6). Besides

defining a target specific build and integration, Binary

Code containers can also protect intellectual property by

only providing the binaries as such without sources.

Finally, validation and verification (V&V) is covered

by means of Behavioral Model model representations (see

Section 2.3), which allow to store reference results for

later back-to-back testing of other model representations

like Production and Binary Code containers.

Starting from an Algorithm Code container, there is no

further stringent order in which traceable containers must

be provided or updated throughout eFMU development

iterations. This enables full flexibility in the software

development process supporting all kinds of model and

software sharing schemes for OEMs and suppliers, with

eFMI as open standard giving maximum freedom in the

choice of tools. An eFMU is a standardized workspace for

collaborative development of embedded solutions from

(physical) models.

1.5 Structure of the paper

This paper gives a coarse introduction to the basic

concepts of the eFMI Standard (Section 2) and highlights

the achieved goals in terms of readiness and applicability

to industrial grade problems (Sections 3, 4), before

summarizing the future work and the conclusions

(Sections 5, 6).

2 eFMI Standard

The following description of the eFMI Standard is

according to version 1.0.0-alpha.4 (EMPHYSIS 2021-07)

published in February 2021; on the same web page an

example eFMU can be downloaded.

2.1 Mathematical description of eFMI

As described in Section 2.6, the starting point of eFMI

workflows are typically physical models for some

independent modeling and simulation environment, e.g., a

Modelica tooling (Modelica Association 2021-02). Such

original models can be described by (unsorted) equations,

algorithms or functions, which have to be transformed to

eFMI Algorithm Code model representations. This

requires a causal, discretized algorithmic solution to be

found for the acausal physics equations – hence the

modeling environment must provide a GALEC code

generation backend (see Section 2.6).

Mathematically, an algorithmic solution can be

described as a sampled input/output block with one

(potentially varying) sample period 𝑇௜ ൌ 𝑡௜ାଵ െ 𝑡௜ for the

whole block. Inputs 𝒖௜ ൌ 𝒖ሺ𝑡௜ሻ and previous block

internal states 𝒙௜ are provided at sample time 𝑡௜ whereas

outputs 𝒚௜ ൌ 𝒚ሺ𝑡௜ሻ and new states 𝒙௜ାଵare computed in

the block (see Figure 2).

Figure 2. Mathematical description of an algorithmic

solution as supported by eFMI Algorithm Code model

representations and the GALEC language.

All variables of the block have a defined type and all

statements of the block are sorted and explicitly solved for

a particular variable. Functions are provided to execute the

relevant parts of the block, especially to initialize it

(Startup() function) and to perform one step

(DoStep() function).

To find an upper-bounded algorithmic solution for

acausal equation systems is a non-trivial task, with

reasonable solution strategies highly depending on

characteristics of the original modeling language. The

eFMI Standard therefore is not covering, or in any way

restricting on how to find suited solutions; it solely

concentrates on defining how such solutions must look

like (see Section 2.4) to be processable by further eFMI

tooling like production code generators.

2.2 eFMU Container Architecture

The basic file structure of eFMUs is:

 /eFMU ; eFMU root directory
 /<directories> ; Model representations
 /schemas ; eFMI XML Schema definitions

 __content.xml ; eFMU content-manifest

The only mandatory file is the eFMU content-manifest

(__content.xml) at the root of the eFMU folder. In

addition, an eFMU includes the XML Schema files

defined by the eFMI Standard (/schemas) to become

self-contained; these XML Schemas restrict the structure

and content of the manifests of the varying eFMI model

representations and thereby enable automatic processing

of eFMUs and their content. All other directory and file

names within an eFMU can be freely chosen by the tools

eFMI: An open standard for physical models in embedded software

60 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118157

generating and processing the varying eFMI model

representations. The directories containing some model

representation, like an Algorithm Code or Production

Code container, are denoted in the eFMU content-

manifest, which also lists the type of model representation

and other meta information like checksums. Each model

representation further supplies its own manifest according

to its type of representation; manifests of model

representations typically list all files of the representation,

their checksums and other representation specific meta

information, like the in- and outputs of GALEC programs

(Algorithm Code containers) or the compiler settings used

to produce some binary code (Binary Code containers).

The structure of a typical eFMU could look like this:

 /eFMU
 /BehavioralModel
 manifest.xml ; Container manifest
 <other files>
 /AlgorithmCode
 manifest.xml ; Container manifest
 <other files>
 /ProductionCode_Generic_C_Float32
 manifest.xml ; Container manifest
 <other files>
 /ProductionCode_Generic_C_Float64
 manifest.xml ; Container manifest
 <other files>
 /ProductionCode_Autosar_Float32
 manifest.xml ; Container manifest
 <other files>
 /schemas
 __content.xml ; eFMU content-manifest

An eFMU can be packed in different formats.

1. The eFMU root directory is a standard directory in the

file system. This is useful to hold an eFMU in a text-

based version control system, such as git or SVN.

2. The eFMU root directory is zipped with the eFMU-

content and is stored in a zip-file with the extension

.efmu. This is useful to ship or distribute an eFMU.

3. The eFMU root directory is path extra/org.efmi-

standard inside a standard FMU. The path is

defined according to the current FMI-3.0-beta.1 pre-

release of the FMI specification (Modelica

Association 2021-04). With attribute activeFMU

inside the eFMU content-manifest it is defined which

of the Algorithm, Production or Binary Code

representations is used as basis of the FMU. This

package format is useful to ship or distribute an

eFMU for Model/Software/Hardware-in-the-Loop

(MiL/SiL/HiL) simulation by further FMU tooling.

Note, that Algorithm Code, Production Code and Binary

Code representations can optionally store associated

FMUs. For example, Algorithm Code representations can

store a Model-in-the-Loop FMU and Production Code

representations for different targets can store Software-in-

the-Loop FMUs. To execute these FMUs, they must be

extracted from the respective model representation –

manually or by a tool. If an eFMU is organized according

to package format (3), a selected FMU from a model

representation has to be copied to the root level so that the

eFMU behaves as an ordinary FMU and can be simulated

by any FMI tool.

2.3 Behavioral Model Representation

The Behavioral Model representation of eFMI is designed

to describe functional and behavioral aspects of the

original (physical) model/system/controller with the goal

of enabling the validation of other generated model

representations within the same eFMU. The central

question is how to define and include reference behavior

for varying model representations and their respective

software? As an example, one can think about a controller

model in Modelica represented by ordinary or differential

algebraic equation systems that shall be exported as

eFMU. Reference result data may be important for several

use case scenarios, e.g. simulation runs of the controller

model in a Modelica tool:

� with a complex variable step-size integration

algorithm to define a highly accurate reference

solution,

� with a fixed step-size algorithm like the Explicit

Euler method and a fixed step-size to get a reference

solution of the discretized sampled data system,

� in different model setups like open and/or closed

loop scenarios to cover a broad range of possible

input value combinations,

� in other test scenarios to test specific

features/requirements of the controller – like unit

tests in software development – and

� all the tests may be run using the floating-point

precision typically used in offline simulations of 64-

bit or/and the more common precision for embedded

systems of 32-bit.

To structure this variety of possible reference data a rather

simple format with only two hierarchies (scenarios and

scenario parts) has been designed: An eFMI Behavioral

Model representation consists of scenario parts grouped in

one or more use case scenarios. Each scenario part

represents a single behavioral aspect of the original model

given by different time dependent input/output data in a

comma-separated values (CSV) file, e.g. a closed loop

scenario with an Explicit Euler discretization of the

controller model. Absolute and relative error tolerances or

time dependent lower and upper bounds can be defined for

each variable in the Behavioral Model manifest, to

account for deviations resulting from discretization

methods, implementation data types and floating-point

imprecision.

Session 1A: Open standards (1) FMI/SSP

DOI
10.3384/ecp2118157

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

61

Since variable names as well as data types might differ

between the different eFMI representations within the

same eFMU (e.g., different production code variants

might map GALEC variables to different C identifiers to

satisfy naming conventions of varying target

environments), every variable of a Behavioral Model

container is linked with its corresponding variable of the

Algorithm Code container such that reference result data

can be provided easily and fully automatic for each model

representation. This means for example, that later added

Production Code containers can be automatically tested

using existing Behavioral Model containers thanks to the

trace-links between variables of the manifests of

Behavioral Model and Production Code containers to the

manifest of the Algorithm Code container.

A typical validation approach consists of the execution

of compiled eFMI production or binary code with input

data from the CSV files. These simulation results are

compared with the expected output data of the Behavioral

Model representation according to the given error

tolerances or bounds to validate the contained eFMI

representations against the “behavior” of the source of the

generated eFMU. This approach enables tools (such as

testing tools) to perform a fully automatic validation of

other eFMI representations (Algorithm Code, Production

Code and Binary Code representations) within an eFMU

w.r.t. behavioral and functional equivalence to the

physical model using a back-to-back testing approach.

2.4 Algorithm Code Model Representation

All containers in an eFMU are related to the Algorithm

Code container of which exists exactly one in each eFMU.

It provides a high-level intermediate representation of a

sampled algorithm by means of a GALEC block and a

description of the block’s interface by means of an XML

manifest. The manifest is used by other containers to trace

their dependencies on the block and avoid processing

GALEC programs if just in need of a description of the

block interface. The GALEC block can define any kind of

finite sampled computation that is subject to embedded

integration (controller, virtual sensor etc.). In terms of the

Modelica language, a GALEC block is a causal solution

for the sampled system defined by a clocked partition.

GALEC is a new imperative programming language

part of the eFMI Standard. Its name is an abbreviation for

guarded algorithmic language for embedded control. It is

an intermediate representation between the (physics)

modeling and embedded programming domains.

GALEC Characteristics: The language characteristics

C1-11 of GALEC, making it a suitable intermediate

representation between modeling and embedded software,

are:

(C1) Target independence: Arithmetic and algorithms

are on an ideal machine, with built-in functions for

abstract handling of target dependent operations like

retrieving the fraction part of a real or checking if such is

Not a Number (NaN) (IEEE 2019-07).

(C2) Explicit language semantics: No implicit casts

between integer and real, no hidden side effects and no

default arguments; simple name space without shadowing,

overloading or polymorphic functions. These restrictions

are kind of language-enforced MISRA C:2012 rules.

(C3) Multi-dimensional arithmetic: Support for

vectors, matrices and higher dimensions with respective

scalar and matrix multiplication, addition etc. Production

code generators can leverage on (C4) to map multi-

dimensional operations to efficient implementations, for

example Streaming SIMD Extensions 4 (SSE4) machine

instructions (Intel Corporation 2021-06).

(C4) Powerful static evaluation: GALEC expressions

are separated into three kinds: (1) declarative sizes, (2)

algorithmic indexing and (3) algorithmic runtime

computations, with the former two being subject to static

evaluation for mandatory well-formedness analyses.

Algorithmic indexing hereby includes for-loop iterators

and static evaluation of their ranges. Indexing expressions

can depend on loop iterators but must not refer to any other

variables for their value. Otherwise, statically evaluated

expressions can be arbitrary complex, including calls of

built-in functions.

(C5) Upper-bounded: GALEC programs must be non-

recursive; the only iteration construct are for-loops,

which according to (C4) can be unrolled. Thus, every

program can be unfolded to an iteration-free sequence of

conditional assignments defining an upper bound of

algorithmic steps. This characteristic enables worst time

execution analyses and advanced optimizations.

(C6) Computational-safe: The static unfolding-

characteristics of (C4) and (C5) are used to guarantee all

indexing is within bounds. Production code generators can

avoid dynamic memory allocation, optimize the memory

mapping and eventually ensure a target’s resources are

always sufficient for exception-free program execution.

(C7) Control-flow integrated error signal handling:

Language constructs to signal errors and handle signaled

errors using ordinary control-flow conditions. All

potentially signaled errors must be handled or explicitly

exposed to the runtime environment; they cannot slip

through unnoticed. Automatic error signal propagation

enables delayed error handling, avoiding the need for

immediate checks of each operation that might fail.

(C8) Safe floating-point numerics: Guaranteed quiet

NaN and infinity propagation according to IEEE 754-2019

(IEEE 2019-07), with relational operations signaling pre-

defined errors when called with NaN arguments. Such

integration with the error signaling concept of (C7) means,

that NaNs can never slip through unnoticed.

(C9) Safe built-in functions: Rich set of safe built-in

functions for casting, numeric limits, rounding,

trigonometric operations, 1/2/3D interpolation, solving

systems of linear equations etc. If arguments are out of

eFMI: An open standard for physical models in embedded software

62 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118157

range, the error signaling of (C7) is used to denote so and

returned values are precisely defined (typically NaN or

infinity) to avoid undefined, implementation dependent,

behavior; in line with (C8), NaN arguments are preferably

silently propagated.

(C10) Call-by-value semantic with well-defined side

effects: Function arguments are passed by value; and,

although an imperative language, GALEC has well-

defined side-effect rules that guarantee (1) each

expression is free of competing side effects and (2) which

statements are mutual independent. Production code

generators can leverage on these characteristics for

automatic, lock-free program parallelization and to avoid

unnecessary copying of multi-dimensional values.

(C11) Block life-cycle with well-defined layers of

modification: GALEC supports a layered modification

concept distinguishing constants from semi-constant

tunable parameters from dependent parameters,

parameters from block in- and outputs and such from inner

states. Only tunable parameters and inputs can be directly

changed by the runtime environment, but only in-between

two sampling steps, never while sampling. Whenever

tunable parameters are changed, dependent parameters

must be recomputed based on the new tunable parameters

only (Recalibrate() interface function); dependencies

on states, in- or outputs are forbidden. In addition,

initialization is clearly encapsulated (Startup()

interface function) with mandatory data-flow analyses

guaranteeing every block variable is assigned an initial

value based only on literal values or already initialized

variables. Initialization code can contain arbitrary

complex algorithms; its clear encapsulation enables static

evaluation. The actual sampling code, which computes

new outputs for given inputs considering the current block

state, is encapsulated in the DoStep() interface function;

its implementation must not change inputs nor parameters.

All block interface functions automatically saturate

variables with declared ranges (ranged variables) at the

very beginning and ending of their execution. This

guarantees, for example, that inputs and outputs are

always within their ranges when DoStep() starts and

terminates, yielding the behavior of a saturated controller.

Not only block interface variables are saturated, but also

inner states if respectively ranged, or ranged parameters

when recalibrating. The whole block life cycle is formally

defined via a state machine.

For details, readers are encouraged to consult the public

alpha draft of the eFMI specification (EMPHYSIS 2021-

07).

GALEC Example: To give at least a glimpse on how

GALEC programs look like, particularly error handling, a

short artificial example is given in the following. A typical

GALEC block looks like the following ([[...]] denotes

removed code snippets):

block Controller

 // Block interface variables:

 input Real u[10] (min = -1.5, max = 1.5);

 output Real y[20] (min = -1.0, max = 1.0);
 parameter Real tP; // tunable parameter

 parameter Real tV[20];// tunable parameter

protected

 // Internal block variables and functions:

 parameter Real dP; // dependent parameter

 Real M1[20,10] // state

 (min = -1.0, max = 1.0);

 Real M2[10,20] // state

 (min = -1.0, max = 1.0);

 function checked_transpose

 signals UNDERFLOW, NAN [[...]];

 function sum [[...]];

public

 // Block interface functions:

 method Recalibrate

 signals INVALID_ARGUMENT [[...]];

 method Startup [[...]];

 method DoStep

 signals NO_SOLUTION_FOUND [[...]];

end Controller;

First, the block interface variables that can be set (inputs

and tunable parameters) and read (outputs) by the runtime

environment are declared. Like any variable, such can be

multi-dimensions and ranged. E.g., y is an output vector

of size 20, with each of its elements in the range [-1.0, 1.0].

Then the section with the internal block variables and

functions follows, first the dependent parameters, then the

states and finally functions. Note, that any errors a

function can signal to callees are part of its interface.

checked_transpose for example can signal

UNDERFLOW and NAN error signals. Finally, the section

with the block interface functions follows. These are

Recalibrate(), Startup() and DoStep(). Note,

that in the example, a sampling step can signal that no

solution has been found via the NO_SOLUTION_FOUND

signal; the signal is used in the example to denote that a

fallback controller has been used due to an unexpected

error. The INVALID_ARGUMENT of the Recalibrate()

function is used to denote to the runtime environment that

given new tunable parameters are invalid and another

recalibration is required. Of course, these error signals are

just examples; the interface functions of other blocks may

signal different, or no errors at all.

Assume checked_transpose is defined as follows:

function checked_transpose

 signals UNDERFLOW, NAN;

 input Real In[:, :];

 output Real Out[size(In, 2), size(In, 1)];

algorithm

 for i in 1 : size(I, 1) loop

 for j in 1 : size(I, 2) loop

 Out[j, i] := In[i, j];

 // Signals NAN if any argument is NAN:

Session 1A: Open standards (1) FMI/SSP

DOI
10.3384/ecp2118157

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

63

 if absolute(In[i, j]) <

 epsReal() * self.dP

 then

 signal UNDERFLOW;

 end if;

 end for;

 end for;

end checked_transpose;

Its in- and output are any matrices of reversed

dimensionality. If used in a context where the output is not

an 𝑛 ൈ 𝑚 matrix for an 𝑚 ൈ 𝑛 input, static dimensionality

analyses will fail with an error (cf. (C6)). The for-loop

uses the matrix dimensions to traverse all elements; it

computes the transpose of In in Out. Thereby every

element is checked to be non-zero around an epsilon based

on the target machine’s minimal precision (epsReal()

built-in function) and the block’s dependent parameter dP;

the latter is accessed directly via self.dP. If the check

fails, UNDERFLOW is signaled. The < check itself will

signal NAN if any of its arguments is NaN. This behavior

is guaranteed by GALEC (cf. (C8)). Since neither of both

signals is handled within checked_transpose, both

must be exposed to callees as denoted in the function’s

interface (the signals UNDERFLOW, NAN; following

the function name).

Assume the sampling function is:

method DoStep

 signals NO_SOLUTION_FOUND;

algorithm

 self.M1 := sum(self.u) /

 real(size(self.u, 1)) * self.M1;

 self.y := solveLinearEquations(

 self.dP * self.M1 * self.M2,

 self.tV);

 self.M2 := checked_transpose(self.M1);

 // Catch any error signals

 // or NaN/∞ in self.y:
 if signal or not(allFinite(self.y)) then

 [[...fallback controller code...]]

 // Expose use of fallback controller:

 signal NO_SOLUTION_FOUND;

 end if;

end DoStep;

At the very end of all computations, a simple conditional

control-flow checks for any kind of errors, and in case of

any error, uses some fallback controller and signals its

usage by exposing the NO_SOLUTION_FOUND signal to the

runtime environment. This delayed error handling is

achieved by the conditional:

 if signal or not(allFinite(self.y))

The if signal construct can be used to check for any,

only specific or any except certain error signals (if

signal, if signal in E1, E2, …, En and if

signal not in E1, E2, …,En respectively). The body

of the check is executed if any of the checked signals was

set; if so, the signals are automatically unset. In the

example’s case, all error signals are handled. The or

condition is optional; it is used in the example to check if

any value of the block’s output vector y is NaN or +/-∞

via the allFinite built-in function. Error signal checks

are ordinary control-flow conditionals and can be

combined with any other if, elseif and else

conditioned branches. In the example, errors might be

signaled by the checked_transpose call or the

solveLinearEquations call. The latter built-in

function fails with a predefined error if the linear equation

system Ax = b cannot be solved, with A being its first

argument, b the second and x its result. Note, that in the

example, the first argument is computed using multi-

dimensional arithmetics: the scalar dependent parameter

dP is multiplied to the 20ൈ 10 matrix M1, the resulting

20 ൈ 10 matrix in turn is multiplied to the 10 ൈ 20 matrix

M2 yielding a quadratic 20 ൈ 20 A matrix as required by

solveLinearEquations. Finally, DoStep() will

according to (C11) implicitly, at the very end, saturate the

block output y and all elements of matrices M1 and M2 to

be in the range [-1.0, 1.0], as it will implicitly saturate the

block input u to be in range [-1.5, 1.5] at its very beginning

(since these block variables are declared with ranges). Of

course, only non-NaN values can be saturated; NaNs stay.

Tool challenges: A Modelica tool (or any other

modeling tool) targeting GALEC for code generation can

concentrate on the actual computation by leveraging on its

high-level abstractions for multi-dimensional arithmetic,

whereas embedded tooling benefits from the inherent

language guarantees every GALEC program will satisfy

and these are of uttermost importance for embedded

software (like guaranteed termination with upper-bound

of algorithmic steps or exception-freeness). Of course, a

major challenge for Modelica tools is to actually find an

upper-bounded causal solution for a given acausal

equation system; this is a non-trivial task with many

challenges on developing suited integration schemes.

Once developed, respective approaches are however

naturally/conveniently expressed as GALEC programs.

2.5 Production Code Model Representation

The previously described formal representation of a

control algorithm in the GALEC language must be

transformed into executable code for a target machine. For

the generation of this code (production code) there are

many degrees of freedom. In contrast to FMI, eFMI does

not enforce a strict code and API format but allows the

actual Production Code representation of an algorithm to

be adjusted to the context in which the code is to be

integrated into. The container architecture of an eFMU

allows to hold several such Production Code model

representations. An integrator of production code can pick

the one that is suitable for his integration context.

The integration context determines several

characteristics including the available bit size (e.g. integer

eFMI: An open standard for physical models in embedded software

64 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118157

as well as single or double precision floating-point),

different data interfaces (e.g. functions without arguments

working on global data vs. functions with arguments),

target and compiler specific optimization, as well as

completely different platforms (such as e.g. AUTOSAR

vs. plain C code). The different production codes for the

same GALEC program and their integration contexts are

described in their respective manifest. Each manifest

contains all information to enable an integration of its

production code into a test or execution environment.

We would like to illustrate the impact of the integration

context onto the actual production code by giving

alternative C18 (ISO/IEC 2018-06) code realizations for

the GALEC example of Section 2.4. In the first “software

architecture”, all block variables are realized as global

variables:

 float u[10];

 float y[20];

 float tP;

 float tV[20];

 float dp;

 float M1[20][10];

 float M2[10][20];

 unsigned int DoStep(void)

 {
 unsigned int signals = 0U;

 [[...]]
 return signals; /* NO_SOLUTION_FOUND? */

 }

In the second architecture below, the input-output notion

of the block is mapped to an input/output of the DoStep

function itself and the block state (parameters and inner

states) is encapsulated in a passed struct which must be

allocated by the embedded runtime environment (note that

the block state and output are passed by reference, thus are

writeable by DoStep):

 typedef struct

 {
 unsigned int signals;

 float tP;
 float tV[20];
 float dp;
 float M1[20][10];
 float M2[10][20];

 } BlockState;

 void DoStep(
 BlockState* const state,
 const float const u[10],
 const float y[20])

 {
 state->signals = 0U;
 [[...]]
 }

This scheme allows multiple, independent instances of the

block to be allocated by the runtime environment

(DoStep itself is stateless).

A third architecture could be the AUTOSAR Classic

Platform. Here, variables are accessed using macros

provided by a centrally generated middleware.

Note, that independent of the software architecture,

many characteristics of GALEC (e.g. no need for dynamic

memory allocation, bounded execution time with bounded

loop iterations) are intrinsically also properties of derived

production code.

Other characteristics such as the handling of error

signals or the support of multi-dimensional arithmetic let

more room for production code generating tools to exploit

different solution alternatives and are not straightforward.

For multi-dimensional arithmetic, specific libraries could

be included, and for error signal handling a low-level

mapping using bit masking logic can be performed in the

transformation process from GALEC to production code.

The representation of error signals using bit-masking

logic, for example, allows for fast (simultaneous) check of

several conditions and the efficient setting and resetting of

all concerned signal values. A GALEC snippet like

 if signal in OVERFLOW, NAN then

 y := y + 1.0;

 end if;

could be translated into C18 production code like

 if ((signals & 0x6U) != 0U)

 {
 /* First, reset the checked signals: */
 signals = signals & 0xfffffff9U;
 /* Then, proceed with body: */
 y = y + 1.0F;
 }

with proper encoding of the signal values for OVERFLOW

and NAN in bit positions 2 and 3.

For multi-dimensional arithmetic and interpolation

routines, usually libraries optimized for the target platform

will be used. The production code generator has to make

sure that used data structures of matrices and vectors

match the format of the used libraries. Furthermore, the

production code generator has to take care that the value-

semantic of the GALEC language is preserved by taking

adequate precaution like copying data when using library

algorithms that alter the input data (e.g. when solving

linear systems). Data flow analysis on the GALEC

program enables optimizations that can avoid unneeded

copy operations. Operations that are “simple/atomic” in

GALEC code (like chained arithmetic expressions on

multidimensional elements) may require a “flattening” in

the generated production code and a proper non-trivial

management of intermediate results.

In the example of Section 2.4, the multi-dimensional

arithmetic expression

Session 1A: Open standards (1) FMI/SSP

DOI
10.3384/ecp2118157

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

65

self.y := solveLinearEquations(

 self.dP * self.M1 * self.M2,

 self.tV)

for example requires to store the intermediate result of

multiplying the scalar dP with the 20 ൈ 10 matrix M1; the

resulting 20 ൈ 10 matrix has to be multiplied with the 10 ൈ
20 matrix M2, yielding a temporary 20 ൈ 20 matrix which

is passed as A argument to solveLinearEquations.

Other optimizations on the production code generator

side include analysis of value ranges to be able to omit

unnecessary saturation operations for in-, outputs and

states in case it can be determined that the values are

always within bounds.

Another aspect of the production code generation step

is to make the generated production code accessible and

interpretable by consumers of it in subsequent phases like

testing or integrating into an ECU SW. With the large

degrees of freedom in generating production code for a

given GALEC program, the structure of the production

code may vary greatly, but must be described

unambiguously at least in the interface parts and must be

made accessible to anyone who would like to interact with

it. This is made possible by the Production Code manifest,

which precisely describes the code structure and interfaces

(e.g. types, variables, functions) as well as their

association to the corresponding elements of the GALEC

code. This association is important to map information

available only on the GALEC level also to the production

code elements and enable traceability of the multi-step

generation process. For example, stimulation data in a

Behavioral Model container that is mapped to GALEC

block variables can be applied also to their counterparts in

the production code, or attributes of these variables (like

ranges, units) can be associated to their respective

production code counterparts. The required cross-

referencing between different eFMU containers, e.g., to

the manifest of the Algorithm Code container, uses a

unified referencing scheme.

Besides the integration interface, Production Code

manifests give, for example, a precise description of the

target (like target language, target platform, target type,

compiler and linker options) and the code files that make

up the production code. The content of such code files is

described in terms of XML elements and attributes like

Includes, TypeDefs, Macros, Variables and Functions

with FormalParameter and ReturnParameter, including

both a mapping to target specific realizations (e.g. target

types) as well as a “backward” reference to the

corresponding elements in the Algorithm Code container.

With the help of the meta information of Production

Code manifests, other widely used standards like

AUTOSAR and FMI can be supported. In case of an

AUTOSAR platform, the code files are complemented

with specific description files that contain all information

to integrate the production code w.r.t. the used AUTOSAR

standard. In case of the AUTOSAR Classic Platform for

example, such description files are the .arxml files

shipped with the software component.

2.6 Binary Code Model Representation

The eFMI Binary Code model representation contains

binaries that have been derived from a Production Code

representation for a dedicated target architecture. It mainly

serves two purposes:

1. Support the creation (build process) and integration

of binaries on an embedded ECU target.

2. Protect intellectual properties when software

artifacts are shared in a collaborative development

process with multiple parties.

The first purpose is achieved by providing (a) the actual

binaries and (b) the relevant build information like

compilation and linking steps to create these binaries for a

certain target platform. (b) is done in the manifest of the

respective Binary Code container and can also be used to

rebuild the binaries in case they are stale due to later

production code changes, whereas production code cross-

referencing with mandatory checksums enables to

automatically deduce if binaries are stale. Note, that

existing compiler and linker information of production

code manifests can be referenced and further refined by

the manifests of Binary Code containers, enabling a

stepwise specialization and dedication towards a target

platform. Integrators can use the build information to

integrate the binaries on their embedded target ECUs.

Additionally, the manifest can list run time compliance

information such as execution times and further

information relevant for the integration (e.g., a calibration

file describing memory addresses and value ranges for

calibration).

Intellectual property protection is achieved by

removing the source code of the Algorithm Code and

Production Code containers a Binary Code container is

derived from, such that they are left with their manifest

files only. Doing so, binary implementations can be shared

without exposing actual source codes to third parties,

whereas the meta information required for embedded

software integration are still provided by the manifests.

An example for the stepwise derivation of dedicated

binaries is the AEBS demonstrator mentioned in

Section 4.1, where a generic production code is refined

with integration code for the AUTOSAR Adaptive

Platform, from which eventually platform-specific

binaries with accompanying AUTOSAR Adaptive

Platform manifests are generated.

3 eFMI Readiness

3.1 eFMI Tool Support

The EMPHYSIS Consortium (EMPHYSIS 2021) with its

25 partners from Belgium, Canada, France, Germany and

eFMI: An open standard for physical models in embedded software

66 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118157

Sweden covered the entire value chain from vendors of

modeling and simulation tools, code generators and V&V

tools over embedded software developers and integrators

to automotive Tier 1 suppliers and OEMs. This allowed to

develop the eFMI specification along with reference

implementations that have been thoroughly tested (cf.

Section 3.2) and applied to challenging industrial

applications (cf. Section 4).

By the end of the project in February 2021, already 13

different tools covering the entire eFMI workflow plus the

open source eFMI Compliance Checker were available as

prototypes. Soon after the official release of the eFMI

Standard, these tools are expected to be available on the

market.

3.2 Test Cases and Coverage

A set of dedicated test cases has been extensively used for

testing the eFMI workflow with implementations in

different prototype tools during the EMPHYSIS project.

Most of the test cases are part of the Modelica library

eFMI_TestCases that has recently been published under a

3-Clause BSD license (Modelica Association 2021-07). A

few other test cases are AMEsim models or manually

implemented Algorithm Code containers. For each of the

test cases automatically generated reference results are

provided in respective Behavioral Model containers.

By altogether 48 test cases (including variants) the

following partially very advanced features are covered:

non-linear inverse models, feedback linearization based

controllers, explicit and implicit integration schemes,

event-based re-initialization of continuous states, neural

networks, error handling, implicit saturation and

important built-in functions like solving linear equation

systems as well as 1-D and 2-D interpolation tables. Each

feature is supported by at least one eFMI prototype tool

generating Algorithm Code containers.

All generated Algorithm Code containers have been

successfully imported by the involved production code

tools. For each Algorithm Code container, two production

code variants have been generated: A double precision

floating-point (64-bit) and a single precision floating-

point (32-bit) version, each with respective

implementations of higher-level built-in functions.

A testing tool chain has been set up to automatically

check all generated production code variants, create test

harnesses, compile the code, execute it and compare the

results with the reference results contained in the

Behavioral Model containers of each eFMU with respect

to given error tolerances. In total, 538 execution runs are

necessary to assess all production code variants generated

by the varying combination of tools along the eFMI

workflow. More than 96% of these runs successfully

passed. The unsuccessful tests are all a result of a currently

incomplete initialization mechanism in one test case and

its variations that will be the subject of investigation in

future work. Nevertheless, the very positive test rate

impressively shows the maturity of the tool prototypes and

their compatibility.

3.3 Performance Benchmarks

Performance benchmarks of the generated production

code against state of the art manually implemented C

solutions have been conducted. The target was the Bosch

Multicore ECU MDG1 (Rüger et al. 2014). Six test cases

addressing known difficulties of physical models on ECUs

by using automatic model to code transformations have

been contributed to the eFMI_TestCases library. In the

following, these test cases are denoted by their IDs in

eFMI_TestCases; the addressed challenges, in ascending

order w.r.t. difficulty, are:

� DC motor speed control with PID controller

(M03_B): Minimal footprint of code with saturated

inputs and outputs.

� Air system controller (M15_A): Stiff ODE with

delay operator.

� Drivetrain torque controller based on inverse model

(M04_A): Linear inverse physical model.

� Inverse slider crank (M10_B): Non-linear inverse

physical model (DAE Index-1).

� Reduced order model of a thermal heat transfer

(M16_A): Efficient handling of matrix operations

and large two-dimensional maps.

� Ideal rectifier (M14_A/B): Advanced symbolic

transformation to derive a compact state space form.

All models are tested in an open loop setup using the

recorded data from their Behavioral Model container as

stimulus. The execution time is captured based on the

CPU ticks elapsed, right from the start of calling the model

interface function (e.g. DoStep) until the function

execution is completed (note, that the MDG1 ECU enables

precise and reliable counting of elapsed CPU cycles

without any caching effects). As they have a significant

impact, boundary and error checks are considered.

Boundary checks saturate the in- and outputs to their limit

values. Error handling will check for non-plausible values

like NaN and infinity. More details are provided in

Armugham et al. (2021).

Figure 3. Run time measurements of eFMU production

code with respect to manually coded solutions

73%
79%

43%

110%

67%

93%
101%

0%

20%

40%

60%

80%

100%

120%

eFMU

Manual

Session 1A: Open standards (1) FMI/SSP

DOI
10.3384/ecp2118157

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

67

The results of the performance benchmarks are shown in

Figure 3. In 4 out of 6 examples (counting M14_A and

M14_B as one), there is at least one eFMI tool chain setup

that outperforms the manual implementation.

In case of M10_B, the manually derived solution of the

inverse slider crank mechanism did not show a stable

behavior unless two of the state variables were computed

in double precision, while the auto-generated solution

worked fine in single precision due to a more appropriate

state selection.

The eFMU derived from the component-oriented

rectifier model (M14_A) did not lead to the desired most

compact and efficient formulation of the problem but gave

very good results after reformulating the problem in the

Modelica code (M14_B).

The reduced order model (ROM) of a thermal heat

transfer test case (M16_A) has been processed by the tool

chain starting from a manual implementation of the matrix

equation system in GALEC code. As discussed in Agosta,

et al. (2019), rigid scalarization, as applied by today’s

Modelica compilers, leads to an undesired code

expansion. Here is room for improvement of the GALEC

code generating tools. However, as the results show, the

GALEC language is expressive enough to formulate this

type of problem in a way that can be handled by the

production code generating tools in a highly efficient way

(the manually written GALEC code leverages on multi-

dimensional arithmetic to avoid scalarization of the two-

dimensional maps of the test case).

3.4 Code Quality Assessment

For all the test cases in Section 3.1, the code quality of the

generated C code has been assessed by a static code

analysis tool to find runtime issues such as variable

overflows, possible division by zero, array index out of

bounds, etc. or prove their absence. Also, the compliance

of the code with the MISRA C:2012 rules has been

checked. A static analysis is sound, but not necessarily

complete. Hence, checked errors and rule violations are

never overlooked, but may yield false alarms. Manual

inspections resolved many of the false alarms so that in the

402 Production Code containers finally only 1% definite

errors and 9% rule violations were detected. The main part

of rule violations was detected in the implementations of

built-in functions not being in the focus so far. It was

assumed, that target-specific libraries realizing built-in

functions will be used. Since then the tool prototypes have

been further improved aiming for a full coverage of the

MISRA C:2012 rules relevant for generated code.

3.5 Gain in Productivity

Aiming to put the time saving of an automated tool chain

into perspective of the overall development effort of an

embedded function, the working hours for modeling,

implementation in C and validation of the results on the

ECU have been counted for both the eFMI workflow and

the manual development for the six benchmark examples.

The comparison of the results shows that in those cases

based on a component-oriented modeling (M03_B,

M04_A and M10_A) with a high level of reuse, the eFMI

workflow took about 10 times less effort. For M15_A and

M16_A the models have been implemented from scratch

in Modelica based on a known state space formulation, but

still gave a gain by a factor of 2.0 and 1.2 respectively.

This stresses the high business value of eFMI for

embedded software development especially for advanced

physics-based control functions.

4 eFMI Applications

4.1 EMPHYSIS Demonstrators

The developed demonstrators, presented to the ITEA

review board on Feb. 10, 2021 and summarized in the final

demonstrator report of EMPHYSIS (2021-08), illustrate

the application of the eFMI tool chain in concrete and

realistic usage scenarios. These cover the domains vehicle

dynamics, powertrain (internal combustion engine,

battery electric vehicle, hybrid electric vehicle) and

thermal systems and they are applied to advanced non-

linear controllers, model-based diagnosis, virtual sensors

and HiL simulation.

Renault demonstrated in two applications how a neural

network trained by a high-fidelity model can be integrated

as very accurate approximation into the embedded

software running on a car by using the eFMI tool chain.

DLR-SR realized an advanced vertical dynamics

controller and observer for semi-active damping (see

Figure 4) using an inverse non-linear model and a non-

linear Kalman filter running on a small series ECU in real

driving tests. Never before for the institute, C code derived

from a Modelica model has been directly integrated into

the application software as in this case from the generated

eFMI Production Code container.

GIPSA-lab demonstrated how eFMI can be utilized to

derive a parametric Non-linear Model Predictive

Controller (pNMPC) and deploy its production code to a

dSPACE MicroAutoBox II ECU. The developed

controller uses a neural network model to predict the

future behavior of the car like the response of chassis and

wheel to a given road profile and suspension parameter;

this prediction is used for suspension control.

Volvo Cars demonstrated the development of an

embedded virtual sensor for electric machine control

based on a Modelica transmission model. The virtual

sensor provides vehicle state estimation used to mitigate,

e.g., backlash in the electric driveline, and thereby

increase the overall performance of the whole electric

driveline. The transmission model physics comprise non-

linearities and discrete events for handling brake-torques

at low speeds, resulting in a stiff discontinuous system

with mixed equations that has been successfully

eFMI: An open standard for physical models in embedded software

68 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118157

transformed by Modelica-tooling to a real-time suited

GALEC solution.

Dassault Systèmes demonstrated the generation and

validation of an AUTOSAR Adaptive Platform

component starting from a Modelica model via a seamless,

eFMI-based tool chain, for an advanced emergency

braking (AEBS) controller. The AEBS controller is

modeled in a classic block-diagram style with embedded

physics. The blocks include enabled subsystems and

signal locks, whereas the side effects of such are correctly

handled using Modelica state machines.

4.2 OEM Advisory Board Feedback: Dual-

clutch Transmission Demonstrator

The EMPHYSIS project has been accompanied by the so-

called OEM Advisory Board with representatives from

European and Japanese automotive OEMs. During half-

day workshops, intermediate results of the project have

been presented and discussed. An OEM Advisory Board

usage scenario – a virtual sensor for a dual-clutch

transmission – has been defined and a corresponding

demonstrator implemented and evaluated in close

collaboration between EMPHYSIS partners and the

experts at Mercedes-Benz AG that provided the plant

model of the dual-clutch transmission.

The objective of the virtual sensor is to use the physical

model of a dual-clutch transmission to estimate the torque

of clutches during shifting to avoid, for example, clutch

over-burn and improve the driving-comfort during

transmission shifting. The used transmission model had

been derived from an existing high-fidelity system

simulation model used in the product development of

Mercedes-Benz AG; the most challenging system

properties for a real-time application are therefore

preserved. This includes the stiff dynamics of a hydraulic

piston being tightly coupled with the discontinuous mode

switching behavior of the clutches due to Coulomb

friction, yielding a mixed equation system with undesired

1 The model has been used for real-time simulation by

Mercedes-Benz AG before, but not for developing a software

jittering even at a very small step-size of 0.1 ms with

Explicit Euler.

By using a Rosenbrock method of order 1 (Hairer 1996)

this problem could be drastically relaxed towards a jitter

free behavior at a fixed step-size of 0.1 ms and robust but

slightly jittering at a step-size of 10 ms. Compared to

Explicit Euler, the Rosenbrock method therefore enables

a factor 100 lower sampling rate, enabling the usage of the

dual-clutch transmission model for embedded1 real-time

simulation for the very first time.

According to Mercedes-Benz AG, this result was

considered a big progress towards using eFMI to derive

very accurate plant models for SiL, HiL and embedded

observer applications in a seamless fashion from a high-

fidelity system simulation. It was confirmed that there is

currently no better automated solution available for this

task. As of today, a dedicated real-time model must be

derived and individually fitted for each application

causing significant repeated effort.

The eFMI container architecture with its built-in

traceability and safety mechanisms has been praised by all

members of the OEM Advisory Board as making eFMI a

promising candidate to become the prescribed format for

embedded software deliverables in OEM supplier

collaborations. Especially for advanced functions like

observers, the proposed eFMI workflow was considered

as game changing technology to revolutionize the

embedded software development.

5 Future Work

From the very beginning of the EMPHYSIS project

(Lenord, 2019), also an Equation Code model

representation has been investigated as an optional first

intermediate target representation for acausal equation-

based modeling tools. The motivation is that on the one

hand Algorithm Code model representations can be

generated from such a standardized, universal – but still

simple – equation language, whereas on the other hand

further equation analysis tooling could be integrated to

solution that can be deployed on the embedded device; this

became possible only with eFMI.

Figure 4. High fidelity vehicle model and advanced non-linear semi-active damping controller.

Session 1A: Open standards (1) FMI/SSP

DOI
10.3384/ecp2118157

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

69

refine equations or derive system characteristics of interest

in the embedded domain like fault-behavior/safety,

numeric stability etc.

To that end, a collaborative working group between

EMPHYSIS partners and the Modelica Language working

group has been formed, with the objective to define a

proposal of a standardized Flat Modelica language as

basis for a more restricted equation code language. A

subset of Modelica keywords and a modified grammar

have been proposed (Modelica Association 2021-06).

By implementing a prototypical Flat Modelica parser

and pretty-printer for a non-Modelica tool within a few

person months, it was demonstrated that other, already

existing equation-based modeling tools (with their

existing model representations, analyses capabilities and

code generation back ends) can be integrated into the

acausal modeling process with comparatively small effort.

This early prototype tooling has been applied to two Bosch

use cases: (1) inversion of a plant model of a drivetrain

and (2) structural analysis of a thermal system to evaluate

the detectability of system faults (EMPHYSIS 2021-08).

The work on a standardized Flat Modelica language

and Equation Code model representation is planned to be

continued and incorporated into a later version of the

eFMI Standard.

6 Conclusions

This paper presented eFMI, a new workflow and open

standard for the automatic generation of embedded

software from physical models. The novelty of eFMI is its

tooling-open, standardized exchange format by means of

a container architecture with various standardized,

traceable model representations for behavioral reference

results, abstract algorithmic solutions, actual production

codes and target-specific binary codes, bridging the gap

between physics-modeling and embedded software.

A broad set of test cases, including technically

challenging models, has been used to rigorously test and

crosscheck the developed prototypical eFMI tools and

their interoperability in the eFMI workflow. Together with

performance benchmarks and code quality assessments, a

high level of maturity has been testified.

The eFMI container architecture, with its various model

representations, has been successfully applied to industrial

usage scenarios. Automotive OEMs and Tier 1 suppliers

confirmed the benefits of the proposed workflow over the

state-of-the-art development processes in terms of

repeatability, traceability and overall gain in productivity

for embedded software development.

The work of EMPHYSIS and the eFMI Standard is

continued in a new Modelica Association Project eFMI

(MAP eFMI), successfully founded by core partners of the

EMPHYSIS project. The work to further develop the

eFMI specification towards a first official release

according to established Modelica Association processes

has already started. Companies and other organizations

are encouraged to join MAP eFMI, leverage on the already

developed tooling and foster the eFMI ecosystem.

Acknowledgements

This work is the result of the European ITEA3 Call2

EMPHYSIS (project number 15016). The work was

funded by the German Federal Ministry of Education and

Research (BMBF, grant numbers 01|S17023(A-H)),

Sweden’s Innovation Agency (VINNOVA, project

number: 2017-05121), the French Directorate General for

Enterprise and the Belgian agency Flanders Innovation &

Entrepreneurship. The authors are responsible for the

content of this publication.

The authors would like to thank the members of the

EMPHYSIS OEM Advisory Board: BMW, Mercedes-

Benz AG, Mazda, Volvo Trucks, JSAE for their use case,

feedback and directions and the numerous persons that

have worked in the EMPHYSIS project on the

development of the eFMI Standard and/or evaluated it

with tool prototypes, benchmarks and test cases as listed

in appendix A of the eFMI specification.

References

Agosta, Giovanni, Emanuele Baldino, Francesco Casella,

Stefano Cherubin, Alberto Leva and Federico Terraneo

(2019). “Towards a High-Performance Modelica Compiler.”

In: Proceedings of the 13th International Modelica

Conference. Modelica Association, pp. 313–320. DOI:

10.3384/ecp19157313.

Armugham, Siva Sankar, Christian Bertsch, Karthikeyan

Ramachandran, Oliver Lenord and Kai Werther (2021).

“eFMI (FMI for embedded systems) in AUTOSAR for Next

Generation Automotive Software Development”. In:

Symposium on International Automotive Technology 2021.

SAE International. Accepted March 31, 2021.

AUTOSAR Consortium (2021). AUTOSAR (AUTomotive Open

System ARchitecture). URL: http://www.autosar.org/.

Bertsch, Christian, Jonathan Neudorfer, Elmar Ahle, Siva

Sankar Arumugham, Karthikeyan Ramachandran and

Andreas Thuy (2015). “FMI for Physical Models on

Automotive Embedded Targets”. In: Proceedings of the 11th

International Modelica Conference. Modelica Association,

pp. 43–50. DOI: 10.3384/ecp1511843.

EMPHYSIS (2021). EMPHYSIS (Embedded systems with

physical models in the production code software). URL:

https://emphysis.github.io/.

EMPHYSIS (2021-07). Functional Mock-Up Interface for

embedded systems (eFMI). Version 1.0.0-alpha.4, Tech. rep.:

EMPHYSIS Consortium. URL:

https://emphysis.github.io/downloads.

EMPHYSIS (2021-08). eFMI for Physics-Based ECU

Controllers. Tech. rep. D7.9, EMPHYSIS project

deliverables: EMPHYSIS Consortium. URL:

https://emphysis.github.io/downloads.

Englert, Tobias, Andreas Völz, Felix Mesmer, Sönke Rhein and

Knut Graichen (2019). “A Software Framework for

Embedded Nonlinear Model Predictive Control Using a

Gradient-Based Augmented Lagrangian Approach

eFMI: An open standard for physical models in embedded software

70 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp2118157

(GRAMPC)”. In: Optimization and Engineering 20 (3), pp.

769–809. Springer. DOI: 10.1007/s11081-018-9417-2.

Hairer, Ernst and Gerhard Wanner (1996). Solving Ordinary

Differential Equations II. 2nd ed. Springer. ISBN: 978-3-540-

60452-5.

IEEE (2019-07). IEEE Standard for Floating-Point Arithmetic.

Institute of Electrical and Electronics Engineers. ISBN: 978-1-

5044-5924-2.

Intel Corporation (2021-06). Intel® 64 and IA-32 Architectures

Software Developer’s Manual – Combined Volumes: 1, 2A,

2B, 2C, 2D, 3A, 3B, 3C, 3D and 4. Tech. rep.: Intel

Corporation. Order Number: 325462-075US.

ISO/IEC (2018-06). ISO/IEC 9899:2018 — Information

technology — Programming languages — C. International

Organization for Standardization.

Lenord, Oliver (2019). “Standardizing eFMI for Embedded

Systems with Physical Models in the Production Code

Software”. Presented at: Jubilee Symposium: Future

Directions of System Modeling and Simulation. Medicon

Village, Lund, Sweden, September 30, 2019. URL:

https://modelica.github.io/Symposium2019/.

MISRA (2013-03). MISRA C:2012 – Guidelines for the use of

the C language in critical systems. MISRA Consortium

Limited. ISBN: 978-1-906400-10-1.

Modelica Association (2021-02). Modelica® – A Unified

Object-Oriented Language for Systems Modeling – Language

Specification – Version 3.5. Tech. rep.: Modelica

Association. URL: https://modelica.org/documents/MLS.pdf.

Modelica Association (2021-04). Functional Mock-up Interface

for Model Exchange and Co-Simulation. Tech. rep.: Modelica

Association. URL: https://fmi-standard.org/downloads/.

Modelica Association (2021-06). “Modelica Language Change

Proposal 31 (MCP 31)”. URL:

https://github.com/modelica/ModelicaSpecification/tree/MC

P/0031/RationaleMCP/0031.

Modelica Association (2021-07). “Official eFMI test cases for

demonstrating and evaluating eFMI tooling”. URL:

https://github.com/modelica/efmi-testcases.

Neudorfer, Jonathan, Siva Sankar Armugham, Mathews Peter,

Naresh Mandipalli, Karthikeyan Ramachandran, Christian

Bertsch and Isidro Corral (2017). “FMI for Physics-Based

Models on AUTOSAR Platforms”. In: Symposium on

International Automotive Technology 2017. SAE

International. DOI: 10.4271/2017-26-0358.

Rüger, Johannes-Joerg, Alexander Wernet, Hasan-Ferit Kececi

and Thomas Thiel (2014). “MDG1: The New, Scalable, and

Powerful ECU Platform from Bosch”. In: Proceedings of the

FISITA 2012 World Automotive Congress. Vol. 6. Vehicle

Electronics. Springer.

Wagner, Alexandre, Thomas Bleile, Slobodanka Lux and

Christian Fleck (2009). “Method for real time capability

simulation of an air system model of an internal combustion

engine”. Patent: United States US8321172B2, filed

November 19, 2009.

Zimmermann, Michael, Thomas Bleile, Friedrun Heiber and

Alexander Henle (2015). “Komplexitätsbeherrschung von

Motorsteuerungs-Funktionalitäten”. In: MTZ -

Motortechnische Zeitschrift 76 (1), pp. 60–64. Springer. DOI:

10.1007/s35146-014-2003-z.

Session 1A: Open standards (1) FMI/SSP

DOI
10.3384/ecp2118157

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

71

