Hybrid Simulation Models for Embedded Applications: A
Modelica and eFMI approach

Tobias Kamp'

Christoff Biirger> Johannes Rein

I Jonathan Brembeck!

Hnstitute of Vehicle Concepts, German Aerospace Center, {tobias.kamp,
johannes.rein, jonathan.brembeck}@dlr.de
2Dassault Systemes AB, Sweden, christoff.buerger@3ds.com

Abstract

Hybrid simulation models combine physics equations
with trainable components to improve simulation results
and performance. Physics-enhanced neural ordinary dif-
ferential equations (PeN-ODE) are a promising type of hy-
brid models that combine artificial neural networks (NN)
with the differential equations of a dynamic system. Dy-
namic simulation models are often part of embedded con-
trol algorithms of cyber-physical systems (CPS); compli-
ance with the safety and real-time requirements of such
embedded environments is, however, challenging.

In this work, we propose a workflow to incorporate
trained NNs in Modelica models to form hybrid simula-
tion models that are PeN-ODEs. We thereby focus on
the transformation steps from equation-based trained PeN-
ODE:s in Modelica towards causal solutions suited for the
embedded domain — up to and including MISRA C:2023
compliance checks and final software-in-the-loop (SiL)
tests of generated production code in the modeling en-
vironment — for which we leverage eFMI standard com-
pliant tools (Dymola and Software Production Engineer-
ing). It is of particular interest how the trained NNs of
the hybrid model are implemented. We present two ap-
proaches: (1) generation of C code using existing Open
Neural Network Exchange (ONNX) tooling and (2) pure
Modelica code with the tensor-flow represented as multi-
dimensional equations. Both approaches are discussed,
highlighting why (2) is, in the long run, a better option
given the eFMI technology space.

Keywords: Hybrid modeling, neural network, machine
learning, embedded system, Modelica, eFMI, Physics-
enhanced Neural ODE, recalibration

1 Introduction

Two important objectives for system engineers that try to
improve their simulation models are (1) minimizing the
simulation-to-reality gap and (2) optimizing the model
with respect to the simulation performance. In addition to
traditional methods, machine learning (ML) methods offer
varying data-driven approaches (Rai and Sahu 2020). Ad-
dressing the first objective in this context typically means
using ML methods to learn (missing) dynamics from real-
world measurements, thereby enhancing the predictive ac-

Training

Deployment

Figure 1. Development workflow of hybrid simulation models,
including final deployment on the embedded target of a cyber-
physical system.

curacy. To approach the second objective, surrogate mod-
els can be trained to replace computationally expensive
components, using these very components to generate the
necessary training data.

It has been shown that dynamical systems can be thor-
oughly represented by recurrent neural networks (RNN)
(Funahashi and Nakamura 1993), physics-informed neu-
ral networks (PINN) (Raissi, Perdikaris, and Karniadakis
2019; Cuomo et al. 2022), or neural ordinary differ-
ential equations (NODE) (Chen et al. 2018). Hybrid
models (Willard et al. 2022) that directly combine train-
able components with physics equations usually yield
better stability, data efficiency and interpretability. In
this study, we focus on a type of hybrid model known
as physics-enhanced neural ordinary differential equa-
tion (PeN-ODE). PeN-ODEs combine ordinary differen-
tial equations (ODE) and artificial neural networks (NN)
in a meaningful way (Kamp, Ultsch, and Brembeck 2023).
The NNs are trained within the model-equations to cap-
ture missing non-linear effects or quantities to improve
the predictive quality of the model. The implementation of
PeN-ODEs is relatively straightforward, as it requires only
the extension of the right-hand side of the ODE-system
x(t) = f(x,u,t) with NNs. For the training and simula-
tion of PeN-ODEs, well-established numerical integrator
algorithms can be used.

DOI
10.3384/ecp218545

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

545

Hybrid Simulation Models for Embedded Applications: A Modelica and eFMI approach

Figure 1 sketches the general development workflow of
hybrid models for system simulation, eventually deployed
in a cyber-physical system (CPS). Assuming an equation-
based model in a simulation environment, such as a Mod-
elica! model in Dymola?, is already available, the process
is covered by Steps 1-4:

Step 1 (Export): The physics equations of the model are
exported into an ML training environment (e.g., Py-
Torch? in Python* or Julia®).

Step 2 (Extension & training): The physics equations
are extended with NNs to form a hybrid model (the
PeN-ODE) that is typically trained using gradient-
based optimization methods.

Step 3 (Re-import and simulation): The trained PeN-
ODE or the NNs are re-imported into the simu-
lation environment, enabling simulative validation
and combination with other, non-hybrid model parts
and/or control algorithms of the CPS.

Step 4 (Embedded application): The PeN-ODE s
transformed into an implementation suited for
deployment on an embedded target of the CPS.

In this study, we assume that the PeN-ODE is already
trained — i.e., Steps 1-2 have been accomplished — for
example using techniques presented by Thummerer et al.
(2022). Thus, we present solutions for Steps 3-4, i.e., the
incorporation of trained NNs in Modelica models with the
ultimate goal to apply the whole PeN-ODE on an embed-
ded system. The latter objective (Step 4) typically com-
prises compliance with complex, non-functional embed-
ded domain requirements such as:

4a: MISRA:C 2023 compliance (The MISRA Consor-
tium 2023).

4b: Restricted dependencies on libraries and frameworks.

4c: Worst execution-time and memory-consumption

guarantees.

4d: Self-dependent implementation of the PeN-ODE,
with its ODEs inline integrated to a level where only
linear solver calls are required; such extensive in-
line integration is typically required to achieve (4b)
and (4c), since non-linear solvers jeopardize (4b) and

likely violate (4c).

4e: Strict error-handling concepts, especially in case of
unexpected Positive or Negative Infinity and Not-a-
Number (NaN) results of floating-point operations
(IEEE 2019).

'https://modelica.org/language
https://www.dymola.com
3https://pytorch.org
“https://www.python.org

4f: Software-, processor- and hardware-in-the-loop (SiL,
PiL. & HiL) tests which are ideally derived from
model-in-the-loop (MiL) tests defined in the simu-
lation environment.

To comply with these requirements is of uttermost impor-
tance for CPS applications and especially relevant in con-
trol engineering, where Step 4 often is the ultimate objec-
tive for hybrid models. A typical use-case is to obtain a
reduced order/surrogate model for unknown physics or to
achieve acceptable performance in an embedded environ-
ment where computational resources are scarce.

An important question with respect to Step 4 is how the
trained hybrid model —i.e., the PeN-ODE as the source for
the embedded solution — looks like. The training and re-
import of Steps 2-3 do not necessarily yield a model with
the same abstraction level as the original equation-based
model. For example, the approach of Thummerer et al.
(2022) relies on the Functional Mock-up Interface® (FMI)
for training and re-import. However, a Functional Mock-
up Unit (FMU) is binary code or C source code. This
means that the original physics equations are causalized
and thus no longer explicitly available in the PeN-ODE.
If only the NN parts of the PeN-ODE are re-imported as
FMUs, manual integration with the original physics of the
model is required. In any case, the tensor-flows of the NNs
are hidden inside the FMU.

Thus, starting from an equation-based Modelica model,
Steps 2-3 may yield a model with lower abstraction lev-
els than the acausal equations. This holds also for ap-
proaches that use the Open Neural Network Exchange’
(ONNX) format for trained NNs, or any low-level code
implementation derived from that. Although re-importing
such an implementation into an equation-based Modelica
model for the sole purpose of simulation usually poses no
issue, e.g., via FMI or the approach presented in Section 3,
generating embedded code for the whole hybrid model is
troublesome because the non-equation parts hamper com-
pliance with requirements 4b-e. In particular, the ODE
inline integration for the PeN-ODE (4d) is challenging,
but also fulfilling requirement 4e is difficult without equa-
tion knowledge. If, on the other hand, Steps 2-3 yield a
trained hybrid model whose physics and NNs are mod-
eled as equations or ODEs, the simulation tool can lever-
age its existing numeric and symbolic manipulations and
optimizations to find an algorithmic, causalized inline in-
tegration with only linear solver calls.

In the following, we investigate how the tensor-flow
of trained PeN-ODEs can be preserved as equations in
Step 3, such that Step 4 can leverage existing code gen-
eration facilities of the equation-based simulation tooling,
which yields a toolchain from acausal physics equations
with trained NNs down to safety-critical, hard real-time
capable embedded code satisfying 4a-f. The key enabler
for Step 4 is the Functional Mock-up Interface for em-

Shttps://fmi-standard.org

Shttps://julialang.org https://onnx.ai
546 Proceedings of the 16" International Modelica&FMI Conference DOI
September 8-10, 2025, Lucerne, Switzerland 10.3384/ecp218545

https://modelica.org/language
https://www.dymola.com
https://pytorch.org
https://www.python.org
https://julialang.org
https://fmi-standard.org
https://onnx.ai

Session: FMI for Embedded Systems and Virtual Prototyping in Track for Control & Al

tire

Figure 2. Scheme of the simple quarter vehicle model (QVM)
comprising the body and wheel masses, a spring to represent the
tire and a spring-damper pair for the suspension. The model in-
put is the road height z,,44; the vertical wheel and body positions
Zy» and z;, are the model outputs.

bedded systems8 (eFMI). The final toolchain relies on the
Dymola Modelica tool for equation-based physics model-
ing and simulation (Step 1), PyTorch for PeN-ODE train-
ing (Step 2), and the eFMI support of Dymola and Soft-
ware Production Engineering® for embedded code gener-
ation (Step 4). In order to re-import the tensor-flows of
trained PeN-ODEs as equations in Dymola (Step 3), we
developed a simple Modelica code generator leveraging
the open source NeuralNetwork'? Modelica library.

The rest of the paper is organized as follows: Sec-
tion 2 presents a motivating case-study which requires the
deployment of a trained PeN-ODE on an embedded tar-
get and recalibration of NN parameters during runtime.
Section 3 presents the C code generation from ONNX
models via onnx2c!! as a first approach for Steps 3-
4. Sections 4 and 5 investigate our final solution for
Steps 3-4, i.e., a Python to Modelica generator and eFMI
with Dymola and Software Production Engineering. Sec-
tion 6 presents future work, most importantly avoidance of
scalarization of tensor-flows in embedded code, and Sec-
tion 7 finally summarizes the related work regarding hy-
brid models and embedded code generation in Modelica.

2 Quarter vehicle model case-study

We showcase the suitability of the proposed toolchain for
embedded code generation of PeN-ODEs (Step 4, a-f)
by conducting a case-study for a quarter vehicle model
(QVM) that represents the vertical driving dynamics of a
road vehicle. QVMs are commonly used in the domain
of vehicle dynamics to represent the dynamics of the sus-
pension for controller synthesis and as prediction models

8https://www.efmi-standard.org

https://my.3dexperience.3ds.com/welcome/compass-
world/3dexperience-industries/transportation-and-mobility/smart-
safe-and-connected/embedded-software-engineering/systems-software-
production-engineer

10https://github.com/AMIT-HSBI/NeuralNetwork

https://github.com/kraiskil/onnx2c

P
2 v ¥ m
Mz —
S
v
S 15
£ l l zb
sJ2 SnE -
& -8 51,2
5 <o @ [HZ
g2 e 58
ER 0%
2 R
7 road Z_w_sensor
| i
[EAN)
2
ol 2 —-
M
o Ld?
2
=
o
£Jg
o W
gt I
T
S
o
z w
o &
2
g
2 Ao

Figure 3. Modelica model of the neural QVM, i.e., the PeN-
ODE. The two trained NNs capture non-linear effects of the sus-
pension’s spring and damper and are connected in parallel to the
linear physics components. The NNs can be imported using gen-
erated C code from an ONNX representation (cf. Section 3) or
as native Modelica equations obtained through a custom Python
to Modelica generator (Section 4).

(Fleps-Dezasse and Brembeck 2013; Ultsch, Ruggaber, et
al. 2021). Typical applications of QVMs are fault detec-
tion of the suspension and the wheels or serving as part
of a virtual sensor or as prediction model of controlled,
semi-active suspensions that improve driving comfort or
road-holding properties (Ultsch, Pfeiffer, et al. 2024). A
QVM is limited to the one-dimensional (vertical) dynam-
ics of one wheel and one quarter of the car-body, as de-
picted in Figure 2. Capturing the vertical dynamics of a
road vehicle correctly is challenging, which is due to the
influence of non-linear effects such as friction and elastici-
ties (i.e., rubber bushings). To capture such effects, we use
a PeN-ODE approach and integrate NNs into the physics
equations to learn unknown non-linearities from measure-
ment data, cf. (Kamp, Ultsch, and Brembeck 2023).

The starting point of the PeN-ODE development is a
plain physics-based Modelica model which implements
only the linear suspension dynamics. This linear QVM
is exported as an FMU and imported into the training en-
vironment PyTorch. After extending the differential equa-
tions with two NNs — one amending the linear equations
of the damper with its non-linear behavior and likewise
another for the spring — a gradient-based optimization is
conducted. After the training, the trained NNs have to be
integrated into the (still linear) Modelica model (Step 3)
to obtain a Modelica implementation of the PeN-ODE (cf.
Figure 3). In Sections 3 and 4 we present two approaches
to accomplish the transfer from the training environment
back to the simulation environment. The neural QVM
(nQVM) is then used for simulative validation, e.g., us-
ing Dymola, and shall further be deployed on an real-time
target in the vehicle. There it serves as a prediction model

DOI
10.3384/ecp12076545

Proceedings of the 16 International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

547

https://www.efmi-standard.org
https://my.3dexperience.3ds.com/welcome/compass-world/3dexperience-industries/transportation-and-mobility/smart-safe-and-connected/embedded-software-engineering/systems-software-production-engineer
https://my.3dexperience.3ds.com/welcome/compass-world/3dexperience-industries/transportation-and-mobility/smart-safe-and-connected/embedded-software-engineering/systems-software-production-engineer
https://my.3dexperience.3ds.com/welcome/compass-world/3dexperience-industries/transportation-and-mobility/smart-safe-and-connected/embedded-software-engineering/systems-software-production-engineer
https://my.3dexperience.3ds.com/welcome/compass-world/3dexperience-industries/transportation-and-mobility/smart-safe-and-connected/embedded-software-engineering/systems-software-production-engineer
https://github.com/AMIT-HSBI/NeuralNetwork
https://github.com/kraiskil/onnx2c

Hybrid Simulation Models for Embedded Applications: A Modelica and eFMI approach

A Deploy-
L 5 ol x </> "\ ment
edlet P ONNX B onnx [P omnx2¢ [*| ¢ [T >

Parameters + | | Export

Structure [~ ----.]

g %
.. ’% Modelica
S
wrapper
</>
Binary file model
Text file (source code) >
Open source tool E i
Modelica
Custom tool Model

Figure 4. Scheme of the export toolchain using onnx2c to gen-
erate C code for ONNX models. Since many ML-frameworks
already support ONNX export, we mark the ONNX export as
openly available. Although the code onnx2c generates is suited
for embedded application, there is no "ready-to-use" solution for
embedded code generation of the whole PeN-ODE including its
physics equations. The generated C code is imported into Mod-
elica by using a Modelica external C function wrapped into a
MSL MIMO block. Listings 1-2 show the wrapper code as gen-
erated by our custom tool.

for a control algorithm of the semi-active suspension. In
addition, we want to enable the recalibration of the trained
NNs during runtime on the embedded system, i.e., with-
out recompilation. This is especially useful when multiple
variants of the PeN-ODE are trained to consider changing
circumstances, e.g., the current road type or suspension
adjustments, as it is common practice in scheduled con-
trol algorithms. The application on the embedded target
leverages the eFMI standard with tunable NN parameters,
which is described in Section 5.

This work captures intermediate results of ongoing
work, thus the scope of our case-study is up to the SiL val-
idation of the embedded solution, including the recalibra-
tion. The SiL tests allow the comparison with the (contin-
uous) simulation results and constitute the foundation for
future HiL. and driving tests under real world conditions.

3 NNs as external C code

In this section, we present a method to leverage ONNX as
a model exchange standard and an open source ONNX to
C compiler to incorporate trained NNs in Modelica mod-
els. The presented workflow can be automated to a high
degree which we underline with generated code samples.
However, the dependency on external C code hinders the
application of the obtained PeN-ODE on embedded sys-
tems through eFMI, since integration with the embedded
code generation for the physics part of the PeN-ODE is
not obvious. Nevertheless, the method yields plain C code
for the NN that is generally suited for embedded applica-
tion and is therefore relevant for cases without additional
Modelica physics. We will outline how this approach can

be used to deploy trained NNs in a CPS context, even if it
is not the favorable approach to our use-case.

3.1 The ONNX format

"ONNX is an open format built to represent machine
learning models. ONNX defines a common set of oper-
ators — the building blocks of machine learning and deep
learning models ..."7. Once the model is defined using
these operators, ONNX uses the (binary) Protocol Buffers
format for serialization. Such ONNX files serve as ex-
change containers and can be compared to FMUs. The
ONNX format is already widely established as an ex-
change standard for ML models and is supported e.g., by
the Keras'? and PyTorch frameworks, MATLAB®!? and
many more. The ONNX Runtime enables direct inference
using an ONNX model.

3.2 ONNX to C compiler

In some applications, relying on the ONNX Runtime is
not a valid option, especially when the model should
be deployed on an embedded system. The open source
onnx2c!! compiler offers a remedy for users that can make
use of plain C code. It is optimized for TinyML'4, i.e.,
running on microcontrollers. Provided with an ONNX
model, onnx2c generates a single C file with all required
functions that correspond to the atomic ONNX operators.
The parameter arrays that hold the trainable parameters
are likewise contained in the generated code. It has to
be mentioned that onnx2c does not support all available
operators and not all model typologies and is a privately
maintained project. The C code contains a function
entry (const float x[1][M], float yI[1l][N])
with the input dimension M and output dimension N. This
function is the only function that needs to be called in or-
der to perform a forward pass through the model.

3.3 Integration in Modelica

Once the NN is exported as an ONNX model and com-
piled into C code, it can be used in Modelica using its ex-
ternal C interface (cf. Figure 4). Listing 1 presents an ex-
ample implementation of the entry-function call that can
be used as a template for generation. Further, it can be
convenient to wrap the function into a Modelica Standard
Library (MSL) MIMO block as shown in Listing 2.

Listing 1. Modelica function that calls the entry function from
the generated C file (called nn.c). The dimensions M and N
correspond with the number of in- and outputs of the NN (to be
replaced with size_t values).

function call_entry "call entry"
input Real ul[M];
output Real yI[N];
external "C" call_nn(u, vy)
annotation (
IncludeDirectory="<<nn.c dir>>",

2https://keras.io
Bhttps://www.mathworks.com/products/matlab.html
https://github.com/mit-han-lab/tinyml

548

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218545

https://keras.io
https://www.mathworks.com/products/matlab.html
https://github.com/mit-han-lab/tinyml

Session: FMI for Embedded Systems and Virtual Prototyping in Track for Control & Al

Include="
#include \"nn.c\"
void call_nn (const doublex u,
{
float u_buf[l][M],
size_t i,

doublex* vy)

y_buf[1][N];

for (i = 0; 1 < M; i++)

{ u_buf[0][i] = (float) ulil;
}

entry (u_buf, y_buf);

for (i = 0; i < N; i++)

{ yli] = (double) y_buf[0][i];

}
Py
end call_entry;

Listing 2. MIMO wrapper for C-function call (cf. Listing 1);
The dimensions M and N correspond with the number of in- and
outputs of the NN (to be replaced with Integer values).

model MyNN
extends Modelica.Blocks.Interfaces.MIMO (

nin = M,
nout = N);
equation
y = call_entry(u);
end MyNN;

If a PeN-ODE contains multiple NNs, one must assure that
variable- and function names in the C code are unique.
When using onnx2c, this is generally not the case, since
the C files are generated independently and at least the
entry-function always has the same name. As of now, this
can only be solved by editing the C code after its gener-
ation. Issues can also occur, when the ONNX model is
composed in a way that the operator-nodes have ambigu-
ous or repeating names. This can be avoided by giving a
unique name to each node during the ONNX export of the
ML model. The node names of an existing ONNX model
can still be adapted, e.g., using the ONNX Python APL

3.4 Discussion

The presented approach uses the ONNX open standard
and an open source ONNX to C compiler. The incor-
poration of the generated C code in Modelica (Step 3) is
straightforward and can be effectively automated by gen-
erating corresponding Modelica wrappers. Furthermore,
ONNX is a well established exchange standard for ML
models and many ML frameworks already offer the export
to ONNX. The onnx2c compiler is stable, maintained, and
supports many of the existing ONNX operators. It gener-
ates C code which is suitable for the application on micro-
controllers, which is important for CPSs. In comparison
to solutions that use the ONNX Runtime, it has the advan-
tage to be self-contained without any third party library or
framework dependencies, which facilitates exchange and
portability. Modelica tools can, for example, export PeN-

ﬁ . <[>
e > Python to

Parameters +

Modelica </> Modelica .
Structure % model Model o
X g
NeuralNetwork]>)< ! N
Binary file |library ymow |
embedded | |
Text file (source code) i
Deploy
Open source tool (i ment
............. >
Custom tool eFMU

Commercial tool

Figure 5. Scheme of the export toolchain employing the Neural-
Network library. The Python to Modelica generator is a custom
tool that allows direct Modelica code generation from Python.
This approach leverages Dymola’s existing symbolic facilities to
find algorithmic solutions suited for embedded application and
enable embedded code generation for the whole PeN-ODE using
the open eFMI standard.

ODE models as binary code FMUs without further depen-
dencies.

However, the onnx2c approach yields embedded code
only for the NN parts of the PeN-ODE. Embedded code
generation for the whole PeN-ODE (Step 4) is not straight-
forward because the production code for the physics equa-
tions must be generated and connected with the NNs. This
is not a trivial system integration task, since knowledge
about causalization, equation system properties and con-
nectivity of the whole PeN-ODE must be properly incor-
porated. There might be, for example, algebraic loops be-
tween physics and NN, or the physics equations and NNs
form a mixed system of equations where Boolean condi-
tions depending on NN outputs switch physics behavior
fed into the NN. In such cases, the NN code has to be
properly embedded into the iterations of the inline inte-
grated ODE solver when generating embedded code for
the physics parts of the Modelica model.

These embedded code generation issues for PeN-ODEs
can be bypassed by handing the challenges over to the al-
ready existing, advanced symbolic facilities of Modelica
compilers like Dymola. Section 4 presents an approach
for Step 3 where the NN parts of the PeN-ODE are re-
imported as pure Modelica equations such that the Mod-
elica compiler can take care of proper integration.

4 NNs as native Modelica

In this section, we present an approach that implements
trained NNs as Modelica models utilizing the Neural-
Network Modelica library. This method allows seam-
less integration of the NNs with the physics equations
and enables eFMI-based embedded code generation for
the whole PeN-ODE. Figure 5 summarizes the tooling of
this Modelica-centric workflow, where the trained NN are

DOI
10.3384/ecp12076545

Proceedings of the 16 International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

549

Hybrid Simulation Models for Embedded Applications: A Modelica and eFMI approach

u [] params

>

scale layer 1 layer 2 layer 3 layer 4 rescale vil
|l LN VN N N -
r>—>”>—>n>—>>—>n>—>>—i -

Figure 6. Generated, equation-based Modelica model of one of the trained NNs of the nQVM, showing its diagrammatic tensor-
flow using NeuralNetwork library components. The NN parameters (weights and biases) for each of the four dense layers (16x1 —
16x16 — 1616 — 1x16) are contained in the parameter record that can be marked for exposure as tunable eFMI parameters.

transformed back to Modelica equations.

4.1 The NeuralNetwork library

The NeuralNetwork Modelica library was first published
in 2006 (Codeca and Casella 2006). Since 2023, it is
further developed by the University of Applied Sciences
and Arts Bielefeld (HSBI) under open source 3-Clause
BSD Licence!®. As of version 2.1, it offers implementa-
tions to compose multi-layer perceptrons (MLP) including
dense layers, scaling, standardizing, and principal compo-
nent analysis (PCA) layers, and the activation functions
rectified linear unit (ReLU), sigmoid, hyperbolic tangent
(tanh), softplus and unit step.

Considering the vast variety of ML architectures, this
is only a basic set. For PeN-ODEs however, simple MLPs
suffice in many cases (Thummerer, Stoljar, and Mikelsons
2022; Kamp, Ultsch, and Brembeck 2023).

4.2 Generation of Modelica NNs

We implemented a custom Python to Modelica code gen-
erator to automate the implementation of trained NN us-
ing the definitions of the NeuralNetwork library. Listing 3
presents an example of a simple MLP that was generated
in this manner. We deem it best to generate a separate
Modelica record alongside the NN that holds its param-
eters, i.e., NN weights and biases (cf. Listing 4). This
record can be used to redeclare the parameters of the NN
block and thus enables a fast exchange. This is useful
when multiple variants of the NN are to be validated in
simulation, given that the NN architecture (number of lay-
ers, number of neurons, and activation functions) is main-
tained. Figure 6 shows the composition of different layers
of a typical MLP with the corresponding parameter record.

Listing 3. Sample of a generated Modelica NN. The Neural-
Network library components are wrapped into a MIMO block
comparable to the external C approach (cf. Listing 2).

block MyNN

extends Modelica.Blocks.Interfaces.MIMO;

import NN = NeuralNetwork;

// NN parameter record

parameter MyParametrization params;

// NN layers

NN.Layer.Dense layer_1(
weights = params.layer_1_weights,
bias = params.layer_1_bias,
redeclare function f =

NN.ActivationFunctions.ReLu) ;

NN.Layer.Dense layer_2 (
weights = params.layer_2_weights,
bias = params.layer_2_bias,
redeclare function f =
NN.ActivationFunctions.Id);

equation
// NN composition
connect (u, layer_1l.u);
connect (layer_1l.y, layer_2.u);
connect (layer_2.y, VY);
end MyNN;

Listing 4. Generated parameter record defining default weights
and biases for the NN of Listing 3, exposed as tunable eFMI
parameters for the embedded code generation of Section 5.

record MyParametrization
extends Modelica.Icons.Record;
// Trained NN parameters

parameter Real [16, 1] layer_1_weights =
{{2.15}, {-0.713}, ...};

parameter Real [16] layer_1_bias =
{0.174, -0.0312, ...};

parameter Real [1l, 16] layer_2_weights =
{{0.215, 1.342, ...}};

parameter Real [1l] layer_2_lbias =
{0.230};

// Expose as tunable eFMI parameters

annotation (
__Dymola_eFMI_ExposeTunableParameters =

true);

end MyParametrization;

4.3 Discussion

The pure Modelica approach offers a seamless integration
of trained NNs with the physics part of the PeN-ODE in
Modelica. The NN parameters can be encapsulated in
records separated from the NN architecture, facilitating
variation and training validation. A drawback compared
to the usage of ONNX via onnx2c is the limited number
of available architectures of the NeuralNetwork library.
Further, a complete Python to Modelica generator leverag-
ing the NeuralNetwork library is not (yet) freely available.
Our implementation is, as of now, just a functional proto-
type and not published. The most important advantage of
the native Modelica approach is the possibility to export
the whole PeN-ODE via eFMI for embedded application
as motivated and described in the following Section 5.

550

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218545

Session: FMI for Embedded Systems and Virtual Prototyping in Track for Control & Al

5 Embedded code via eFMI

In this section, we motivate the use of the eFMI stan-
dard for Modelica equation-based hybrid models in em-
bedded applications. Our solution relies on the import of
trained NNs as Modelica equations as presented in Sec-
tion 4, meets requirements 4a-f of Section 1, and enables
online recalibration of NN parameters.

5.1 The eFMI Standard

The Functional Mock-up Interface for embedded sys-
tems (eFMI) is "an open standard for the ...model-
transformation-based development of advanced control
functions suited for safety-critical and real time targets
... [, defining a] container architecture ... from high-level
modeling and simulation — e.g., a-causal, equation-based
physics in Modelica — down to actual embedded code"®.
The key interface between the physics simulation and
embedded application domains is the Guarded Algorith-
mic Language for Embedded Control (GALEC). To de-
ploy an equation-based simulation model in a safety-
critical, hard real-time environment, the simulation tool
has to transform the model into a GALEC program (Algo-
rithm Code container) and hand it over to any eFMI-aware
production code generator for final embedded code gener-
ation (Production and Binary Code container). The idea is,
that each tooling can be a domain expert on its abstraction-
level without bothering about the other domains. A Mod-
elica tool like Dymola knows a lot about discretization,
symbolic optimization and inline integration —i.e., how to
find a sampled algorithmic solution expressible in GALEC
— whereas production code generators like Software Pro-
duction Engineering are knowledgeable about satisfying
embedded domain coding requirements but have no con-
cept of modeling physics for equation-based simulation.
GALEC has some language characteristics making it a
convenient intermediate representation between modeling
and embedded software (Lenord et al. 2021). It is target
independent, supports multi-dimensional arithmetic, and
a rich set of built-in functions to abstract common math
operations including interpolation and solving systems of
linear equations. Most importantly, it is computational-
safe, which means that a powerful static evaluation con-
cept is used to guarantee all indexing is within bounds, all
loops have an upper-bound, and all potential runtime er-
rors like NaNs, singular linear equation systems or domain
errors of built-in functions (like poles of trigonometric
functions) are handled or explicitly exposed to the runtime
environment. GALEC programs satisfy 4b-e of Step 4 by
definition. Once a simulation tool finds a sampled solution
for the simulation problem — which is not always possible
for general equation systems — and expresses it as GALEC
program, further tooling towards embedded C code "only"
has to preserve these characteristics and can focus on code
optimization (e.g., loop and multi-dimensional expression
unrolling) and embedded target environment compliance
(e.g., compliance with style guidelines, code analysers, in-

terfaces or system integration requirements).

Besides Algorithm, Production and Binary Code con-
tainers, eFMI also defines Behavioral Model containers
to define test-scenarios. Typically, Behavioral Models are
derived from continuous MiL. experiments in a physics
simulation environment and shared for later SiL. and HiLL
tests of production code.

5.2 eFMI support in Dymola

Dassault Systemes provides several tools supporting
eFMI: Dymola for generating eFMI Algorithm Code con-
tainers for synchronous Modelica models, Software Pro-
duction Engineering for generating eFMI Production, and
in turn, Binary Code containers and AUTOSAR Builder!?
to extend Production Code containers to become AU-
TOSAR'® components.

It is noteworthy, that Software Production Engineer-
ing is also used as embedded code generation backend
for No Magic Cameo Systems Modeler'”, a development
environment for model-driven engineering, system archi-
tecture, system design, and software engineering based
on SysML!'®. Generated production code therefore is of
industry-level quality, for example MISRA C:2023 com-
pliant. The integration with Dymola is seamless. Dy-
mola provides facilities to configure 32 bit and 64 bit
floating-point precision for production code generation,
import production code for SiL simulation via gener-
ated Modelica wrappers, derive SiL tests from existing
MiL experiments, check MISRA C:2023 compliance with
Cppcheck Premium!®, import production code in MAT-
LAB®/Simulink®° as C Function blocks, and export eF-
MUs with deployment-ready production code as FMUs.

5.3 QVM case-study with Dymola

Based on Dymola’s eFMI support presented in the previ-
ous section, generating embedded code for the nQVM of
Section 2, with its damper and spring NN represented as
NeuronalNetwork library models according to Section 4,
has been straightforward. The two major challenges were,
first, how to conveniently expose the NN weights and
biases as tunable eFMI parameters, and second, how to
model the respective recalibration SiL tests in Modelica.

For the first issue, we extended Dymola with
a new annotation for Modelica records. Adding
__Dymola_eFMI_ExposeTunableParameters =
true to a record class marks the independent parameters
of instances for exposure as tunable eFMI parameters,
regardless how deeply nested within models they are. The
Python to Modelica generator of Section 4 can hence au-
tomatically add the annotation to the NN parametrization
record (cf. Listing 4).

Bhttps://www.3ds.com/products/catia/autosar-builder
10https://www.autosar.org
https://www.3ds.com/products/catia/no-magic
Bhttps://www.omgsysml.org
https://www.cppcheck.com
20https://www.mathworks.com/products/simulink.html

DOI
10.3384/ecp12076545

Proceedings of the 16 International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

551

https://www.3ds.com/products/catia/autosar-builder
https://www.autosar.org
https://www.3ds.com/products/catia/no-magic
https://www.omgsysml.org
https://www.cppcheck.com
https://www.mathworks.com/products/simulink.html

Hybrid Simulation Models for Embedded Applications: A Modelica and eFMI approach

prediction_model_tuned

€, ¥ =
10e-3s

ExplicitEuler

ramp sine

integrator

duration=80 s

tuningBus

tuningBus
@

Figure 7. Recalibration SiL test in Dymola: The nQVM PeN-
ODE is instantiated twice — once untuned and once tuned — via
a generated Modelica wrapper backed by the eFMUs production
code. The damper tuning component is manually implemented.
It triggers recalibration at 2 s and applies updated NN parameters
for the learned friction model on the generated tuning bus.

tuningBus

The second issue, how to model recalibration SiL
tests, exposes a general Modelica shortcoming. From the
eFMI perspective, recalibration test scenarios are well-
supported in Behavioral Model containers; and Dymola
supports the derivation of Behavioral Models from exist-
ing Modelica experiments by searching them for instances
of the model that is subject to eFMI code generation. Each
of those instances becomes a SiL test scenario, where the
instance inputs are the stimuli and the outputs the refer-
ence trajectories. This concept works well to automati-
cally derive SiL test suites from ordinary Modelica exper-
iments. However, Modelica has no online recalibration
concept. In Modelica, parameters can be only modified
before, but not during the simulation. Hence, online re-
calibration must be modeled by runtime values encoding
"parameters". Since this implies extensive model changes
on the models to recalibrate, recalibration support for or-
dinary Modelica models is pointless. In our case how-
ever, we can provide recalibration facilities in the Model-
ica wrappers Dymola generates for SiL. simulation of pro-
duction code generated by Software Production Engineer-
ing. To this end, the wrappers provide an optional tuning
bus, which can be enabled whenever recalibration shall
be tested. Actual calibrations are simply connected to
the bus, requiring manual modeling of a continuous time-
based source provisioning the parameter sets to apply at
each time point.

Figures 7 shows the recalibration scenario we used to
validate the nQVM. In this experiment, we recalibrate the
damper-NN with a slightly altered (learned) friction model
after 2 s. The PeN-ODE is simulated with a chirp signal
(sine-sweep) as input. In Figure 8, the simulation result

- prediction_modelz_b - prediction_model_tuned.z_b

0.06

0.04+

0.02

0.00

-0.02

-0.04+

0 10 20 30 40

—— reference
—— tuned

zp (m)

time ()

Figure 8. SiL simulation results of the body height z;, for the
untuned (blue) and tuned (red) nQVM. At 2 s simulation time,
the recalibration is triggered and leads to a new system behavior.

of the body height z;, of the tuned and untuned PeN-ODE
is plotted. Although the tuning clearly alters the dynam-
ics of the system, the state of the PeN-ODE is not changed
when recalibrating such that there are no discontinuities in
the trajectory. If recalibration would take several sampling
steps, which can be expected when using actual real-time
hardware, the current state would be held — i.e., no sam-
plings are conducted — until the recalibraion is terminated.
Nevertheless, it is likely that observers or control algo-
rithms using the PeN-ODE converge much faster when
continuing sampling from the hold state compared to a full
state reset. Although the nQVM is stable in the recalibra-
tion scenario of Figures 7 and 8, no such guarantee can be
given for general equation systems; if, and under which
constraints, an independent parameter indeed is suited for
online tuning, is a domain specific characteristic.

6 Future work

This paper presents intermediate results of the ongoing re-
search in the PeN-ODE-related work package (WP4) of
the ITEA 4 Project OpenSCALING?! (cf. Acknowledge-
ments). The work scheduled for the second half of the
project ending in October 2026 can be separated into three
tasks, ranked from highest to lowest priority: (1) preserva-

2l https://itead.org/project/openscaling.html

552

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218545

https://itea4.org/project/openscaling.html

Session: FMI for Embedded Systems and Virtual Prototyping in Track for Control & Al

tion of the multi-dimensional arithmetic of the tensor-flow
of NNs in production code, (2) actual system integration
of the eFMU of the case-study presented in Section 2 with
HiL and driving tests under real-world conditions includ-
ing recalibration of NN parameters and (3) support of the
System Structure & Parametrization?? (SSP) standard for
NN parametrization and recalibration.

6.1 Multi-dimensional embedded tensor-flows

Most Modelica tools, including Dymola, transform mod-
els into an index 1 differential algebraic equation (DAE)
system, where each element of multi-dimensions is scalar-
ized to individual variables; doing so, multi-dimensional
arithmetic operations are flattened to a set of individual
scalar operations (scalarization). Although this represen-
tation is essential for many advanced numeric and sym-
bolic manipulations and optimizations, it also significantly
increases code size when scalarizing the tensor-flows of
the equation-based NNs presented in Section 4. For em-
bedded applications, code size is critical. Hence, it is im-
portant to avoid the scalarization of tensor-flows. How-
ever, for the physics-parts of PeN-ODE:s it still is ben-
eficial to find symbolic solutions to avoid linear system
solver calls.

In our case-study, the actual physics equations of the
nQVM only result in ~4 KB of eFMI GALEC code includ-
ing two symbolically solved size-1 linear equation sys-
tems, whereas the scalarized tensor-flows of the spring and
damper NNs — each holding 593 parameters in the input
layer (16x 1, ReLu), two hidden layers (16x16, ReLu),
and the output layer (1x 16, Identity), each with bias (cf.
Figure 6) — produce ~117 KB of code. This is a lot, consid-
ering that the tensor-flows of the NNs could be written as
single-line multi-dimensional GALEC expressions. The
ratios for derived C production and binary code are simi-
lar. The onnx2c solution of Section 3, which preserves the
tensor-flows as for-loops, only yields ~5.5 KB of C code.
All numbers are excluding the initialization of NN weights
and biases, which contributes significantly to code size but
cannot be avoided.

The prevention of scalarization is subject of work pack-
age 3 (WP3), large scale system (LSS) modeling, of the
OpenSCALING project. Although the development fo-
cuses on physics based LSSs — like electric power grids
with homogeneous components of huge quantities mod-
eled as arrays of Modelica components — the planned
solutions are likely also applicable in our use-case. If
anything, tensor-flows are even simpler to handle be-
cause they are clean — i.e., not mixed with exceptions or
zero crossing logic — arithmetic. Foundational research
on how to preserve multi-dimensional operations for in-
dex 1 DAEs without sacrificing symbolic optimizations
is already available (Otter and Elmqvist 2017; Abdelhak,
Casella, and Bachmann 2023).

2https://ssp-standard.org

6.2 eFMU system integration and CPS tests

The presented toolchain has been validated up to, and in-
cluding, SiL tests of the generated eFMU in Dymola. The
actual system integration on a dedicated embedded target
— for our case-study this involves the deployment of the
nQVM as prediction model on the embedded control sys-
tem of our experimental research platform (Ruggaber et al.
2023) — still must be conducted. We are confident, that our
eFMI approach is well-suited for that eEFMUs generated by
Dymola and Software Production Engineering have been
successfully system-integrated in the past, including final
CPS tests under real-world conditions (Ultsch, Ruggaber,
etal. 2021). A new challenge is the online recalibration for
tuning the weights of the embedded NNs, which we deem
non-critical, considering the successful SiL. experiment of
the recalibration facilities of the generated eFMU.

6.3 SSP standard support

Online recalibration of PeN-ODE NN-weights is related
to ongoing SSP standardization efforts. SSP is supposed
to be a universal standard for defining varying parame-
ter sets for interconnected FMUs (Haillgvist et al. 2021).
Modelica support, in particular SSP import and export in
Dymola, is available (Briick 2023). Our tunable parame-
ter record approach of Sections 4 and 5 for modeling NN-
weights can be mapped directly using Dymola’s existing
SSP facilities. In FMI and eFMI however, recalibration
of tunable parameters can be seen as a timed sequence of
parameter changes; however, SSP has no notion of tim-
ing. Likewise, Modelica lacks the means to conveniently
model online recalibration. In Modelica, parameters can
only be changed by means of static modifications before
simulation starts, which is why the SiL tests presented in
Section 5 had to implement new calibrations via ordinary
Modelica variables instead of parameters. This is trou-
blesome and requires the definition of event-points for re-
calibration throughout the continuous simulation. To align
SSP, Modelica, FMI and eFMI such that recalibration test-
scenarios can be modeled as timed SSP parametrizations
is an open issue, very much in the scope of OpenSCAL-
ING and its objective to harmonize the Modelica Associ-
ation’s?? open standards ecosystem.

7 Related work

Our previous work provided an extended introduction
to PeN-ODEs, including how to define and train them
(Kamp, Ultsch, and Brembeck 2023). Requirements 4a-f,
to enable embedded and CPS applications, were not con-
sidered however.

Thummerer et al. (2022) proposed a solution for ex-
port, training, and re-import of PeN-ODEs in simula-
tion environments (Steps 1-3) using the FMI standard.
Their approach is feasible even for complex systems, and
especially in industrial applications where discretion is
of importance. Thanks to the ubiquitous availability of

Zhttps://modelica.org/association

DOI
10.3384/ecp12076545

Proceedings of the 16 International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

553

https://ssp-standard.org
https://modelica.org/association

Hybrid Simulation Models for Embedded Applications: A Modelica and eFMI approach

FMI in the simulation domain, and increasing support
also in training environments (e.g., FMPy?>* for Python
or FMLjI® for Julia), this approach is widely applicable.
However, FMUs are implementation black-boxes, hiding
the involved equations such that Step 4, preparing PeN-
ODEs for embedded application, is not straightforward.
The approach does not consider the embedded domain re-
quirements 4a-f.

The open source SMArtInt library?® offers a way to use
ONNX models and TensorFlow?’ models exported as Lite
Runtime®® (LiteRT) in Modelica, supporting a huge range
of NN types and architectures. However, its dependency
on a plethora of heterogeneous third party frameworks
and technologies severely impedes embedded application
when compliance with 4b-e is required.

Hiibel et al. (2022) trained a surrogate model that is
benchmarked inside a Modelica model. Comparable to
our approach, they used the NeuralNetwork Modelica li-
brary to transfer the trained NN to Modelica. They also
mentioned the possibility to use generated C code as a fu-
ture research topic, but did not elaborate on embedded ap-
plications.

In the ITEA EMPHYSIS project (EMPHYSIS Interna-
tional Consortium 2021), which bore the eFMI standard,
multiple demonstrators used eFMUs to incorporate NNs
into predictive model control applications targeting em-
bedded systems. The starting point of embedded code
generation were trained NNs however, not hybrid mod-
els. Hence, although 4a-c and 4e-f are supported by rep-
resenting NNs as eFMI GALEC programs and leveraging
the eFMI tooling as we do, the combination with physics
equations — and therefore an ODE inline integration to a
level where only linear solver calls are required (4d) — has
not been investigated.

The work of Ultsch et al. (2021) within the EMPHY SIS
project can be regarded as predecessor to our study. Simi-
lar to the QVM case-study of Section 2, they transformed
a nonlinear prediction model in Modelica via eFMI into
an embedded solution suited for the model-based control
of the semi-active dampers of a car. An extended Kalman
filter was used for the state estimation based on the pre-
diction model. To this end, the eFMU of the prediction
model was integrated into a dedicated Kalman filter li-
brary implemented in C. The state estimation algorithm
of the Kalman filter thereby perturbates discretized con-
tinuous states of the prediction model by explicitly setting
them before performing an integration step with the inline
integrated solver. The eFMU was deployed on the ECU of
a series-produced car and validated in driving tests under
real-world conditions.

Kurzbach et al. (2023) proposed a low-level equa-
tion language for Modelica, in which the higher level

24 https://github.com/CATIA-Systems/FMPy
Zhttps://github.com/ThummeTo/FMIjl
https://github.com/xrg-simulation/SMArtIInt
?Thttps://www.tensorflow.org

28Formerly known as TensorFlow Lite (TFLite).

object-oriented concepts like inheritance, modifications
and nested components are flattened to simple equations.
The motivation for such a "base Modelica" is to facilitate
the integration of third party technology spaces with Mod-
elica tooling. If such a representation becomes part of
the Modelica standard and would be widely adopted, it
could significantly ease bridging the simulation and ML
domains (Step 1 and 3 of our approach); in particular, if it
could be used as an actual model exchange format in FMI.
Although the definition of a basic-equation language for
Modelica has been a long time vision of the Modelica As-
sociation??, it is much too early to judge if the proposal
will be standardized and sufficiently widely adopted.

8 Conclusions

We presented a toolchain for the embedded application of
PeN-ODE hybrid models derived from Modelica physics
equations. In order to meet the non-functional require-
ments on embedded software, we relied on the Functional
Mock-up Interface for embedded systems (eFMI) and its
support in the Modelica tool Dymola. Dymola’s exist-
ing symbolic optimization and inline-integration routines
are prolific in finding causalized, algorithmic solutions
for complex equation systems, in particular to avoid non-
linear solver calls as required in embedded applications.
The export of algorithmic solutions as eFMI GALEC pro-
grams in turn enables further eFMI support to eventually
derive high-quality production code.

A challenge of this approach is the correct integration
of the trained NN-components of PeN-ODEs with the
physics part, such that the integrated solvers of embed-
ded solutions can properly handle the interactions between
NN and physics-equations, like event-handling and zero-
crossings in mixed systems of equations, smoothness re-
quirements, sampling and discretization, etc. We avoid
this open research question by representing the tensor flow
as such — i.e., as multi-dimensional expression — even-
tually yielding an equations-only representation of the
whole PeN-ODE which can be processed by Dymola’s ex-
isting symbolic facilities. For the required re-import of the
trained NN into the original physics-equations, we devel-
oped a Python to Modelica code generator targeting the
NeuralNetwork Modelica library.

We validated our approach with the help of a neural
quarter vehicle model (nQVM) case-study. SiL tests of
the eFMI solution demonstrate its applicability, including
recalibration tests for online changes of NN parameters.
Left as future work is to extend Dymola’s symbolic facil-
ities such that they avoid scalarization of the tensor-flows
of NNs and final system integration of the nQVM with
HiL and driving tests under real world conditions.

Acknowledgements

This work has been supported by the Swedish Agency
for Innovation Systems (Vinnova??, grant number 2023-

https://www.vinnova.se

554

Proceedings of the 16" International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

DOI
10.3384/ecp218545

https://github.com/CATIA-Systems/FMPy
https://github.com/ThummeTo/FMI.jl
https://github.com/xrg-simulation/SMArtIInt
https://www.tensorflow.org
https://www.vinnova.se

Session: FMI for Embedded Systems and Virtual Prototyping in Track for Control & Al

00969) and the German Federal Ministry of Education
and Research (BMBF?’, grant number FKZ 01IS23062A)
within the ITEA 4 Project Open standards for SCALable
virtual engineerING and operation (OpenSCALING?!,
ITEA Project 22013).

References

Abdelhak, Karim, Francesco Casella, and Bernhard Bach-
mann (2023-10). “Pseudo Array Causalization”. In: Pro-
ceedings of the 15th International Modelica Conference.
Vol. 204. Linkoping Electronic Conference Proceedings.
Modelica Association and Link&ping University Electronic
Press, pp. 177-188. Do1: 10.3384/ecp204177.

Briick, Dag (2023-10). “SSP in a Modelica Environment”.
In: Proceedings of the 15th International Modelica Confer-
ence. Vol. 204. Linkoping Electronic Conference Proceed-
ings. Modelica Association and Link6ping University Elec-
tronic Press, pp. 711-715. DOI: 10.3384/ecp204711.

Chen, Ricky T. Q. et al. (2018-12). “Neural Ordinary Differ-
ential Equations”. In: Proceedings of The Thirty-Second An-
nual Conference on Advances in Neural Information Process-
ing Systems. Curran Associates, Inc., pp. 6571-6583. DOI:
10.48550/arXiv.1806.07366.

Codeca, Fabio and Francesco Casella (2006-09). “Neural Net-
work Library in Modelica”. In: Proceedings of the 5th Inter-
national Modelica Conference — Volume 2. Modelica Associ-
ation, pp. 549-557.

Cuomo, Salvatore et al. (2022-07). “Scientific Machine Learn-
ing Through Physics—Informed Neural Networks: Where we
are and What’s Next”. In: Journal of Scientific Computing
92.3. pOI: 10.1007/310915-022-01939-z.

EMPHYSIS International Consortium (2021-09). EMPHYSIS —
D7.9 eFMI for physics-based ECU controllers — Public re-
port. Tech. rep. ITEA 3 project 15016. ITEA. URL: https:
/Iwww.efmi-standard.org/media/resources/emphysis-public-
demonstrator-summary.pdf.

Fleps-Dezasse, Michael and Jonathan Brembeck (2013). “Model
based vertical dynamics estimation with Modelica and FMI”.
In: IFAC Proceedings Volumes 46.21, pp. 341-346. DoOI: 10.
3182/20130904-4-jp-2042.00086.

Funahashi, Ken-ichi and Yuichi Nakamura (1993-01). “Approx-
imation of dynamical systems by continuous time recurrent
neural networks”. In: Neural Networks 6.6, pp. 801-806. DOTI:
10.1016/s0893-6080(05)80125-x.

Hillgvist, Robert et al. (2021-09). “Engineering Domain Inter-
operability Using the System Structure and Parameterization
(SSP) Standard”. In: Proceedings of 14th Modelica Confer-
ence 2021. Vol. 181. Linkoping Electronic Conference Pro-
ceedings. Modelica Association and Linkoping University
Electronic Press, pp. 37-48. DOI: 10.3384/ecp2118137.

Hiibel, Moritz et al. (2022-11). “Hybrid physical-Al based sys-
tem modeling and simulation approach demonstrated on an
automotive fuel cell”. In: Proceedings of Asian Modelica
Conference 2022. Vol. 193. Linkoping Electronic Conference
Proceedings. Modelica Association and Link6ping Univer-
sity Electronic Press, pp. 157-163. DOI: 10.3384/ecp193157.

IEEE (2019-07). IEEE Standard for Floating-Point Arithmetic.
IEEE Std 754-2019 (Revision of IEEE 754-2008). Institute
of Electrical and Electronics Engineers. ISBN: 978-1-5044-
5924-2. por: 10.1109/IEEESTD.2019.8766229.

Ohttps://www.bmbf.de

Kamp, Tobias, Johannes Ultsch, and Jonathan Brembeck (2023).
“Closing the Sim-to-Real Gap with Physics-Enhanced Neu-
ral ODEs”. In: Proceedings of the 20th International Con-
ference on Informatics in Control, Automation and Robotics.
SCITEPRESS - Science and Technology Publications. DOI:
10.5220/0012160100003543.

Kurzbach, Gerd et al. (2023-10). “Design proposal of a stan-
dardized Base Modelica language”. In: Proceedings of the
15th International Modelica Conference. Vol. 204. Linkoping
Electronic Conference Proceedings. Modelica Association
and Link6ping University Electronic Press, pp. 469-477.
DOI: 10.3384/ecp2044609.

Lenord, Oliver et al. (2021-09). “eFMI: An open standard for
physical models in embedded software”. In: Proceedings of
14th Modelica Conference 2021. Vol. 181. Linkoping Elec-
tronic Conference Proceedings. Modelica Association and
Linkoping University Electronic Press, pp. 57-71. DOI: 10.
3384/ecp2118157.

Otter, Martin and Hilding Elmqvist (2017-05). “Transforma-
tion of Differential Algebraic Array Equations to Index One
Form”. In: Proceedings of the 12th International Modelica
Conference. Vol. 132. Linkoping Electronic Conference Pro-
ceedings. Modelica Association and Link&ping University
Electronic Press, pp. 565-579. DOI: 10.3384/ecp17132565.

Rai, Rahul and Chandan K. Sahu (2020). “Driven by Data or De-
rived Through Physics? A Review of Hybrid Physics Guided
Machine Learning Techniques With Cyber-Physical System
(CPS) Focus”. In: IEEE Access 8, pp. 71050-71073. DOIL:
10.1109/access.2020.2987324.

Raissi, M., P. Perdikaris, and G.E. Karniadakis (2019-02).
“Physics-informed neural networks: A deep learning frame-
work for solving forward and inverse problems involving
nonlinear partial differential equations”. In: Journal of Com-
putational Physics 378, pp. 686-707. por: 10.1016/j.jcp.
2018.10.045.

Ruggaber, Julian et al. (2023-02). “Al-For-Mobility—A New
Research Platform for Al-Based Control Methods”. In: Ap-
plied Sciences 13.5. DOI: 10.3390/app13052879.

The MISRA Consortium (2023-04). MISRA C:2023 — Guide-
lines for the use of the C language in critical systems. Third
edition, Second revision. The MISRA Consortium Limited.
ISBN: 978-1-911700-09-8.

Thummerer, Tobias, Johannes Stoljar, and Lars Mikelsons
(2022-10). “NeuralFMU: Presenting a Workflow for In-
tegrating Hybrid NeuralODEs into Real-World Applica-
tions”. In: Electronics 11.19, p. 3202. por: 10 . 3390 /
electronics11193202.

Ultsch, Johannes, Andreas Pfeiffer, et al. (2024-08). “Reinforce-
ment Learning for Semi-Active Vertical Dynamics Control
with Real-World Tests”. In: Applied Sciences 14.16. DOI: 10.
3390/app14167066.

Ultsch, Johannes, Julian Ruggaber, et al. (2021-11). “Advanced
Controller Development Based on eFMI with Applications to
Automotive Vertical Dynamics Control”. In: Actuators 10.11.
DOI: 10.3390/act10110301.

Willard, Jared et al. (2022-11). “Integrating Scientific Knowl-
edge with Machine Learning for Engineering and Environ-
mental Systems”. In: ACM Computing Survey 55.4. Revised
and extended version of "Integrating Physics-Based Mod-
eling With Machine Learning: A Survey". DOI: 10.1145/
3514228.

DOI
10.3384/ecp12076545

Proceedings of the 16 International Modelica&FMI Conference
September 8-10, 2025, Lucerne, Switzerland

555

https://doi.org/10.3384/ecp204177
https://doi.org/10.3384/ecp204711
https://doi.org/10.48550/arXiv.1806.07366
https://doi.org/10.1007/s10915-022-01939-z
https://www.efmi-standard.org/media/resources/emphysis-public-demonstrator-summary.pdf
https://www.efmi-standard.org/media/resources/emphysis-public-demonstrator-summary.pdf
https://www.efmi-standard.org/media/resources/emphysis-public-demonstrator-summary.pdf
https://doi.org/10.3182/20130904-4-jp-2042.00086
https://doi.org/10.3182/20130904-4-jp-2042.00086
https://doi.org/10.1016/s0893-6080(05)80125-x
https://doi.org/10.3384/ecp2118137
https://doi.org/10.3384/ecp193157
https://doi.org/10.1109/IEEESTD.2019.8766229
https://www.bmbf.de
https://doi.org/10.5220/0012160100003543
https://doi.org/10.3384/ecp204469
https://doi.org/10.3384/ecp2118157
https://doi.org/10.3384/ecp2118157
https://doi.org/10.3384/ecp17132565
https://doi.org/10.1109/access.2020.2987324
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.3390/app13052879
https://doi.org/10.3390/electronics11193202
https://doi.org/10.3390/electronics11193202
https://doi.org/10.3390/app14167066
https://doi.org/10.3390/app14167066
https://doi.org/10.3390/act10110301
https://doi.org/10.1145/3514228
https://doi.org/10.1145/3514228

	Introduction
	Quarter vehicle model case-study
	NNs as external C code
	The ONNX format
	ONNX to C compiler
	Integration in Modelica
	Discussion

	NNs as native Modelica
	The NeuralNetwork library
	Generation of Modelica NNs
	Discussion

	Embedded code via eFMI
	The eFMI Standard
	eFMI support in Dymola
	QVM case-study with Dymola

	Future work
	Multi-dimensional embedded tensor-flows
	eFMU system integration and CPS tests
	SSP standard support

	Related work
	Conclusions

