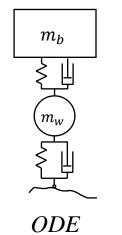
Hybrid Simulation Models for Embedded Applications: A Modelica and eFMI approach

Tobias Kamp¹, Christoff Bürger², Johannes Rein¹, Jonathan Brembeck¹

¹DLR - Institute of Vehicle Concepts, Germany

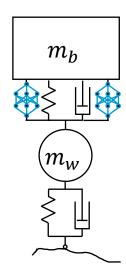
²Dassault Systèmes AB, Sweden, Christoff.Buerger@3ds.com

Hybrid Simulation Models Concept



Neural ODE

Hybrid Neural ODE Model



$$\dot{x} = f(x, u, t, \Theta)$$

$$y = g(x, u, t, \Theta)$$

Why?

- > Enhance predictions
- > Enhance performance

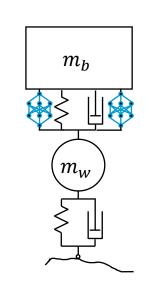
Case-studyHybrid Quarter Vehicle Model

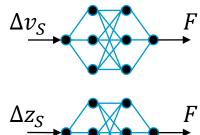
DASSAULT SYSTEMES

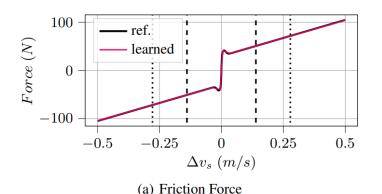
Previous work:

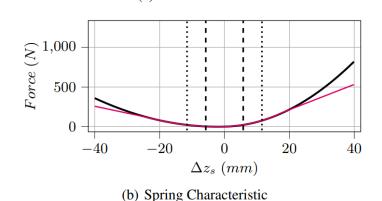
Linear Quarter Vehicle Model
 + neural networks that learn
 missing nonlinear effects

Physics-enhanced Neural ODE (PeN-ODE): meaningful combination of physics and neural networks









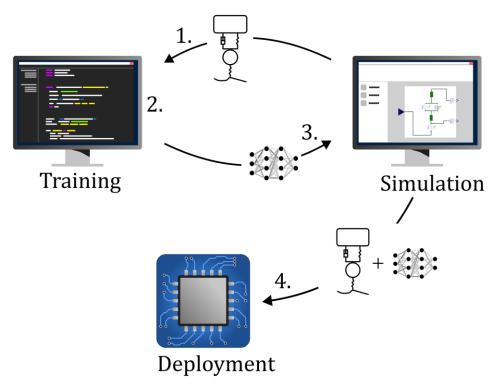
Trained forces as part of the PeN-ODE. Kamp et al. 2023¹

Neural ODE Workflow

Related Work

- DLR
- DASSAULT SYSTEMES

- Transfer of the physics model to the training framework
 - using FMI¹, code generation, ...
- 2. Training of the NODE with measurement data
 - Julia², Pytorch³, ...
- 3. Transfer trained components to the simulation environment
 - FMI¹, SmartIInt⁴, ...
- 4. Deployment of the Neural ODE on embedded target (control applications)
 - (this work)



¹https://github.com/ThummeTo/FMI.jl

²https://julialang.org/

³https://pytorch.org/

⁴https://github.com/xrg-simulation/SMArtIInt

Requirements of embedded applications

- MISRA:C 2023 compliance (The MISRA Consortium 2023)
- Restricted dependencies on libraries and frameworks
- Worst execution-time and memory-consumption guarantees
- Self-dependent implementation, with inline-integrated ODEs such that only linear solver calls are required
- Error-handling concepts, especially in case of unexpected positive or negative Infinity and NaN results of floating point operations
- Software-, Processor- and Hardware-in-the-Loop tests which are derived from Model in the Loop tests in the simulation environment

Contribution

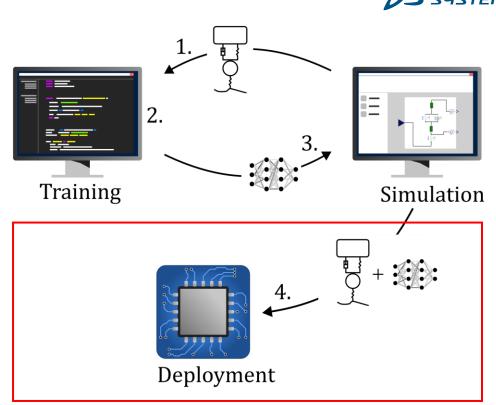
DASSAULT SYSTEMES

This work focuses on the application of Neural ODEs **after** the training

- Simulation with Modelica
- Deployment on embedded hardware and meeting the aforementioned requirements
- Recalibration of neural networks during runtime

We propose two workflows:

- 1. C embedding via ONNX
- 2. "Native Modelica"



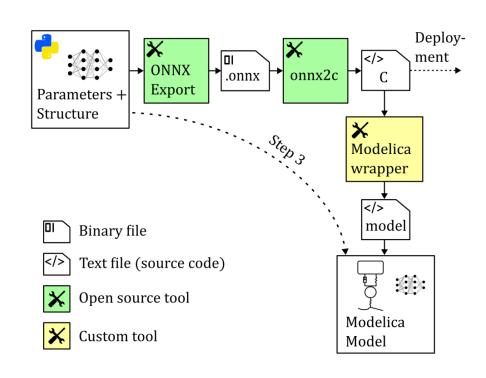
C embedding via ONNX Concept

DASSAULT SYSTEMES

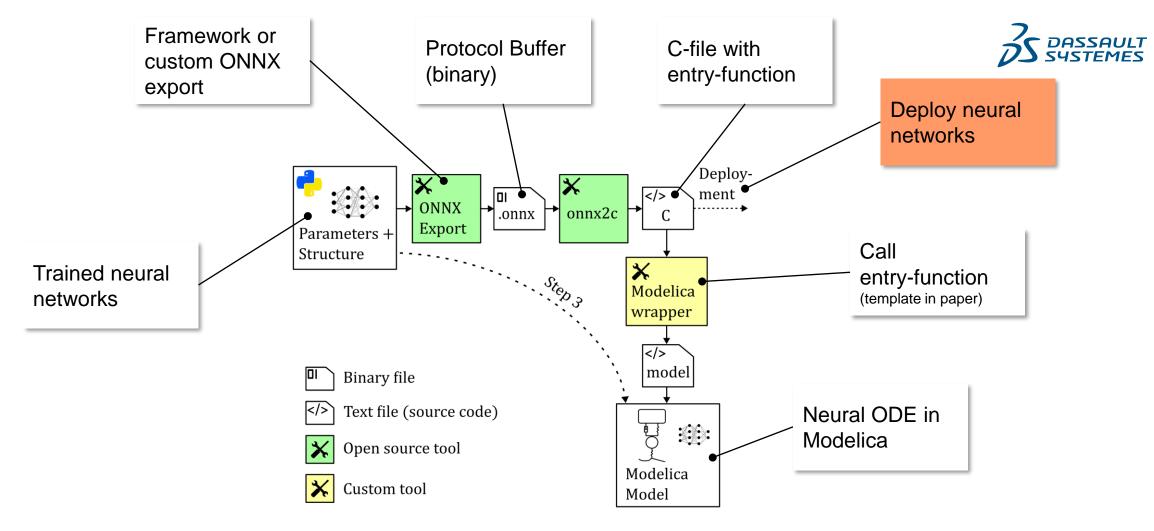
 Leverage ONNX¹ (Open Neural Network Exchange) to export trained neural networks

 Generate "hardware-ready" C code of the neural networks with onnx2c²

 Wrap the generated code into a Modelica package via the External C interface



C embedding via ONNX Workflow



C embedding via ONNX Evaluation

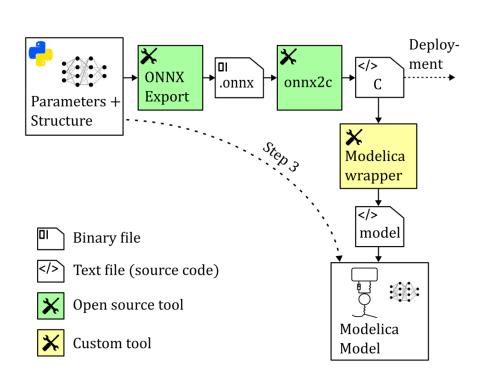
DASSAULT SYSTEMES

Benefits

- ONNX is already widely supported
- You obtain plain C code of the NNs
- Incorporation in Modelica is easy

Shortcomings

- Detour via onnx2c
- Once compiled, the neural networks are static
- Deploying the whole Neural ODE is not straightforward
 - Just the NNs are available as embedded code;
 The physics-equations & integration with NNs is an open issue

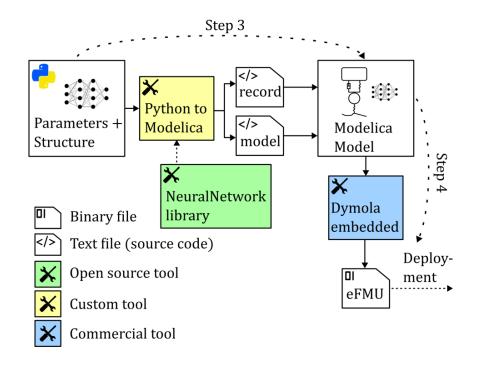


Native Modelica Concept

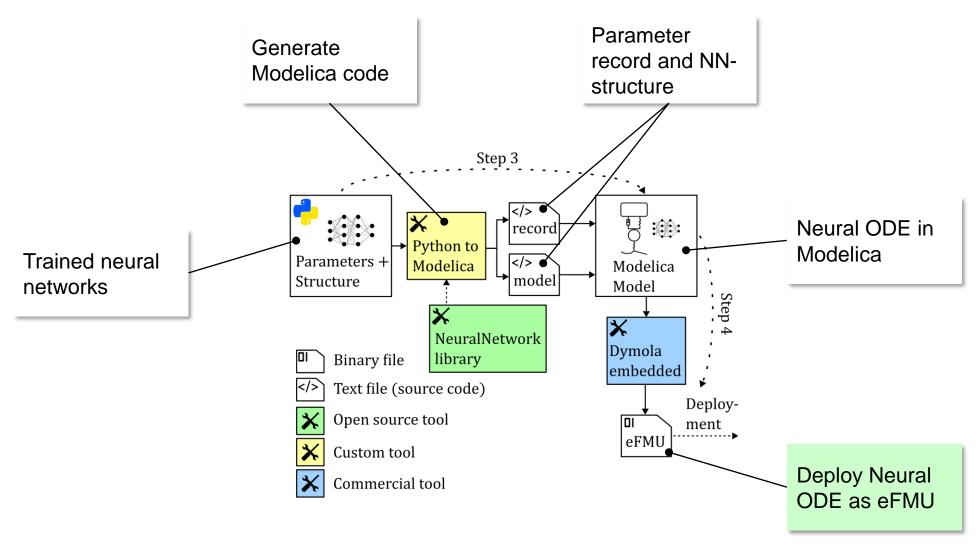
- DLR
- DASSAULT SYSTEMES

- Generate Modelica code targeting the Modelica NeuralNetwork Library¹ from your training Framework
- Implement the Neural ODE in Modelica

 Export the Neural ODE as eFMU with Dymola embedded for deployment



Native Modelica Workflow



Native Modelica **Evaluation**

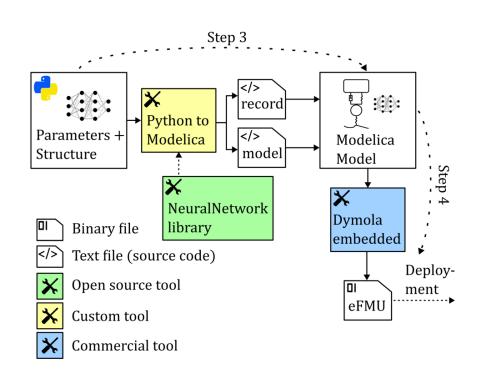
DASSAULT SYSTEMES

Benefits

- You obtain native Modelica neural networks with separate parameter records
- Recalibration of neural networks during runtime
- Embedded deployment of the whole Neural ODE is straightforward, thanks to eFMI

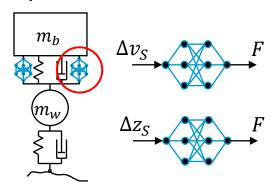
Shortcomings

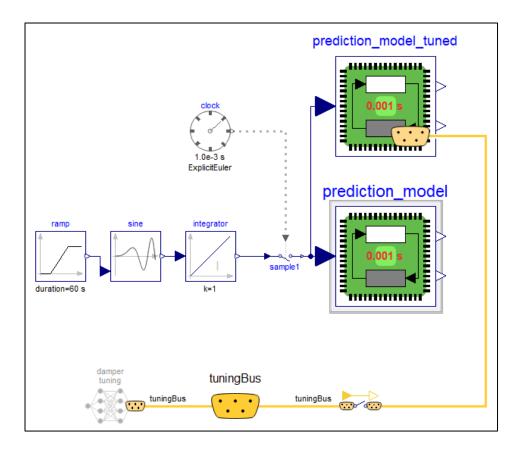
- Limited functionalities of NeuralNetwork Library
- Python to Modelica compiler not (yet) available
- Dependence on Dymola embedded



Validation Software in the Loop Setup

- Hybrid Quarter Vehicle Model with two neural networks (each with ≈ 600 parameters)
- Export to Modelica via custom Python to Modelica compiler
- Export Neural ODE as eFMU via Dymola embedded
- Recalibration of the neural damper in SiL-Experiment

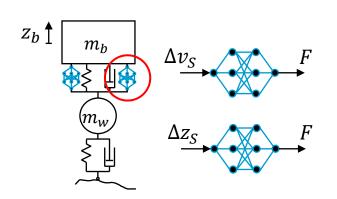


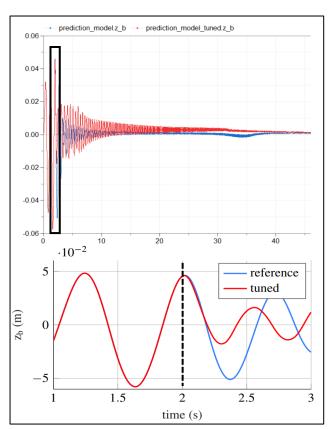


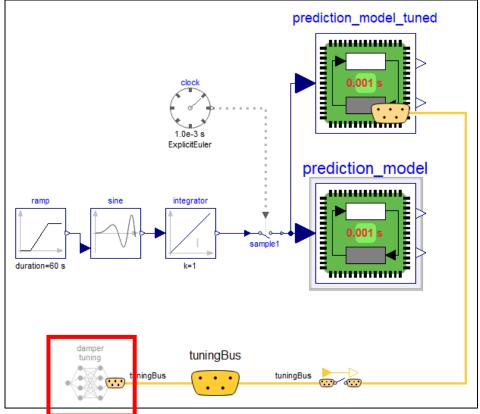
SiL setup of the recalibration Test.

ValidationSiL-Experiment Results

- Damper-tuner provides parameters as time-table
- Recalibration of the neural damper after 2 seconds
- Altered dynamics
- No discontinuity in the states







Exemplary simulation results.

SiL setup of the recalibration Test.

Future Work

- This work is part of the ITEA 4 OpenSCALING¹ project
 - Efficient simulation of Large Scale Systems
 - Standard enhancements for hybrid modelling
 - Avoiding scalarization to decrease code size; This is crucial for embedded applications (already available in Dymola 2026x)

- Standardized online recalibration of neural networks
 - SSP² defines varying parameter sets, but it has no notion of timing
- Pending: Hardware in the Loop and real world tests

²https://ssp-standard.org/

Avoid scalarization of tensorflowsMulti-dimensional GALEC code generated by Dymola 2026x

 Dymola 2026x provides prototype facilities to preserve multi-dimensional equations and variables (avoid scalarization)

Scalarized GALEC code for QVM ≈117 KB

Multi-dimensional GALEC code for QVM \approx 2.77 *KB*

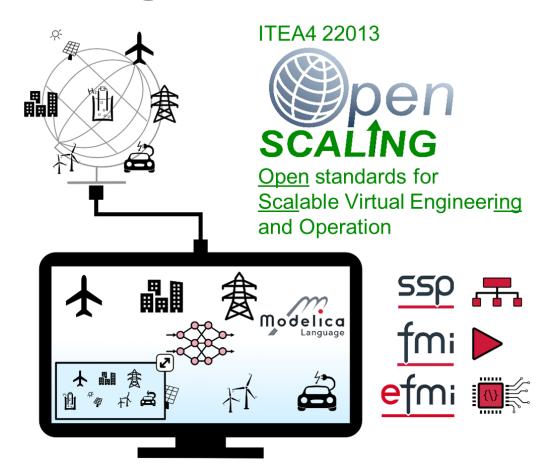
Neural network parameters now comprise the bulk of GALEC code

```
Weights & biases for QVM \approx29.3 KB GALEC \approx4.8 KB data memory (2 * 600 parameters * 4 bytes for 32-Bit floating-point precision)
```

Conclusion

- > Two workflows to simulate and deploy trained Neural ODEs
- C code from ONNX via onnx2c: modeling & simulation in Modelica with minimal dependencies; but only NN-parts, not whole PeN-ODE
- Native Modelica generation enabling eFMI export of whole PeN-ODE
 - > Meets requirements of **embedded applications**
 - ➤ Supports recalibration of neural ODE
- Neural QVM model open-source
 - ➤eFMI TestCases Modelica library, M11 NeuralQVM example
 - ➤ Since version 1.0.2, released September 4, 2025
- In OpenSCALING, we are advancing hybrid modelling capabilities of Modelica, FMI and eFMI

Acknowledgments



This work has been supported by the Swedish Agency for Innovation Systems (Vinnova¹, grant number 2023- 00969) and the German Federal Ministry of Education and Research (BMBF², grant number FKZ 01IS23062A) within the ITEA 4 Project Open standards for SCALable virtual engineerING and operation (OpenSCALING³, ITEA Project 22013).

¹https://www.vinnova.se

²https://www.bmbf.de

³https://itea4.org/project/openscaling.html

Imprint

Topic Hybrid Simulation Models for Embedded Applications: A

Modelica and eFMI approach

16th International Modelica & FMI Conference

September 8 – 10, 2025, Lucerne, Switzerland

Presentation of scientific paper (DOI: 10.3384/ecp218545)

Date September 10, 2025

Authors Tobias Kamp, Christoff Bürger, Johannes Rein, Jonathan Brembeck

Institute Institute of Vehicle Concepts

Licence All images "DLR (CC BY-NC-ND 3.0)" unless otherwise stated